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~ ABSTRACT: The objective of the given work is to study
~ the queues resulting in the buffer while self-similar traffic
’;ggassing through a network nod and to build a mathematical
.4 model of an actual traffic.
: p'['he latest researches of different types of network traffics
E brmg out clearly that network traffic is defined by self-
g "[snmlanty and long-term dependence. The self-similar
- traffic has specific structure being reserved at various
~ measures — its realization is characterized by some vast
~ emissions when respecting low medium-scale traffic. This
- fact degrades the performance significantly (increases,
~ losses and delays) while running through the network nods.
" Hence, it follows that commonly used methods of
simulation and network system calculations rested on
traditional assumptions do not reflect the real situation
- taking place in the network. [L+94, CTB98, PWO00,
~ JOBI12, L+10].
KEYWORDS: self-similar,
processes, queue.

network traffic, stochastic

E 1.BASIC THEORETICAL INFORMATION
~ ABOUT SELF-SIMILAR STOCHASTIC
- PROCESSES [L+84, CTB98, L+10, SSA07]

Stochastic process with continuous time £ i

~ called self-similar in restricted sense with a parameter
<<l value a>0 the
That is the

-H
a’X ("’) and X have the same finite-dimensional
distributions.

, if for any real

a’HX(at) P40

expression is true.

Stochastlc process X0 s called self-similar in wide

H
a t
~sense if the process X (a) possesses the same

 statistical characteristics of the second order. as X().
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- mathematical expectation
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autocorrelation function: a
H parameter, named Hurst exponent, presents the
measure of self-similarity or the measure of
persistence of long-term dependence of the stochastic
process. The value H=0,5 denotes the absence of
long-term dependence. The closer is the value H to 1,
the higher is the degree of positive stability of long-
term dependence.

Let us consider the term of self-similarity for the

processes with discrete time. Assume that
X = A p Xyl time realization of wide-sense
stationary  stochastic ~ process  of  discrete
ime! €N ={L2...}

Let us denote through XM = LXK - the
averaged along length blocks 7 process X, whose
components are defined by the equation

(m) __ 1
XI _;(le—mﬂ +"'+Xm:)’ m,t e N i

The series X" is called aggregative.
The process X is called self-similar with a parameter

in restricted sense 7> 0-5<H <1 if the expression

m™ X" 0 X, meN s true, which is regarded as the
equality of distributions.

The process X is called self-similar with a

parameter H , in wide sense if the correlation function
of an aggregative function is

r(k)=r(k), keZ,, me{23,..}

that is the process leaves its correlation index
unchanged after averaging over length blocks 7

One of the essential properties of the network traffic
as a stochastic process is the presence of heavy tails
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of its one-dimensional distribution functions.

A random variable S umeer pacrnipesienenue ¢ has

heavy-tailed distribution, if F1&>x1~¢ Eirtie L
that is a distribution tail fades out along the power
law. The parameter ® denotes the level of the tail

heaviness. When 0<®<2 the value 3 possesses
nonterminating dispersion, and when O<o<l j
mathematical expectation is nonterminating as well.

One of the characteristics of a heavy-tailed random
variable is its high unsteadiness. That is to say. the
sample collection of such random variable presents

relatively low values in the main, yet it also contains

icaiaz o GQaSU UGS

a fair number of very big values.

2.INVESTIGATION OF THE PROPERTIES OF
NETWORK TRAFFIC

The data coming into a global network from local
Internet provider's network were chosen as an actual
network traffic. Osi.dat, Osi.dst and Osi.04.src
implementations represent the time dependence of the
size of the network protocol frames of the second
level of OSI model (Ethernet-frame, in this case)
coming through a local area network to the global
Internet.

Tcp.dat implementation represents time dependence
of the size of the network protocol of the fourth frame
level of OSI model (TCP in this case) through a local
area network to the global network Internet. The
schedule of implementation of the Tcp.dat fragment,
aggregated at the level of 10 seconds is shown in Fig.
1: The abscissa represents time samples, and the
vertical axis - lengths of Ethernet-frames.
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Fig. 1. Fragment of Tep.dat traffic

The investigations conducted showed that the
following implementations of data network traffic are
self-similar with Hurst exponent 0-6 <H <0.9.

