
27

Информационные технологии

AN
INTRODUCTION

TO KNOWLEDGE
COMPUTING

V . T e r z i y a n
Dr, Professor

Department of Mathematical
Information Technology

University of Jyvaskyla, Finland
P.O. Box 35 (Agora), 40014,

Jyvaskyla, Finland
E-mail: vagan.terziyan@jyu.fi

O . S h e v c h e n k o
PhD, Associate professor*

E-mails: shevchenko@sw-expert.com
M . G o l o v i a n k o

PhD, Lecturer*
*Department of Artificial Intelligence

Kharkov National University of
Radioelectronics

Lenin av., 14, Kharkov,
Ukraine, 61166

E-mail: golovianko@gmail.com

Стаття присвячена завданням, пов’язаним з масивами
знань, що самокеруються та еволюціонують. Ми припуска-
ємо, що граф таких знань представляє собою гібрид з явних
декларативних знань про себе і явних процедурних знань.
Запропоноване розширення до традиційної RDF моделі, яка
описує граф знань відповідно до стандартів Semantic Web.
Запропоновано концепцію Executable Knowledge і Knowledge
Computing, засновану на додаванні виконуваних властивостей
до традиційно використовуваних (data type і object type) типів
властивостей в рамках RDF моделі. Стаття також представ-
ляє пілотну реалізацію Executable Knowledge , як модуля для
Protege (середовища розробки онтологій)

Ключевые слова: self-managed systems, knowledge, RDF-
graph, knowledge management, Semantic Web, knowledge ecosys-
tems, executable knowledge, knowledge computing, knowledge pro-
cessor

Статья посвящена задачам, связанным с самоуправляе-
мыми и эволюционирующими массивами знаний. Мы пред-
полагаем, что граф самоуправляемых знаний представля-
ет из себя гибрид из явных декларативных знаний о себе и
явных процедурных знаний. Предложено расширение к тра-
диционной RDF модели, описывающей граф знаний в соответ-
ствии со стандартами Semantic Web. Предложена концепция
Executable Knowledge и Knowledge Computing, основанная на
добавлении исполняемых свойств к традиционно использу-
емым (data type и object type) типам свойств в рамках RDF
модели. Статья также представляет пилотную реализацию
Executable Knowledge, как модуля для Protege

Ключевые слова: self-managed systems, knowledge, RDF-
graph, knowledge management, Semantic Web, knowledge ecosys-
tems, executable knowledge, knowledge computing, knowledge pro-
cesso

© V. Terziyan, O. Shevchenko, M. Golovianko, 2014

УДК 519.7:007.52

1. Introduction

Our information society [1], [2] is rapidly evolving towa-
rds the knowledge economy [3], where the knowledge mana-
gement tasks will be addressed by the knowledge ecosystem
model [4] and various content suppliers will converge from
the old to the new media [5]. Current technological world is
a pragmatic one: we look at any world entity (a living, artif-
icial, or an abstract one) through the interfaces of the smart
applications and ask ourselves a simple question: how can I
utilize it?), i. e., we really start to believe on “Everything-as-
a-Capability”. A capability is usually provided explicitly or
implicitly through a product or a service. Some entities may
not provide useful capabilities directly but can facilitate
capabilities of other products, services or users. Knowledge
is a facilitator of many important capabilities, such as deci-
sion-making and learning. Knowledge is converted into ec-
onomic value by the processes consisting of interconnected
actions (cognitive, physical or social) performed in physical
or virtual spaces. Unlike most real world resources depleted
after being used, knowledge can be reused, and it is capable
to evolve and to enhance its value within shared storages
over time. Knowledge economy [6] concerns exchanging
knowledge-based products and services within knowledge
markets [3], which are based on mechanism enabling, supp-

orting, and facilitating mobilization, sharing, or exchanging
information and knowledge among providers and users. The
New Media [5] increases production and distribution of
knowledge as a collective intelligence effort (with online int-
eractions between users and producers) to make the existing
knowledge easier to access and reuse.

Knowledge collected from different heterogeneous sour-
ces needs standardization to enable “understanding”, which
is the process of connecting (linking) the new information
and knowledge to the one already stored. Currently pop-
ular term “Linked Data” [7], [8] has therefore one simple
meaning: “the data which has been understood”. When the
data is linked, one can make a deeper intelligent and effi-
cient analysis of it (mining, knowledge discovery, pattern
recognition, diagnostics, prediction, etc.). It is known that
something represented as a Linked Data (based on RDF,
OWL and other standards) can be relatively easy linked
with other public data sets for creation of a cloud of linked
open data (the Semantic Web) [9]. There are many collab-
orative data-linking efforts mashing up features from Web
2.0 and the Semantic Web [10], e. g., Linking Open Data
(w3.org/wiki/SweoIG/TaskForces/CommunityProjects/
LinkingOpenData), DBpedia (dbpedia.org), Freebase (free-
base.com), Factual (factual.com), INSEMTIVES (insemtiv-
es.eu/index.php) and many others, which provide structured

28

Восточно-Европейский журнал передовых технологий ISSN 1729-3774 1/2 (67) 2014

content published and driven by volunteers. Collaborative
creation and evolutionary maintenance can be used not only
for Linked Data itself (as a knowledge graph) but even for
ontologies (“folksonomies” or social tagging).

Another trend is related to making knowledge comput-
able. See, e. g., the effort of Wolfram|Alpha (wolframalpha.
com) which is a query-answering tool providing visualizati-
on capability (the authors call it a “computational knowledge
engine for the Web”), which allows dynamic computations
on top of structured data (aka declarative knowledge) due to
various procedural attachments and built-ins within it. The
challenge however would be to make such computational
knowledge a natural asset for the emergent Semantic Web,
i. e., suitable not only for humans but also for various hete-
rogeneous and potentially interoperable applications, where
an essential part of needed knowledge-driven computations
can be automatically imported by an application from the
remote services. Knowledge has to be well managed in order
to be capable for effective computations. We have to admit
that knowledge is such a complex and dynamic entity that
it would be naïve to assume that the traditional knowledge
management approaches would be enough to meet all the
emerging challenges. We need a self-managed evolutionary
knowledge, which will be able to manage itself autonomou-
sly and therefore will have some extra knowledge about its
structure and possible behavior.

This is a challenging context for considerations about
knowledge and knowledge-based systems. Knowledge prov-
isioning (or/and computations or inferences on top of it) has
always been the major concern of the systems. However now
an emerging concern is how to do the same for needs related
to knowledge self-management and autonomic evolution.
The concept of a knowledge ecosystem is appeared to refer to
a knowledge management as a self-organization in response
to changing environments based on the dynamic evolution
[11], [4]. In this paper we are going to address the challenges
related to the knowledge self-management capability. We
offer an extension of the RDF model (traditionally used
for operation with knowledge graphs) in order to enhance
autonomous behavior of knowledge with respect to the Sem-
antic Web standards. We call the knowledge based on such
extended model as executable, which means that it contains
explicit (executable) instructions on how to manage itself
(i.e., self-management enabled).

We call the correspondent process of the executable
knowledge (self-)management as Knowledge Computing. It
aims to serve to a wide range of self-management purposes
to accommodate the changes happening in the Linked Open
Data in a more structured way comparably to users’ queries
addressing performed by the Google Knowledge Graph (go-
ogle.com/insidesearch/features/search/knowledge.html) or
the Wolfram|Alpha (wolframalpha.com).

The rest of the paper is organized as follows: we continue
the introduction and discuss current trends in Information
and Communication Technologies figuring out the needs
for the autonomic and self-managed solutions related to the
knowledge economy in Section 2; in Section 3 we provide
some basic characteristics and requirements to appropriate
self-managed systems; we discuss what kind of knowledge
would be needed for such self-managed systems in Section 4;
in Section 5 we discuss combination of the conflicting Open
World and Closed World assumptions to enable self-manag-
ement in knowledge-based systems; existing approaches on
enabling procedural attachments into declarative knowledge

is briefly described in Section 6; Semantic Web services and
various approaches around this concept to add semantics to a
procedural knowledge are described in Section 7; in Section
8 we introduce the concepts of executable knowledge and kn-
owledge computing utilizing the traditional RDF model ext-
ended by a new property type; we present some pilot (proof-
of-concept) implementation of the executable knowledge and
a reasoned for it as a plug-in to Protégé ontology development
environment in Section 9; and we conclude in Section 10.

2. Current Crisis and New Trends in Information
Technologies

Analysis of the current crisis (status of related markets
and employments) of the ICT (Information and Communi-
cation Technologies) domain [12] indicates certain trends,
which, e. g., demonstrate negative dynamics related to ICT
(communication technologies) component and probable re-
covery and growth for the ICT (information technologies)
component of the ICT.

It is well known that “Information Technology is conce-
rned with technology to treat information towards user nee-
ds”. We have 3 major keywords here (information, technology
and user) and with each of them the new challenging trends
are associated as follows:

Information (data, knowledge) is becoming huge (in
amounts and dimensions), globally distributed (by location),
heterogeneous (by the nature of the source), dynamic (chan-
ging with space-time and other contexts), multi-disciplinary
(by scope) and it is already beyond our capability to success-
fully process, store and understand it with the existing tools.
The Big Data challenge is expected to be one of the most
exciting opportunities within the past decade [13].

Technology provides capabilities (in forms of applications
(as products or as services with more shift towards services))
to manipulate Information. The capabilities are also becom-
ing huge (by number and complexity), globally distributed
(by location), heterogeneous (by the nature of the developer
or provider), dynamic (configurable adapting to the space-
time change and other contexts) and multidisciplinary (by
scope). Emerging service industry (the so called Web-based
service economy) on top of the Internet of Services with
global delivery platforms utilizes and expands the Web 2.0
and future network infrastructure (Internet of Things). It is
promoted by giants like SAP, Amazon, eBay, Google, Sieme-
ns, Philips, etc. According to the SAP vision, the Web-based
service economy in the Internet of Services will likely be an
integral part of the future economic innovation, value creat-
ion, growth, and employment [14].

User is also becoming “huge” (in number and social int-
erconnections), globally distributed (by location), heteroge-
neous (by nature (“Everything-as-a-User” [15]) and experi-
ence), dynamic (profiles and preferences are space-time and
other contexts dependent) and multidisciplinary (by scope
of interest). Today user is also an active data and knowledge
contributor and capability provider through the Web.

The major requirements to a possible solution to meet all
these challenges are:

Self-management (self-configuration, self-optimization,
self-protection, self-healing, etc., features of autonomic com-
puting) is needed to handle huge scale complexity (volumes
of information, numbers of technology capabilities, variety
of users and all related interactions);

29

Информационные технологии

Semantics (according to Semantic (Web) Technology) is
needed to enable self-management and to handle heterogen-
eity of information, technology capabilities and users;

Smart Integration (of information, capabilities, or users)
is needed to enable interconnection (e.g., Linked Data) and
interoperability among all “actors” and “components” and to
enable seamless and automated compilation of new complex
systems from available components;

Context-Awareness (including context modeling and
computing) is needed to handle dynamic aspect of current
IT trend (e.g., word “mobile” has now wider meaning, like
“changing in context”);

Architectures related to SOA and Cloud Computing may
serve as technological and business ecosystems for multidi-
sciplinary domains.

Therefore: the major emergent topics around Informati-
on Technology that are addressing the current IT challenges
would be:

- Self-management;
- Big and Linked Data, Semantics, Interoperability and

Integration;
- Service-Oriented Architectures and Cloud Computing

with the enhanced general slogan: “Everything-as-a-Servi-
ce-for-Everything!”

The three major aspects of such enhanced vision of “Ev-
erything-as-a-Service Engineering” would be:

1. Everything as a Service Provider. This traditional con-
cern sounds like: What (infrastructure, platforms, software,
interfaces, data, etc.) should be additionally provided to
make some product or system capable of performing its fun-
ctionality (data or capability) as a service for external users,
businesses or systems through the Web?

2. Everything as a Service Consumer. Here we have much
more challenging question: How to design products and sys-
tems so that they will be capable of automatic real-time disc-
overy, query and utilization of external data and capabilities
for better meeting their design objectives and beyond?

3. Everything as a Self-Service. Major research question
here is: How to make systems self-aware, context-aware and
capable of self-configuration, self-optimization, self-protect-
ion and self-healing while adapting their design objectives in
real time to changing execution environments according to
the “Open World assumption” (i.e., a system should be able
to handle new situations, which were not known during its
design time). Not only technologies are rapidly changing but
also the requirements towards future IT workers and their
skills (which causes new challenges for the universities) are
also changing radically. Traditional requirements for the
open positions in IT contained before the list of concrete
topics and products a candidate was expected to know or
be skillful in. Now the requirements may sound shorter and
more challenging, like, e. g., “people need to think beyond
the routine, and need to have the ability not just to adapt to
change, but to help create it” [16].

We have observed recently a dramatic increase in our ab-
ility to collect data from various sensors, devices, in different
formats, from different users, applications and services. The
amounts of these data are already so huge that it is beyond
our capability to successfully process, store and understand
it. The major challenge would be to find balance between
two evident statements: (a) the more data you have, the more
potentially useful patterns it may include; (b) the more data
you have, the less hope that any sophisticated machine-lea-
rning algorithm will be capable to discover these patterns

in the acceptable time frame. Knowledge (as the result of
some analytical processing over data) definitely has more
value than the data from which it has been originated and
we may expect that big volumes of processed data will result
to big volumes of produced knowledge (which is not always
true but likely to happen in many cases). Knowledge has
additional challenges of being “big” including challenge of
resolving contradictory (and evolving) opinions of everyone
on everything where managing the authority and reputation
of “experts” will play an important role [17]. The Semantic
Technology (RDF, OWL, etc.) was originated aiming to
break down the data silos and at the same time to enable
efficient (big) knowledge management. However taking into
account the trends mentioned above one may expect that
the (big) knowledge to be effectively managed as a complex
system should be a proactive, self-managing, self-evolution-
ary entity capable of consuming and providing services and
self-services over the Web. Such environments, in which kn-
owledge can “live” autonomously are known as a knowledge
ecosystems (see, e.g., [18]), are considered as a kind of digital
ecosystem (alternative to the traditional knowledge man-
agement approach with its directive management) towards
enabling self-organization and dynamic evolution of knowl-
edge interaction between entities (interlinked knowledge re-
sources, databases, human experts, and artificial knowledge
agents) in response to changing environments.

The question however is whether the current standards
for knowledge representation and sharing are suitable to
enable its emergent self-management capabilities and, if not,
then what might be the needed update? This is the issue of
this paper.

3. Autonomic Computing, Self-Management and
Evolution

Started by IBM in 2001, the Autonomic Computing refers
to the self-managing characteristics of complex computing
systems to manage themselves without direct human interven-
tion (i.e., the human defines general policies that constrain the
self-management process). According to IBM, the major four
functional areas of autonomic computing would be: self-con-
figuration (automatic configuration of system components);
self-optimization (automatic monitoring and ensuring the op-
timal functioning of the system within defined requirements);
self-protection (automatic identification and protection from
security threats); and self-healing (automatic fault discovery
and correction). Other important capabilities of autonomic
systems are: self-awareness (capable of knowing itself); self-
adaptation (acting accordingly to own environment and sur-
rounding context observed); being non-proprietary (function
in a heterogeneous word of open standards); and anticipatory
(automatically anticipate needed resources) [19].

According to [20] a self-managed system must be able to
dynamically change its behavior at runtime following user re-
quirements, execution environments, or technologies change,
therefore the system manages itself given high-level objectives.
Such systems are based not only on reusable (software) comp-
onents but rather on dynamically reconfigurable ones. Theref-
ore a system reconfigures itself (either separate components or
their communication logic) to: (a) address such changing obj-
ectives (expectations, requirements) from the user, which were
not anticipated at the design phase; (b) address such changes
in the execution environment, which were not anticipated at

30

Восточно-Европейский журнал передовых технологий ISSN 1729-3774 1/2 (67) 2014

the design phase; (c) address such changes in the technology,
which means radically new utilization context (communicati-
on networks, devices, standards, etc.) for the system.

Is the list above of self-managing characteristics would
be enough? Probably not. The self-managed systems are
naturally proactive, which means that they are capable not
only to adapt themselves to the environmental change but
also create changes in the environments, i.e., adapting the
environments to own benefits when possible and appropriate.
According to [21] a self-managed system is an autonomous sy-
stem like a robot is. This actually means that it is proactively
adaptive to the environmental changes, not just reactive. A
software architecture of self-managed system is one in which
components automatically configure their interaction to be
compatible with an overall architectural specification and the
objectives of the system. One of such major objectives applied
to self-managed systems is to minimize the degree of explicit
management necessary for (re)construction and subsequent
evolution whilst preserving the architectural properties imp-
lied by its specification [21]. Challenges here were noticed as
follows: reconfiguration of the software components, which
ensures application consistency; decentralized configuration
management, which can tolerate inconsistent views of the
system state, but still converge to a satisfactory stable state;
on-line (perhaps constraint based) planning for the goal ma-
nagement layer.

Consider appropriate definition of an intelligent agent
concept from [22], which fits well these extended requirem-
ents to the self-managed systems. The definition is based on
the concept of Semantic Balance [23] between internal (own
configuration) and external (outside world configuration)
environments of an agent as a kind of “survival instinct”.

An Intelligent Agent is considered in [22] as such pro-
actively-adaptive self-managed entity that is expected (for
survival) to keep continuously balance between configurations
of its internal and external environments in such a way that in
the case of unbalance agent can choose the behavioral option
from the following list:

• make a change within the configuration of the external
environment to be in balance with the internal one;

• make a change within the configuration of the internal
environment to be in balance with the external one;

• find out and move to another place within the external
environment, which configuration is such that needed balance
occurs without any changes;

• communicate and collaborate with one or more other
agents (human or artificial) to be able to create a community,
which collaborative internal environment and its configurati-
on will be in balance with the external one.