The analyzed implementations exhibit high
variability: their averages are relatively small values,
while at the same time the implementation provides a
sufficient number of high emissions. In Figure 3 (a) a
histogram for Tcp.dat traffic is shown, suggesting the
presence of a heavy tail. The studies have testified
that the distribution of the  considered
implementations of network traffic possess heavy
tails with a parameter of tail heaviness in the

range]l <a<l1.8 .
3.THE STUDY OF QUEUES IN THE BUFFER

Networks built on TCP / IP often give rise to strong
emission peaks. These time localized releases cause
significant packet losses, even when the total demand
of all flows is far from the maximum allowable
values. Numerous studies show that if the input
traffic is self-similar, then for any multiplexing of
self-similar flows the duration of delays will be high
and require buffers of larger sizes. Moreover, for
large values of H the demand in the buffer is
beginning to grow rapidly even with a modes load
factor. If it is necessary to achieve a high degree of
use for self-similar traffic, the buffers required are
much larger than it is predicted by classical analysis
of queues. [SSA07, YWLO07, NOS07, C+10].

The paper presents the simulation of a channel
loading and the emergence of queuing in the buffer
for the implementations of network traffic. Taking
into account the digital nature of modern high-speed
communication networks, the communication system
can be viewed as a queuing system (QS) of the form,

G/D/Clwld where U means that the input traffic
has an arbitrary distribution; D — a deterministic
service time equal to one; C — the number of servers
equal to the channel bandwidth; ® means an infinite

buffer size and @ - discipline operating the system.
[TG97, Sto02].

The input buffer receives traffict =(X. % 5.-)

where ¥ denotes the number of packets that arrive at
a time moment . It is assumed that in QS in every
moment ! the discipline decides which of the
following alternatives should be applied to the
package in the system: 1) to initiate the transmission
(service) of the package at the time moment ?; 2) to
store the package in a buffer until the moment 7 1.
3) to reset ( to lose ) the package at the time moment
t

In each window !

(a window is a time

interval [/ +11) the channel can transmit no more
than C packages, which are taken either from the

buffer, or from Y new packages. The package of the
buffer which is passed to the window?, leaves the
channel and the system itself at a time moment?+1.

In theory of teletraffic, one of the most commonly
used characteristics of data flow is Fano parameter
F _which is defined as the ratio of the variance of the
number of events at a given time interval 7 to the
mathematical  expectation of  this  quantity:

o ()|

MIN(T)] | where N(T) — a random variable
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that determines the number of events of the studied
flow on that interval 7",

It is shown that the length of the queue in the buffer
is determined by three main parameters of the traffic:
traffic intensity, Fano parameter and Hurst exponent.
Large values of the Fano parameter correspond to the
large scatter of values in the input stream, which,

even at low intensity, creates queues. Hurst exponent

i>0.5 implies that the high values of the process to

be followed by the same as high ones, which does not
allow the buffer to be cleaned up fast.Figure 3 shows
the queue formed in the buffer at every time moment
when passing through the above mentioned queuing
traffic area shown in Figure 1. The load capacity of
the system in this case was 90%.
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Fig. 2. The buffer queue for Tcp.dat traffic

Figure 3 (b) shows the histogram corresponding to
the values of the queue, which allows to make an
assumption about the presence of a heavy tail.
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Fig. 3 a) histogram of Tcp.dat traffic; b) histogram of
the corresponding queue in the buffer

Numerical analysis of queues B(1), resulting in a
buffer of infinite size, has showed that B(1) is self-
similar stochastic process. Hurst index for such a
process coincides with the Hurst index of input
traffic. . However, the process B(7) is far more heavy-
tailed: the heaviness parameter of a tail resulting in
the queue buffer lies in the range 0.2 <a <0.7

Table 1 shows the values of average intensity of the

traffic X implementations by the length N =4000 f
counts, evaluation of FanoF and Hurst H
exponents, as well as the values of the average queue

length B, formed in the buffer when the system is
loaded by 90% and .parameters for the tail heaviness

resulting in a queue buffer.