The concept of an agent fits well the expectations from
the self-managed systems and therefore it would be reas-
onable to consider the extensive self-managed systems as
the agent-driven ones. For the further needs of this paper
let us fix some characteristics of a self-managed system. A
self-managed system should be capable: (1) to observe (and
record) its own configuration and current state including
configuration and behavior of the management engine on top
of it through internal sensors; (2) to observe (and record) the
state and the behavior (including inquiries) of the outside
world entities through external sensors and communication
channels; (3) to reason (discover) the need and objectives for
self-reconfiguration by smart comparison of the records from
(1) and (2); (4) to create a self-reconfiguration plan based on
the objectives from (3); (5) to execute appropriate actions

from the self-reconfiguration plans from (4) through internal
effectors; (6) to proactively order, query, or execute the need-
ed reconfiguration actions from the external world entities (if
the self-reconfiguration is not possible) through the external
effectors and communication channels.

Such adaptive, proactive, mobile, collaborative and co-
ntext-aware systems capable to dynamically change their
behavior at runtime are difficult to create. Dynamic reconfig-
uration of such systems can generate inconsistencies, integrity
problems and combinatorial explosion of possible variants, all
of which leads to a great complexity, considerable technical
challenges and high implementation costs.

Even such a sophisticated self-managed (a kind of “artif-
icial life”) system as described above may meet one day such
rapidly evolving circumstances that it will not be capable
anymore to reconfigure itself in a real time to address the new
challenges, to fit its design objectives and therefore becoming
useless for further exploitation and “dies”. Then it usually ha-
ppens, that the next generation system is created, which may
inherit something from previous system but also should have
some principally new features. Because of that we admit that
it is not always possible to a system to adapt itself to a change
within its lifetime. This means that the self-management ca-
pability only may not be enough for the system to “survive”
and we are coming to the necessity of the (self-)evolution. The
nature invented a long-term (beyond single system lifecycle)
adaptation instrument named genetic evolution. Evolution is
known to be the change in the inherited features of populati-
ons (of natural or artificial life forms) over successive genera-
tions. Evolutionary processes provide diversity at every level
of life organization.

4. Knowledge for Survival

Let us agree with [24] saying: “Someone once said that
that there is nothing new in this world, we keep on reinventing
the wheel. I have no pretension that this work contains anyth-
ing new, since I borrowed heavily from the work and insights
of others. What is different is how these insights are cobbled
together into a different and perhaps new whole” (new syst-
em). In terms of self-management and evolution, knowledge
is essential for a living system̀ s survival. According to [25],
knowledge is needed to make a complex unpredictable world
understandable for making better decisions within it. It is also
believed [26] that knowing things gives evolutionary advan-
tage to those who know better how to adapt rather than die.
The role of knowledge for self-management of individuals can
be seen from e.g. BDI (Beliefs-Desires-Intentions) model with
various enhancements [27], which is traditionally applied for
programming software agents’ behaviors. The abstract formu-
la of agent behavior would be: survival as the “basic instinct”;
different and changing desires (goals and objectives) appear
(inferred) according to the survival needs; intentions (execut-
able plans for achieving objectives) are inferred based on own
beliefs (knowledge about itself and the environment).

The role of knowledge for self-management of the groups
of individuals is associated with the knowledge management
concept. In today’s hypercompetitive environment, know-
ledge management becomes a vital component for modern
organizations. Knowledge management relates to an organi-
zation’s ability to systematically capture, organize, and store
information exploring technologies like business intelligence,
collaboration, knowledge transfer, knowledge discovery and

31

Информационные технологии

mapping, etc. [28]. In the autonomic systems context, the kn-
owledge includes essential part of a self-knowledge (as named
in [29]) with corresponding management components like
self-monitoring, self-learning, self-diagnostics, etc.

An autonomic system should obviously work with so
called dynamic knowledge (see, e.g., [30]), which is dynami-
cally changing knowledge, providing on-demand, in-context,
timely, and relevant information. Representation of dynamic
knowledge reacting to any changes in business environment
and the user’s needs is possible with autonomic ontologies
[31], [32]. To support their efficiency important techniques
including detecting and fixing broken links in linked data sets
[33], monitoring and notifying data changes [34], [35], reba-
lancing graph structures [31], [32] are introduced. Powerful
and expressive tools and languages (such as, e.g., LUPS [36])
are used for representing and proper handling of conflicting
updates as addressed in [30].

Is self-knowledge declarative or procedural? A procedural
knowledge (or knowledge on how to do something) is known
to be a knowledge focused on obtaining a result and exercised
in the accomplishment of a task, unlike declarative knowledge
(propositional knowledge or knowledge about something)
[37]. Procedural knowledge is usually represented as finite-
state machine, computer program or a plan. It is often a tacit
knowledge, which means that it is difficult to verbalize it and
transfer to another person or an agent. The opposite of tacit
knowledge is explicit knowledge. We believe that an auton-
omic system needs a kind of a hybrid of explicit declarative
self-knowledge (as knowledge about own properties and capa-
bilities) and explicit procedural self-knowledge (as knowledge
on how to utilize own properties and the capabilities for the
self-management).

5. Open World vs. Closed World Assumptions

Individual knowledge and knowledge we collectively
share in the Web describes only a small portion of the world
around us and the larger portion remains unknown. This so
called Open World assumption is used as the basis within
most of current ontology reasoning support tools. Humans
as well as various systems however are making their decisi-
ons within Closed World of known facts and therefore these
decisions may lead to a failure and will be optimal only if a
complete knowledge is available (i.e., almost never).

In the formal logic, the Open World Assumption (OWA)
is the assumption that the truth-value of a statement is in-
dependent of whether or not it is known by somebody to
be true. It is the opposite of the Closed World Assumption
(CWA) or “negation as failure”, which holds that any sta-
tement that is not known to be true is false. For example,
if the only knowledge a system has about some John would
be: “John has daughter Mary”, then according to the CWA
it would automatically mean that a statement “John has
daughter Suzanna” is false, however according to the OWA
the reaction to the same statement “John has daughter Suz-
anna” would be “I do not know”. Therefore the CWA allows
a system to infer, from its lack of knowledge of a statement
being true, anything that follows from that statement being
false, while the OWA limits those kinds of inference and
deductions because of ignorance. Within the OWA-based
systems, from the absence of a statement alone, a deductive
reasoner cannot (and must not) infer that the statement is
false. The OWA reflects the monotonic nature of the fir-

st-order logic, i.e., adding new information never falsifies
previous conclusions. This fact however limits possibilities
of the OWA-based systems to benefit from the non-mono-
tonic reasoning techniques (e.g., default reasoning) where
previous conclusions can be invalidated by adding more
knowledge.

Semantic Web languages such as OWL assume the
OWA while most of procedural programming languages and
database management systems assume the CWA. An impor-
tant question for the emerging Semantic Web is how to best
combine description logic-based open world ontology lang-
uages, such as the OWL, with closed world non-monotonic
logic rules. Ontologies are a standard OWA formalism while
rules usually apply the CWA. A combination of ontologies
and rules would clearly yield a combination of the OWA and
the CWA and this is not only of interest for current applic-
ations in the Web, but also as a highly sophisticated means
of knowledge representation in general [38]. However, com-
bining rules and ontologies is a nontrivial task, since a naive
combination of ontologies and OWA-based rules is known
to be undecidable [39]. One of the most solid proposal for
reasonable combination is known as hybrid MKNF knowle-
dge bases [40], [38] consisting of ontology axioms and rules,
which is based on a well-founded semantics that promises
better reasoning efficiency and compatible with both the
OWL-based semantics and the traditional Well-Founded
Semantics for logic programs. As argued in [40], a hybrid
formalism combining rules and ontologies should satisfy
certain criteria: (a) faithfulness, i.e., preserving semantics
of both formalisms; (b) tightness: i.e., both the ontological
description logic component and the rule component should
be able to contribute to the consequences of each other; (c)
flexibility, i.e., possibility to view the same predicate under
both open and closed world interpretations; (d) decidabil-
ity, preferably of low worst-case complexity, to be used in,
e.g., Semantic Web applications.

The Semantic Web Rule Language (SWRL) [41] exte-
nds the OWL, providing logic-based rules, which together
with stored facts are executed as inputs by the rule engine,
which infers new facts as an output. In addition, the rule
engine infers new knowledge using forward chaining, which
can be used for further inference. The SQWRL (Semantic
Query-Enhanced Web Rule Language) [42] is a SWRL-
based language for querying OWL ontologies. SQWRL qu-
eries operate on known individuals in the currently loaded
OWL ontology. The SQWRL provides no way of accessing
the information it accumulates from within a rule so query
or/and counting or/and computation results cannot be
written back to the ontology. There is no way, for example,
to insert the result of a recomputed age of some person
(based on known birthday of the person and current data)
back into the ontology, or to update, e.g., the value of the
property hasPublicationsAmount for some researcher in the
ontology when information about new publications arrives.
Such a mechanism could invalidate OWL’s OWA and lead
to nonmonotonicity [42].

We should admit, however, that appropriate knowledge
formalism for the self-managed systems must combine OWA
(for cognition and operating with the external environment
knowledge) with CWA (for self-awareness and operating
with the internal environment knowledge). Therefore OWA
is right when talking about knowledge of the world but
inappropriate when talking about, e.g., knowledge of know-
ledge of the world.

32

Восточно-Европейский журнал передовых технологий ISSN 1729-3774 1/2 (67) 2014

6. Demons (Procedural Attachments) in Semantic Web

The needed compromise between OWA and CWA, wh-
ich is how to make the results computed or inferred based
on procedural knowledge explicit within ontology, is closely
related to a compromise between (or a hybrid of) declarative
and procedural knowledge. Marvin Minsky in [43] suggest-
ed using so called “demons” within frame models already in
1974. A frame represents an object or a concept. Attached to
the frame is a collection of attributes (slots), filled with valu-
es, which can be altered to make the frame correspond to the
particular situation. When other frames are used to fill the
slots, then as a result we will have a semantic graph of dom-
ain objects or/and concepts similarly to what we can get to-
day with RDF and OWL. According to Minsky, frames may
also contain procedures, called demons, which are activated
under prescribed circumstances. Demons are supposed to be
attached to some slots in a frame to cause execution of some
procedure when accessed. Demons are triggered when, e.g.:
(a) a new value is put into a slot; (b) a value is removed from
a slot; (c) a slot value is replaced; (d) there is no value present
in an instance frame and a value must be computed from a
generic frame; and etc.

On the other hand, soon after frames in 1977, Roger
Schank [44] proposes scripts as a method of representing
procedural knowledge based on conceptual primitives (ba-
sic actions that people and objects can perform) and their
interrelations. Scripts are very much like frames, except the
values that fill the slots must be ordered. Frames and script
can be easily “married” just because the basic idea involved
in both representations is that our knowledge of concepts,
events, and situations is organized around expectations of
their key features. For example one can easily imagine a
frame slot (demon in Minsky’s interpretation) with attached
script (in Schank’s interpretation) prescribing on how to an-
ytime get/update the actual value of the slot. The Knowled-
ge Representation Language (KRL) [45] has been proposed
by Bobrow and Winograd in 1977 as an attempt to integrate
procedural knowledge with a broad base of declarative for-
ms. Procedures in KRL were associated directly with the in-
ternal structure of a conceptual object and such procedural
attachment assumes a particular operation to be determined
by characteristics of the specific entities involved into it.

The frame-based knowledge representation made suffic-
ient influence to the Semantic Web standards (RDF, OWL,
etc.); see, e.g., [46] where the frame-based representation
has been proposed as a suitable paradigm for building onto-
logies as well as for the RDF-formalism with its object/att-
ribute/value triples. Since that, however, demons (as one of
the most attractive features of the frame model) have never
been supported by the RDF data model. Although the sim-
ple class and property model of RDF Schema owes much to
object-oriented approaches, it remains a purely declarative
representation (unlike object-oriented models with member
functions on objects, or frames with demons attached to
slots) therefore approach taken by RDF has major difference
with that taken by traditional object-oriented languages
such as C++ or Java [47].

There were some efforts to enable procedural attachme-
nts for, e.g., specific calculations or evaluations on the data
within ontological knowledge models. For example the FL-
UMAGIS (www.flumagis.de) project resulted to a prototy-
pic expert system which can be used to provide decision and
planning support in the water domain, and its software has

been designed as a knowledge-based system. One the major
research questions within the project was: how to combi-
ne static ontologies with algebraic functions, evaluations,
calculations, complex processes leading to simulations and
prognosis [48]. The project contributed to creation of a set of
plug-ins to the Protégé ontology development environment
(protege.stanford.edu) to enable Java procedural attachme-
nts through Protégé interface to the ontology. These include:
(a) function slots, which reckon up certain instance slot val-
ues as input, represent the result as their own value, and will
be updated automatically if one of the input values has been
changed; (b) action buttons to start any procedure, which
uses any instance slot values as input, and which also can
change any instance slot values as output; (c) constraints (as
functions) on slot values. The attachment of a Java class to
a slot means that an instance of the Java class is created to
be connected with the slot, i.e., there is one Java object for
each ontology class, which uses this slot as a template. The
Java slots (aka active properties) can be modified at the class
level by facets [48].

The need for ontologies capable to represent methods
has been also discussed in [49]. It was argued that software
agents to be capable to perform tasks autonomously need
methods besides classes and attributes to be also represented
in ontologies. The minimum requirements are that the meth-
od name is represented along with the types of its arguments
and the return value.

7. Other Way around (Semantic Attachments to
Procedures): Semantic Web Services

More successful has been an effort to integrate decl-
arative and procedural knowledge by adding declarative
semantics to process descriptions, which can be explained by
growing popularity of the Web service economy. Web servi-
ce is a self-contained modular business application that have
open, internet-oriented standardized interface. Appropriate
Web service standards include SOAP (Simple Object Access
Protocol), WSDL (Web Service Description Language),
UDDI (Universal Description, Discovery and Integration),
WS-BPEL (Web Service Business Process Execution Lan-
guage), etc. There were several attempts to extend the Web
service concept towards a Semantic Web Service, which is a
self-descriptive, semantically marked-up software resource
that can be published, discovered, composed and executed
across the Web in a task-driven way [50], or even to make it
proactive (agent-driven) and capable to behave autonomou-
sly to increase its utility and to be the subject of negotiation
and trade [51].

Among several frameworks to enable Semantic Web Ser-
vices consider the following ones: OWL-S, WSMO, METE-
OR-S (WSDL-S, SA-WSDL, SA-REST) and SSWAP.

OWL-S (http://www.daml.org/services/owl-s/) is the
first OWL-based Web service ontology, which supplies Web
service providers with a core set of constructs for describing
the properties and capabilities of their Web services in un-
ambiguous, computer-interpretable form. Ontology consist
of three main parts: the service profile for advertising and
discovering services; the process model, which gives a deta-
iled description of a service’s operation; and the grounding,
which provides details on how to interoperate with a servi-
ce, via messages. The Web Service specifications based on
OWL-S are believed to enable the development of software

33

Информационные технологии

programs that can interpret descriptions of unfamiliar Web
Services and then employ those services to satisfy user goals.
Therefore the OWL-S markup of Web services is expected
to facilitate the automation of Web service tasks, including
automated Web service discovery, execution, composition
and interoperation [52].

WSMO (http://www.w3.org/Submission/WSMO/)
provides a more complete conceptual model comparably to
OWL-S as it also addresses aspects such as goals (objecti-
ves that a user might have when consulting a service) and
mediators or necessary mappings aimed to resolve intero-
perability problems, incompatibilities and mismatches at
different (data, protocol and process) levels [53]. WSMO
differentiates between the ontological descriptions (declar-
ative knowledge) of the services and technologies for their
execution (procedural knowledge). The service interfaces in
WSMO are designed in a way that is suitable for software
agents to determine the behavior of the Web service and
reason about it [54].

The METEOR-S project (lsdis.cs.uga.edu/projects/me-
teor-s/) at the LSDIS Lab, University of Georgia, aimed
to extend popular within industry Web-services standar-
ds (WSDL, UDDI, BPEL4WS) with the Semantic Web
technology [55]. As a result, the WSDL-S (semantically
enhanced WSDL) has been elaborated as a lightweight
approach for adding semantics to Web services. The ap-
proach allows integration of semantic and non-semantic
descriptions of Web services, assuming that the users
must specify translation to OWL of possible special ty-
pes. For software developers the possibility was given
to semantically annotate source files (by exploiting the
meta-tags) to enable complete WSDL-S specifications to
be generated and automatically published in an enhanced
UDDI registry. Special support is provided for automatic
generation of OWL-S files from WSDL-S files for groun-
ding, profile and service [56]. Later in 2007, the Semantic
Annotations for WSDL and XML Schema (SA-WSDL)
(www.w3.org/TR/sawsdl/) mechanism has been elabo-
rated by which concepts from the semantic models that
are defined either within or outside the WSDL document
can be referenced from within WSDL components as an-
notations helping to disambiguate the description of Web
services during their automatic discovery and composition
[57]. Later in 2010, the Semantic Annotations for REST
(SA-REST) (www.w3.org/ Submission/SA-REST/) has
been elaborated as a microformat to enable ontological met-
adata to be embedded into HTML/XHTML documents. It
is human-friendly as it designed for the humans (developers
and annotators) first and for the machines later. SA-REST
has two types of properties (block and element property),
which meant to distinguish the capability of a property to
nest other properties. Attaching explicit meta-data to the
API descriptions using SA-REST can significantly improve
their faceted search. It also facilitates a user-driven light
weight service composition (e. g., mash-ups) [58].

As a sample of more recent activity let us mention the
SSWAP (http://sswap.info/), which is OWL ontology sp-
ecifically designed to describe web services. Services are
identified by URIs by mapping from their inputs to outputs,
and the SSWAP ontology defines a set of terms to describe
this transformation. The same representation is also used for
service search and service execution requests and responses.
A service execution request fills in the value of an input
parameter and leaves the output value blank to be filled as a

result of the service execution. Thus, SSWAP defines a pr-
otocol where clients and servers exchange OWL documents
that contain needed RDF graph structure for accomplishing
the tasks of services discovery and execution [59].