Table 1. The parameters of the actual traffic

Implementation | y F H B a,
Osi.dat (1) 4500 | 5900 0.8 | 540159 | 045

 Tepdat(2) | 4200 7200 | 0.81 | 470564 | 033
Osi.sre (3) 3700 | 7100 | 0.82 | 410256 | 0.271
Osi.dst (4) 2700 | 5200 | 0.78 | 251368 | 0.31

During the simulation the average system load varied
from 70 to 95 percent. It was studied that there is a
dependence of the average queue size in the buffer on
the channel loading size. The studies conducted
showed that when the system loads at 80-90%, the
average queue in the buffer exceeds the intensity of
the traffic to hundreds of times.

Figure 5 shows the average size of the buffer memory

~when the system loads from 70% to 95% for the

investigated implementations of traffics.
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Fig. 4. Dependence of the average queue length on the
load for the implementations of actual traffic
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The task of self-similar traffic simulating is not the
generation of a sample implementation being
completely identical to the actual traffic (which is an
impossible task), but only getting the samples with
the same statistical characteristics (magnitude and
frequency of bursts, the intensity of traffic), as in real
traffic. The main criterion for the traffic model
adequacy can be considered as identical behavior in
the communication channel, i.e. the analogy of the
dependency of the queue length on the system load.

4.MATHEMATICAL SIMULATION OF SELF-
SIMILAR TRAFFIC

Fractional Brownian motion (FBM) is often
considered as a stochastic process possessing fractal
properties and it is widely used in physics, chemistry,
biology, economics and the theory of network traffic.
[Sto02, Fed88, Cro95]

Gaussian process X (t) is called a fractal Brownian
if the
process
AX(D)=X(t+7)-X () possess Gaussian distribution
DX 2o N(0; 55 %"y e

motion with a parameter H,0<H <1
increments of the stochastic
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1 " £, 7.8
P(DX <x)= — ) Exp§ —W-
( 2ns 1" ? Pe 28 ot HH

where % - the diffusion coefficient.

Fractional Brownian motion with a parameter
H =05 coincides with ordinary Brownian motion.
The increment process of fBM is known as fractional

Gaussian noise (fGN). The fGN dispersion is subject
to relation P+ 1)- X(@®)]= s 1™

The increments of fractional Brownian motion
AX possess the ability to self-similarity in the narrow

X7y~ X()n 2L+ X @)
sense, that is,
any 9>0,
There are several methods for fBM constructing for
discrete time. The most practical one is the method of
successive random addition of Voss.

The method includes the following algorithm [Fed88,
Vos88]. The initial sequence of values of the
coordinates at time ti = 0, 1/2, 1; the initial values of
the coordinates are zero. Then to the values of the

, for

coordinates X () X&) X(4) random numbers are
added selected from a normal distribution with mean

zero and initial variance o . The mean values for
each time interval are then treated as additional nodes
on the time axis and the values of the coordinates are
measured in the interpolation. Again, random

numbers with zero mean and reduced variance are

2
2 g

Wik
added to coordinate values ~ 2%
After "~ repeated application of this algorithm we

obtain the values of the coordinate of the generalized
Brownian particle at 142" time moments. The
variance of the summands n-th of the generation is
2 2
2 o

o — n—l__o-()
3. 92H "22Hn

equal . The process proposed by
Voss, leads to the generalized Brownian motion at
any solution.

Theoretically fGN can be considered as a model of
self-similar traffic with a specified Hurst index and
the corresponding long-term dependence. However,
this model has serious shortcomings: zero means and
absence of heavy tails, i.e. high-power spikes typical
for network traffic.

In this paper an approach is suggested that is based
on the functional transformation of fGN. The
proposed transformation preserves the long-term
dependence of the stochastic process and turns it into
self-similar process with heavy tails.