Summing it up we may admit that these approaches ta-
rget mostly semantic support and automation of a customer
(directly or through some application) – a service provider
relationships and are not so suitable for the self-management
systems. According to our previous consideration, a self-ma-
naged system should, if appropriate, be capable to discover
and utilize external web services for the self-management
needs (e.g., for self-reconfiguration) or should also be aw-
are and when needed utilize own services (self-services)
for the same purpose. The former requires a capability for
an external service to securely access the configuration of
the system and make necessary changes within it, which
definitely may be considered as a new requirement to the
(semantic) Web service community. The latter will require
appropriate ontology and annotations of the internal system
capabilities as services and can be in principle supported
by one of the Semantic Web services approaches described
above. However if we consider a knowledge-based system in
general and its knowledge in particular as a subject for self-
reconfiguration, then this will be challenging from the both
aspects if to apply traditional technologies due to lack of
appropriate services to manipulate with knowledge in fully
automated manner.

8. Executable Knowledge and Knowledge Computing

To address the challenges discussed earlier in the paper
we introduce the concept of executable knowledge for auton-
omic or self-management systems development according to
Semantic Web standards. The used knowledge representat-
ion model based on directed labeled RDF-graphs on top of
a set of triples “subject – predicate – object” (or “resource –
property – value”) considers nodes of the graphs as blank
nodes, literals or URI (Uniform Resource Identifier) refe-
rences.

The traditional role of the URI reference has always
been an identifier pointing at the name and location of a web
resource. A new role defined lately by the W3C is to identify
the content located at the referenced Web-resource if the
resource can be dereferenced (http://www.w3.org/ 2001/
tag/doc/httpRange-14/HttpRange-14.html) do not provide
capacities for ontology evolution.

We extend the semantics of the RDF triple more by
defining the third possible role for URI: to be a procedure
identifier. This adds a procedural component to the RDF-
based data model giving a possibility to define procedures
for automatic ontology evolution and instantiation. We cal-
led knowledge utilizing the proposed data model executable
with respect to the manner a reasoner works with it (execu-
ting accommodated instructions).

The new model is an ontology which introduces a new
property type named “executable property” (in addition to
the object and datatype properties), which value is not an
explicitly defined data but an instruction on how to get it.
In this case the executable triple components get roles of
“resource – property – procedure (query)”. According to the
basic RDF data model a procedure is a resource with several
properties for storing instructions and a cash of the comput-
ed values. As it is shown in Fig. 1 Resource_A has a property

34

Восточно-Европейский журнал передовых технологий ISSN 1729-3774 1/2 (67) 2014

and, in order to get its value, instructions, which are located
in the Resource_D, should be executed by a reasoner suppo-
rting inference over executable knowledge.

Fig. 1. Extending the traditional RDF property types
(datatype or object property) by a new one “executable

property”, which value (resource or literal) is computed on
access following the instructions (Resource_C in the picture,

which prefix exe indicates an executable resource)

Two immediate advantages of the extension one may
expect are: (a) a triple will always implicitly keep kno-
wledge about most recent value for the property because
query to some data storage or to some computational fu-
nction will be executed only on demand when needed and
the latest information will be delivered; (b) a query may
be written according to different standards, data repres-
entation types, models and schemas so that heterogeneity
of original sources of data and capabilities will not be a
problem.

In [60] we have already demonstrated how a similar
approach can be used for creating semantic mash-ups of
the reality data and the business intelligence functions
(we called the concept as the “executable reality”). There
we based the implementation on the S-APL (Semantic Ag-
ent Programming Language) [61]. In this paper we try to
discuss the implementation issues following the traditional
semantic technology standards (RDF, OWL).

The concept of executable knowledge can be conside-
red as such kind of hybrid of declarative and procedural
knowledge, where “executing” knowledge, one actually
transforms tacit (procedural) knowledge into explicit
(declarative one).

Therefore an executable knowledge contains explicit
procedural (meta-) knowledge on how to acquire (or com-
pute) declarative knowledge. Such capability means that
the executable knowledge is naturally self-configurable
knowledge (or more generally – self-managed knowledge).
Therefore, taking into account that the procedural at-
tachments can be treated if needed as self-management
instructions (for example, self-evaluation, self-configura-
tion, verification, filtering, decontextualizing, reasoning,
computing, merging, compressing, reporting, visualizing,
etc.), we may consider the executable knowledge as a
self-management enabled one. Let us call the process of
executable knowledge (self-) management as Knowledge
Computing (Fig. 2).

Fig. 2. The concept of “Knowledge Computing” illustrated

Assume some knowledge storage, which in addition to
some domain knowledge also has an explicit knowledge ma-
nagement instruction in the form of executable knowledge. If
the storage is equipped with a “knowledge processor” (i. e.,
an engine or an agent capability to execute the instruction
scripts), then the knowledge will behave as a self-managem-
ent entity (Fig. 2).

It is important to mention that executable scripts may
refer also to external service/capability providers, therefore
some executions may be exported and performed remotely
and the results will be consumed on return through the kn-
owledge processor back to knowledge.

The approach of knowledge computing allows addressing
a number of problems considered as a bottleneck for the Li-
nking Open Data:

- the higher index of links integrity (defined as a qualita-
tive property that is given when all links within and between
a set of data sources are valid and deliver the result data
intended by the link creator [33]) is reached due to reducing
the number of the broken links possible types. A link will
always have a valid target computed on fly which excludes
the crucial influence of removing and moving previously
defined link targets.

- Instance-level co-reference (discussed in [62]) is enab-
led by knowledge computing by inferring schema-level and
instance-level relations between concepts and properties of
two different repositories providing data-level and schema-
level evidence.

- Automatic ontology evolution and instantiation enabl-
ed by the new data model reduces the possibility of ontologi-
es overloading with lots of concepts and instances or indexed
Web documents and is a possible solution for rebalancing
graph structures [31].

9. Pilot Implementation and the Example

We define the concept of executable property as an
enabling technology to interconnect ontology-based (sem-
antic) portals with credible data sources and services in the
most suitable and flexible way to update knowledge bases
of the portals automatically in real time. At this stage of
our research we have considered 4 basic types of executable
properties (see Fig. 3), which are capable to update their
values by:

1) getting data from traditional databases performing an
SQL query;

35

Информационные технологии

2) making simple mathematical computations over other
known values from local semantic storage;

3) getting data as a result of SPARQL queries;
4) getting data as query results from external Web ser-

vices.
Executable knowledge model is an ontology defining

new executable classes and properties. To process it an exec-
utable knowledge specific processor is needed. We developed
a plug-in for Protégé ontology development environment
(protege.stanford.edu), which supports the new property
type and provides reasoning tools over the executable part
of the ontology.

Depending on the subtype of the executable property
a certain procedure for executing and resolving should be
applied.

Fig. 3. A hierarchy of the Executable Property types

Each of the subproperties needs a unique mechanism for
computing the value and requires different parameters:

1) Top Executable Property is an abstract super property
for all possible executable properties. It contains a descri-
ption of the common computing mechanism, which will be
inherited by all subproperties. For correct specification of
the input parameters the reasoner gets access to a particular
instance of the class of the computed executable property.
Each inheritor of the Top Executable Property has its own
syntax for formal description of the needed parameters’
values. Generalization of the executable property domain
is implemented by use of operator “this” defined in the Top
Executable Property. For instance, reference “this.name”
points out to the value of the property “name” of the curre-
ntly processed instance. Such notation allows implementing
a specific syntax of the query within the properties of the
inheritors. Executable properties may have a set of possible
ranges, and for each of them parameters should be defined
separately.

2) “DataBase Executable Property” allows getting data
from a database in response to an SQL query. Parameters for
such property are: database server, access parameters (server
address, login and password), and the SQL query itself.

3) “SPARQL Executable Property” enables to describe
a SPARQL query as a procedure of the property value co-
mputing.

4) “Mathematical Executable Property” enables comput-
ing a relatively simple mathematical formula (function). The
function itself is specified as a parameter for the executable
property. Such property can operate with constants as well
as with the values of the various resource properties. The
function can have variables referring to other executable
properties.

5) “Web Service Executable Property” enables querying
a remote Web service. Such query will require the following

parameters: (a) access data (address, login, password, etc.);
(b) identifier for the function called; (c) identifiers and va-
lues for the parameters needed for the function (values of
other properties of the original resource can be taken as the
parameters). Various possible protocols for the Web-services
are handled by creating subclasses of the Web Service Execu-
table Property separately for each protocol.

In spite of the expectations that the executable property
concept may expand the applicability of the ontology-based
systems and improve their interoperability, the approach has
also some weaknesses related to the reduced ontology per-
formance because computing the values for the executable
property on-the-fly may create some delays in getting output
data. Cashing mechanisms are needed to handle history of
queried executable property values to fasten in some cases
calculations in real time.

Let us consider calculation of a scientist̀ s rank as an
example of an executable property management. Assume
that three different citation indexes (h-index, g-index and k-
index) of some scientist are taken from different sources and
the final value “ScientisRank” will be computed as a mean
value of those. Class Scientist in the ontology will look as
shown in Fig. 4.

Imagine that the h-index has to be calculated as a result
of SPARQL query; the g-index is computed as the result of
SQL query; the k-index is obtained due to querying web-se-
rvice (XML RPC); and finally the ScientistRank is compu-
ted as a mean value of the three above numbers.

Taking into account that query transfer protocols are
different for different Web services we have developed su-
pporting tools for 4 types of interaction with Web services:
“JSON RPC”, “REST”, “SOAP” and “XML RPC”. All of
them have a similar set of parameters for querying a service
but interact with the service based on different protocols.
In our example we will show in detail the option of a query
transfer according to the “XML RPC” standard.

Fig. 4. Properties of the “Scientist” class in the example

For getting the g-index the “DataBase Executable Pro-
perty” is used. Parameters of this property are shown in the
Protégé screenshot in Fig. 5. One needs to specify two para-
meters to get the value of “MySQLDbActive Property”. The
first one defines connection with the database. For that a
special object of the SQL_Server_Connection class is creat-
ed with the properties shown in Fig. 6. Such object contains
all necessary information for connecting with the database
server. Connection itself can be performed in advance for
fast support of possible set of queries. The second parameter
(the SQL query itself) can be entered in a special window of
the editor, which allows combining textual descriptions with
the references to classes and properties.

36

Восточно-Европейский журнал передовых технологий ISSN 1729-3774 1/2 (67) 2014

For each particular “Domain”
specification for an executable pr-
operty there is a possibility to de-
fine needed set of parameters. If
for some “Domain” such parameters
will be missing, then, if queried,
such property will return an empty
line as a value. Such type of execu-
table property has just one parame-
ter (textual field), which may refer
to the appropriate ontology, to the
pointer “this” and to the properties
of the appropriate instance of the
class. Such textual description has
to be processed with the modified
SPARQL parser and appropriate
query will be resolved.

Fig. 6. Properties of the SQL_Server_Connection class in
the example

For obtaining the h-index we use “SPARQL Executable
Property”, parameters of which are shown in the screenshot
in the Fig. 7.

For getting the k-index we use the “Web Service Exe-
cutable Property”. To support most popular types of Web

services we have implemented va-
rious subproperties for the “Web
Service Executable Property”
according to the hierarchy from
Fig. 3. The major difference amo-
ng the mentioned subproperties is
the information transfer protocol
between the client and the serv-
ice. In our example we compute
the value for the k-index utilizi-
ng Web service according to the
“XML RPC” standard. Parame-
ters for the “XML RPC Execut-
able Property” are shown in the
screenshot in Fig. 8.

One can see that such type of Web service requires in-
stance of class “Web_Service_Connection” as a parameter,
which contains information about the Web service address
and access keys to it. Parameter “Web service function”
specifies the required function of the Web service. The
plug-in allows compiling various sets of parameters needed
for querying the required function.

The value for each of these parameters can be provided
due to special editor through which one specifies the name
of needed parameter and its value. The value is a constant
as a rule or a reference to some other property value alr-
eady specified for target instance. For specification of the
Web service output parameter we used “Respons_Param-
enter” field.

For calculating the integrated
value (in our example - average)
for the indexes we create the pr-
operty “ScientisRank”, which is
computable. Parameters for such
“Mathematical Executable Prop-
erty” are shown in the screenshot
in Fig. 9.

The only needed parameter
for such type of executable prop-
erty is the mathematical express-
ion, which may contain constants
or variables (properties of the
target instance).

The major ongoing activity,
which is based on the implement-

ation of the Knowledge Computing concept, is the EU Tem-
pus-IV Project TRUST: “Towards Trust in Quality Assura-

Fig. 5. Protégé screenshot for the g-index (executable property) in the example

Fig. 7. Protégé screenshot for the h-index (executable property) in the example

Fig. 8. Protégé screenshot for the k-index (executable property) in the example

37

Информационные технологии

nce Systems” (516935-TEMPUS-1-2011) (www.dovira.eu)
[62 – 65].

The overall goal of the TRUST project is to support
the reforms of Ukrainian Higher Education (HE) by
introducing a comprehensive and transparent Quality
Assurance (QA) framework for all HE institutions (HEI)
and QA organizations, which is based on the knowledge
triangle (“education-research-innovation”). A Knowledge
Ecosystem solution autonomously enables, supports and
automates the QA activities and transactions between
HEIs, different national and international QA actors,
students and different stakeholders and supports various
forms of information exchange and knowledge sharing.
The framework is assumed to guarantee trust between all
the QA players and society by ensuring that all QA proc-
edures will be based not only on credible, transparent and
relevant sources of information but also on explainable
and in the same time executable decision-making techniq-
ues documented in a common portal. A trusted QA system
should be based as much as possible on external objective
evaluations. However because it is difficult to immediat-
ely utilize expensive experience of external evaluators in
Ukrainian QA system we are making all the academic in-
formation around QA processes available and transparent
to national and international academic community and
combine it with other publicly available, retrievable via
Web-services information and automatically computable
quality indicators on top of it within the ecosystem.

The objectives above are supported by a self-managed
knowledge Portal (www.portal.dovira.eu), named TRUST
[63 – 65, 60], which is a work-in-progress, and which ena-
bles, supports and automates the activities, information fl-
ows and transactions within the ecosystem of individuals,
HEIs, and QA organizations. Provided IT-support of QA
enables: machine-processable and executable QA-related
information; management of globally distributed and he-
terogeneous QA-related data collections and Web-servic-
es; QA-related automated knowledge transfer through in-
telligent information retrieval, extraction, sharing, reuse
and integration. To achieve this, the knowledge needed for
QA is organized according to the Executable Knowledge
concept and it is augmented in several dimensions: (1) to
allow anybody adding a personal QA technique (a “Qual-
ity Calculator”) or evaluation criteria (i.e., executable pr-
operties as described above) to the knowledge base and to
get a personalized view on the quality status (in absolute

or relative scales) of any educational organization or any
educational outcome. As a result such executable knowle-

dge becomes in a way a “Smart
Knowledge” (i. e., enable self-
evaluation formulas, QA proc-
edures and techniques to be pr-
oactive knowledge instances, to
be self-descriptive, extendable,
self-managed and reusable); (2)
to make the results more trust-
ful such executable knowledge
must also be a “Cross-Validat-
ed Knowledge” (i. e., providing
Service-Oriented Architecture
for automatic update of the val-
ues of various quality indicators
by taking them from extern-
al Web-based sources (portals,
databases, etc.), such as, e. g.,
ISI Web of Knowledge, Google

Scholar, etc., externalizing and internationalizing various
quality monitoring activities); (3) to help a user to see the
reasons behind good or bad performance we need our kn-
owledge to be also a “Self-Explanatory Knowledge” (that
provides automated support for detailed explanation of
every calculated or inferred evaluations); (4) to automate
the interpretation of the computed evaluations in differe-
nt situations we need such executable knowledge to perf-
orm also as a “Context-Aware Knowledge” (i. e., capable o
utilization of formalized knowledge about context (local,
regional, national, international, etc., for providing more
grounded evaluations in a particular context).

Executable knowledge was integrated into the knowl-
edge base of the Portal (portal.dovira.eu/) at the stage of
its piloting. This increased the speed of the access of the
ontology to relevant linked data and its update. The speed
of data logging, for instance, was increased in 9,5 times by
use of executable SQL-properties which allowed to add
data about logging into the base. Piloting of the Portal
was done on 50000 instances. The system was implem-
ented on the basis of JBoss (volumes of the information
about events correspond to the average value of a JBoss
server 7.1).

10. Conclusions

In this paper we have discussed current trends in In-
formation and Communication Technologies figuring out
the needs for autonomic and self-managed solutions rela-
ted to knowledge economy and provided some basic char-
acteristics and requirements to appropriate self-managed
systems. These include the need in a hybrid of declarative
knowledge and procedural (executable) one based on sm-
art compromise between the Open World and the Closed
World assumptions. If to consider a knowledge-based sys-
tem in general and its knowledge in particular as a subject
for self-reconfiguration, then there will be challenging to
apply traditional technologies due to lack of appropriate
services to manipulate with knowledge in fully automated
manner. We introduced the concepts of executable know-
ledge and knowledge computing on the basis of adding an
executable property to the traditionally used (datatype
and object) properties within the RDF model. Two imm-

Fig. 9. Protеgе screenshot for the Scientist Rank (executable property) computing in the
example

38

Восточно-Европейский журнал передовых технологий ISSN 1729-3774 1/2 (67) 2014

ediate advantages of the extension are: (a) an RDF triple
will always implicitly keep knowledge about most recent
value for the property because query to some data storage
or to some computational function will be executed only
on demand when needed and the latest information will
be delivered; (b) query may be written according to di-
fferent standards, data representation types, models and
schemas so that heterogeneity of original sources of data
and capabilities will not be a problem. Therefore knowle-
dge can be managed autonomously and “queried” in real
time by the executable RDF links. We also present some
pilot (proof-of-concept) implementation of the executable
knowledge as a plug-in to Protégé ontology development
environment and briefly present more solid implementat-
ion work-in-progress activity related to the self-managed
national educational resources.

Proposed concepts of the executable properties, exec-
utable knowledge and knowledge computing allow integ-
rating different technologies within one ontology-driven
domain specification. Such approach may transfer any

massive RDF storage into a flexible, dynamic, self-manag-
ed knowledge base, which will always contain actual facts
about the domain objects. The potential of self-organized
semantic storage services has been recently discussed in
[61] on the basis of thorough literature survey. It was
argued that the analyzed approaches and their underlying
technologies were unable to distribute large amounts of
semantic information in a generic way while still being
able to react on changing environmental infrastructure.
Therefore self-organization in a distributed knowledge
storage system is still an important and challenged issue
nowadays.

We believe there might be many other application
domains (to be investigated still) where the concept of
knowledge computing might be useful, e. g.: self-manag-
ed web sites/pages; self-managed content for e-learning
and knowledge transfer; Data Journalism (database jou-
rnalism and data-driven journalism); Cloud Computing
(knowledge-as-a-service), Linked Data and Business Int-
elligence on top of it, and many others.

References

1. Lyon, D. The Information Society: Issues and Illusions [Text] / D. Lyon. – Blackwell Publishers Inc., Cambridge, MA, USA,

1988. – 196 p.

2. Castells, M. The Rise of the Network Society [Text] / M. Castells. – Wiley-Blackwell, Second Edition, 2010.

3. Simard, A. Knowledge Markets: More than Providers and Users, Transactions on Advanced Research [Text] / A. Simard //

IPSI BgD. – July 2006. – Vol. 2, No. 2. – P. 4–9.

4. Kelly, J. From Knowledge Management to Knowledge Ecosystem, In: Learn to Adapt Links [Electronic resource] / J. Kelly. –

17.10.2008. – Available at: http://learn2adapt.com/blog/2008/10/17/from-knowledge-management-to-knowledge-ecosystem.

5. Jenkins, H. Convergence Culture: Where Old and New Media Collide [Text] / H. Jenkins. – NY Univ. Press, 2006. – 308 p.

6. Powell, W. W. The Knowledge Economy [Text] / W. W. Powell, K. Snellman // Annual Review of Sociology. – 2004. – Vol. 30. –

P. 199–220.

7. Lee, T.-B. Linked Data [Electronic resource] / T.-B. Lee. – 27.07.2006. – Available at: http://www.w3.org/DesignIssues/Link-

edData.html.

8. Heath, T. Linked Data: Evolving the Web into a Global Data Space, Synthesis Lectures on the Semantic Web: Theory and

Technology [Text] / T. Heath, C. Bizer. – Morgan & Claypool, 2011. – 136 p.

9. Cyganiak, R. Linking Open Data Cloud Diagram [Electronic resource] / R. Cyganiak, A. Jentzsch. – September 2011. – Avai-

lable at: http://lod-cloud.net/.

10. Ankolekar, A. The Two Cultures: Mashing Up Web 2.0 and the Semantic Web [Text] : Proceedings of the 16th International

Conference / A. Ankolekar, M. Krotzsch, T. Tran, D. Vrandecic // Conference on World Wide Web (WWW ‘07). – ACM, NY,

USA, 2007. – P. 825–834.

11. Zollo, M. Deliberate Learning and the Evolution of Dynamic Capabilities [Text] / M. Zollo, S. G. Winter // Organization Sci-

ence. – May/June 2002. – Vol. 13, No. 3. – P. 339–351.

12. The Impact of the Crisis on ICT and ICT-Related Employment, In: OECD (Organization for Economic Cooperation and Dev-

elopment) Report [Electronic resource] October 2009. – Available at: http://www.oecd.org/internet/interneteconomy/43969-

700.pdf.

13. Fan, W. Proceedings of the 1st International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms,

Systems, Programming Models and Applications [Text] : The 18th ACM SIGKDD International Conference / W. Fan, A. Bifet,

Q. Yang, P. Yu. Foreword // Conference on Knowledge Discovery and Data Mining. – Beijing, China, August 12-16, 2012.

14. Heuser, L. Vision of a Web-Based Service Society, SAP Research Web pages [Electronic resource] / L. Heuser. – October 8,

2008. – Available at: http://en.sap.info/vision-of-a-web-based-service-society/11099.

15. Terziyan, V. Bridging Webs for Future Business: “Everything-as-a-User”, In: Presentation at Open Discussion: “Business

through Technologies or Technologies through Business” during BUSTECH-2011 [Electronic resource] / V. Terziyan. – Ro-

me, Italy, 29 September 2011. – Available at: http://www.iaria.org/conferences2011/filesBUSTECH11/Terziyan_ Rome_

2011.pdf.

16. Ormala, E. (Nokia Vice-President), Innovation Calls for People. Changing Innovation Landscape: The Role of Business and

Universities [Text] : Presentation / E. Ormala. – Jyvaskyla, Finland, 20.03.2012.

39

Информационные технологии

17. Weinberger, D. Too Big to Know. Rethinking Knowledge Now That the Facts Aren’t the Facts, Experts Are Everywhere, and the

Smartest Person in the Room Is the Room [Text] / D. Weinberger. – Basic Books Publisher, 1st Edition, January 2012. – 231 p.

18. Maracine, V. Dynamic Knowledge and Healthcare Knowledge Ecosystems [Text] / V. Maracine, E. Scarlat // Electronic Journal

of Knowledge Management. – 2009. – Vol. 7, No. 1. – P. 99–110.

19. Autonomic Computing: An Overview: The 8 Elements, In: IBM Perspective on the State of Information Technology [Electronic

resource] / Web Site of IBM Research. – Accessed 28 September, 2012. – Available at: http://www.research.ibm.com/autono-

mic/overview/elements.html.

20. Kim, M. From Product Lines to Self-Managed Systems: an Architecture-Based Runtime Reconfiguration Framework [Text] :

Proceedings of the Workshop // Workshop on Design and Evolution of Autonomic Application Software (DEAS ‘05). – NY,

USA, ACM SIGSOFT Software Engineering Notes. – July 2005. – Vol. 30, No. 4. – P. 1–7.

21. Kramer, J. Self-Managed Systems: an Architectural Challenge [Text] : International Conference on Software Engineering /

J. Kramer, J. Magee; In: L. C. Briand, A. L. Wolf (Eds.) // ISCE 2007, Workshop on the Future of Software Engineering. –

MN, USA, May 23-25, 2007. – P. 259–268.

22. Terziyan, V. Semantic Web Services for Smart Devices Based on Mobile Agents [Text] / V. Terziyan // International Journal of

Intelligent Information Technologies. – Idea Group. – April-June 2005. – Vol. 1, No. 2. – P. 43–55.

23. Terziyan, V. Knowledge Acquisition Based on Semantic Balance of Internal and External Knowledge [Text] / V. Terziyan,

S. Puuronen; In: I. Imam, Y. Kondratoff, A. El-Dessouki, A. Moonis (Eds.) // Multiple Approaches to Intelligent Systems,

Lecture Notes in Artificial Intelligence. – Springer-Verlag. – 1999. –Vol. 1611. – P. 353–361.

24. Wyk, G. V. A Postmodern Metatheory of Knowledge As a System [Text] / G. V. Wyk. – Trafford Publ., 2004. – 302 p.

25. Hollingdale, R. J. Western Philosophy: An Introduction [Text] / R. J. Hollingdale. – Kahn & Averill, 1979. – 166 p.

26. Bateson, G. Steps to an Ecology of Mind [Text] / G. Bateson. – C Jason Aronson Inc., Northvale, New Jersey, London,

1972. – 361 p.

27. Randles, M. Adjustable Deliberation of Self-Managing Systems [Text] : Proceedings of the 12th IEEE International Conference /

M. Randles, A. Taleb-Bendiab, P. Miseldine, A. Laws. – Conference on the Engineering of Computer-Based Systems, April 2005. –

P. 449 – 456.

28. Green, D. Knowledge Management for a Postmodern Workforce: Rethinking Leadership Styles in the Public Sector [Text] /

D. Green // Journal of Strategic Leadership. – 2008. – Vol. 1, No. 1. – P. 16–24.

29. Cofino, T. Towards Knowledge Management In Autonomic Systems [Text] : Proceedings of the Eighth IEEE International

Symposium / T. Cofino, Y. Doganata, Y. Drissi, T. Fin, L. Kozakov, M. Laker // Symposium on Computers and Communication,

June-July 2003. – P. 789–794.

30. Alferes, J. Dynamic Knowledge Representation and its Applications [Text] : Proceedings of the 9th International Conference /

J. Alferes, L. Pereira, H. Przymusinska, T. Przymusinski, P. Quaresma // Conference on Artificial Intelligence: Methodology,

Systems, and Applications (AIMSA ‘00). – Varna, Bulgaria, LNCS, Springer. –September 20-23, 2000. – Vol. 1904. – P. 1–10.

31. Brandao, S. Web Knowledge Representation with Autonomic Ontologies [Text] / S. Brandao, J. Oliveira, J. M. de Souza

32. Brandao, S. N. Autonomic Ontologies for Governamental Knowledge Base [Text] : The Ninth International Conference /

S. N. Brandao, S. A. Rodrigues, T. Silva, L. Araujo, J. M. de Souza // Conference on Autonomic and Autonomous Systems. –

ICAS, March, 2013. – P. 96–102.

33. Haslhofer, B. DSNotify-detecting and fixing broken links in linked data sets [Text] : 20th International Workshop / B. Haslh-

ofer, N. Popitsch // Database and Expert Systems Application. – DEXA’09, IEEE, August, 2009. – P. 89-93.

34. Umbrich, J. Towards dataset dynamics: Change frequency of linked open data sources [Text] / J. Umbrich, M. Hausenblas,

A. Hogan, A. Polleres, S. Decker, 2010.

35. Passant, A. SparqlPuSH: Proactive Notification of Data Updates in RDF Stores Using PubSubHubbub [Text] / A. Passant,

P. N. Mendes // SFSW, May 2010.

36. Alferes, J. A Language for Updating Logic Programs [Text] / J. Alferes, L. Pereira, H. Przymusinska, T. Przymusinski // Proc-

eedings of the LPNMR’99, El Paso, Texas USA, LUPS, LNAI, Springer. – December 2-4, 1999. – Vol. 1730. – P. 162–176.

37. Berge, T. Procedural and Declarative Knowledge. An Evolutionary Perspective [Text] / T. Berge, R. Hezewijk // Theory &

Psychology. – Sage Publications. – 1999. – Vol. 9, No. 5. – P. 605–624.

38. Knorr, M. Local Closed World Reasoning with Description Logics under the Well-Founded Semantics [Text] / M. Knorr,

J. J. Alferes, P. Hitzler // Artificial Intelligence. – 2011. –Vol. 175, No. 9-10. – P. 1528–1554.

39. Horrocks, I. A proposal for an OWL rules language [Text] : Proceedings of the 13th Int. World Wide Web Conference (WWW

2004) / I. Horrocks, P. F. Patel-Schneider. – ACM, 2004. – P. 723–731.

40. Motik, B. Reconciling Description Logics and Rules [Text] / B. Motik, R. Rosati // Journal of the ACM. – 2010. – Vol. 57, No. 5.

41. Web Rule Language: Combining OWL and RuleML, W3C Member Submission [Electronic resource] 21 May 2004. – Available

at: http://www.w3.org/Submission/SWRL/.

42. O’Connor, M. J. SQWRL: a Query Language for OWL [Text] : Proceedings of the 6th International Workshop / M. J. O’Connor,

A. Das Chantilly // International Workshop on OWL: Experiences and Directions (OWLED-2009) VA. – USA, 2009.

43. Minsky, M. A Framework for Representing Knowledge [Text] / M. Minsky; In: P. Winston (ed.). – The Psychology of Comp.

Vision, McGraw-Hill, 1975.

40

Восточно-Европейский журнал передовых технологий ISSN 1729-3774 1/2 (67) 2014

44. Schank, R. C. Scripts, Plans, Goals, and Understanding. Hillsdale [Text] / R. C. Schank, R. P. Abelson. – N. J.: Lawrence Erlb-

aum Associates, 1977.

45. Bobrow, D. G. An Overview of KRL, a Knowledge Representation Language [Text] / D. G. Bobrow // Cognitive Science. –

1977. – Vol. 1, No. 1. – P. 3–46.

46. Lassila, O. The Role of Frame-Based Representation on the Semantic Web, Knowledge Systems Laboratory Report KSL-01-02

[Text] / O. Lassila, D. McGuinness. – Stanford University, 2001.

47. Gibbins, N. Understanding Information Retrieval Systems Management [Text] : Resource Description Framework (RDF) /

 N. Gibbins, N. Shadbolt; In M. J. Bates (ed.). – Types and Standards, Auerbach Publications, 2011. – P. 659–670.

48. Borchert, R. How Can a Knowledge Base Run Executables on the Frame Level [Text] : Proceedings of the Sixth International

Protégé Workshop / R. Borchert. – Manchester, England, 7-9 July, 2003.

49. Mota, L. O3F: an Object Oriented Ontology Framework [Text] : Proceedings of the 2nd International Joint Conference /

L. Mota, L. Botelho, H. Mendes, A. Lopes // Conference on Autonomous Agents and Multi Agent Systems (AAMAS 2003). –

Melbourne, Australia, 14-18 July, 2003. – P. 639–646.

50. Arroyo, S. Semantic Aspects of Web Services: Practical Handbook of Internet Computing [Text] / S. Arroyo, R. Lara, J. Gomez,

D. Berka, Y. Ding, D. Fensel. – Chapman & Hall and CRC Press, 2004.

51. Ermolayev, V. Towards a Framework for Agent-Enabled Semantic Web Service Composition [Text] / V. Ermolayev, N. Keberle,

S. Plaksin, O. Kononenko, V. Terziyan // International Journal of Web Services Research. – 2004. – Vol. 1, No. 3. – P. 63–87.

52. Martin, D. Bringing Semantics to Web Services with OWL-S [Text] / D. Martin, M. Burstein, D. McDermott, S. McIlraith,

M. Paolucci, K. Sycara, D. L. McGuinness, E. Sirin, N. Srinivasan // World Wide Web, Springer. – 2007. – Vol. 10, No. 3. –

P. 243–277.

53. Lara, R. A Conceptual Comparison of WSMO and OWL-S Web Services [Text] : Proceedings of the ECOWS-2004 / R. Lara,

D. Roman, A. Polleres, D. Fensel // Lecture Notes in Computer Science. – Erfurt, Germany, Springer. – September 27-30, 2004. –

Vol. 3250. – P. 254–269.

54. Dumitru, R. Web Service Modeling Ontology [Text] / R. Dumitru, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg,

A. Polleres, C. Feier, C. Bussler, D. Fensel // Applied Ontology, IOS Press. – 2005. – Vol. 1, No. 1. – P. 77–106.

55. Sivashanmugam, K. Adding Semantics to Web Services Standards [Text] : Proceedings of the International Conference /

K. Sivashanmugam, K. Verma, A. Sheth, J. Miller // Conference on Web Services (ICWS-2003). – Las Vegas, USA, June 23-26,

2003. – P. 395–401.

56. Akkiraju, R. Web Service Semantics – WSDL-S [Electronic resource] / R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M. Sc-

hmidt, A. Sheth, K. Verma // The Joint UGA-IBM Technical Note, Ver. 1.0, April 18, 2005. – Available at: http://lsdis.cs.uga.

edu/projects/METEOR-S/WSDL-S.

57. Verma, K. Semantically Annotating a Web Service [Text] / K. Verma, A. Sheth // IEEE Internet Computing. – March-April

2007. – Vol. 11, No. 2. – P. 83–85.

58. Sheth, K. SA-REST: Semantically Interoperable and Easier-to-Use Services and Mashups [Text] / K. Sheth, J. Gomadam //

Lathem Internet Computing, IEEE. – 2007. – Vol. 11, No. 6. – P. 91–94.

59. Gessler, D. SSWAP: A Simple Semantic Web Architecture and Protocol for Semantic Web Services [Text] / D. Gessler,

G. Schiltz, G. May, S. Avraham, C. Town, D. Grant, R. Nelson // BMC Bioinformatics. – 2009. – Vol. 10:309.

60. Terziyan, V. From Linked Data and Business Intelligence to Executable Reality [Text] / V. Terziyan, O. Kaykova // Internati-

onal Journal on Advances in Intelligent Systems. – 2012. – Vol. 5, No. 1&2. – P. 194–208.

61. Katasonov, A. Semantic Agent Programming Language (S-APL): A Middleware Platform for the Semantic Web [Text] : Pro-

ceedings of the Second IEEE International Conference on Semantic Computing (ICSC-2008) / A. Katasonov, V. Terziyan //

International Workshop on Middleware for the Semantic Web. – Santa Clara, CA, USA, IEEE CS Press, August 4-7, 2008. –

P. 504–511.

62. Nikolov, A. Data linking: Capturing and utilising implicit schema-level relations [Text] / A. Nikolov, V. Uren, E. Motta, 2010.

63. Tiihonen, T. How to Create Trust, In the Presentation during the Tempus Information Days Helsinki [Electronic resource] /

T. Tiihonen. – November 22, 2011. – Available at: http://www.cimo.fi/instancedata/prime_product_julkaisu/cimo/embeds/ci-

mowwwstructure/22799_TRUST_Tempus_Timo_Tiihonen.pdf .

64. Terziyan, V. TRUST: Towards Trust in Quality Assurance Systems. Brief Introduction of the Project Idea, In the Presentation

during the: TRUST (516935-TEMPUS-1-2011) [Electronic resource] / V. Terziyan // Project Coordination Meeting. – Kiev,

Ukraine, October 20, 2011. – Available at: http://www.cs.jyu.fi/ai/Quality-2.ppt.

65. Klymova, M. Ontology-Based Portal for National Educational and Scientific Resources Management [Electronic resource] / M.

Klymova // In the Presentation during the: Universities Nationwide IT Days (IT-2007). – Jyvaskyla, Finland. – November 1,

2007. – Available at: http://www.cs.jyu.fi/ai/OntoPortal-2007.ppt.

66. Web Site of the Ukrainian National Ontology-Based Portal for Management of Educational and Scientific Resources [Electro-

nic resource] TRUST: National Portal for the QA in Higher Education. – 2009-2014. – Available at: http://ailab.kture.kharkov.

ua/site/index.html and the latest operational version at: http://portal.dovira.eu/.

67. Muhleisen, H. On Self-Organized Semantic Storage [Text] / H. Muhleisen, T. Walther, R. Tolksdorf, A Survey // International

Journal of Web Information Systems. – Emerald Group Publishing. – 2011. – Vol. 7, No. 3. – P. 205–222.