In practice, the most commonly used are the Pareto,
Cauchy, Levy heavy-tailed distributions and a log-
normal distribution.

The value 7 possesses a log-normal distribution, if

n = Exp[¢] , where the random variable & is normally

distributed N(a;0) :

. v
variable 7 is

The density of the random

_(ny-a)®

P, () =—m==e

W 2ao " >0, p,(»=0, y<O

For a random variable with a log-normal distribution
the expectation and variance are respectively

£
>

Mlnl=e'-e* Dpl=e” ¢ (¢ -1) (1)

Fig. 5 shows the density diagrams of log-normal
distribution with different parameters 4 and ©. The

Din]
tail heaviness 71 > *] depends on the ratio M[n] |

P
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Fig. 5. The diagram of densities of log-normal
distributions, o, > o,

In this paper it is proposed to use the following
functional transformation of fGN as a self-similar
stochastic process that generates the simulative traffic
implementations

Y(r)=b Explk-X(z)] 2

where X(7) _ the series of fBM increments with the
specified parameter / ata time interval 7, b, k - the

parameters governing the frequency and magnitude
of the bursts.

Increments of fBN X(r) have normal distribution
¥e N(O.O'Z(r))

o Bl=g "
b

, with variance
(e

o - the diffusion coefficient. In this case Y(r)
Y = LogN(0,0%)

where

has a log-normal distribution

Assume that X(@) _ the series of fBM the self-similar

parameter 7 at the time interval T The stochastic

progess T WI=Expl(®)] ;o o celf similar stochastic

process with the same Hurst index # | as the initial
fGN.

Numerical characteristics of the stochastic process
Y(z)=b-Exp[k- X ()] , because of (1), are as follows:
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M[Y(r)]=b-Exp[%kza’-(rn -

DY (z)] = b - Exp[k*c’ (1)) (Explk’c’(2)] - 1)

Assume that ¥ and F both the intensity and the
Fano parameter for the implementation of the
simulative actual traffic 7 in length are calculated
by the formulas

T

Sk~
j e LD
-y (g :
F=->r, Y,
= i “)
When equating the estimates to their theoretical

expressions for MIY(D)] gpg FIYOL 4, accordance
with formulas (3), will obtain the system
b-Exp[;I)-kzaz(r)]: Y

b -Exp[klo‘z(‘r)](Exp[kzo-z(z-)] - |) i I

’

from which we find the values of parameters b and k&

ey
. In -
¥ [ Y ]

, k=———z 5
F+Y o(r) )

Thus, the constructing algorithm of the simulative
traffic implementation involves the following steps:

- when having the implementation of an actual
Y F,
according to formulas (4), and / one way of finding
the Hurst exponent [Cle05];

-build  fBN with a parameter H =H on the
interval 7 by the Voss method;

network traffic, evaluate its performance

- obtain the series of increments X(7) with

2
variance @ (.

- find the parameters © and % by the formulas (5);
-obtain a model of the simulative traffic

implementation from the series of increments ALF)

by the formula (2).

5.PRACTICAL SIMULATING AND
VALIDATION OF THE MODEL

The paper provides the simulation of the network
traffic for implementations for the parameters
presented in Table 1. Simulative implementations in
length 7=40% were obtained according to the
algorithm above-described that takes into account the

parameters of intensity, Fano and Hurst parameters.
Figure 6 shows one of the network traffic
implementations and its model counterpart.
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Fig. 6. Actual traffic (at the top) and simulative
implementation (below)

For testing the adequacy of the model, the queues

have been studied B() that were formed in the buffer

of infinite size while passing the simulative
implementations through the QS. The numerical

analysis of the queues B() has showed that the queue
is a statistically self-similar realization with the same
Hurst index as the input realization possesses. The

parameter of the tail heaviness %# for the resulting
buffer queues is close (5-10% tolerance) to the
queues parameter for actual input traffics. The
hypothesis of the equality of mean values of the
queues in the buffer for the actual and simulative
traffics has also been tested.

Table 2 shows the results of numerical simulation.
Each of the simulative implementations had the same
average value, the Fano parameter and Hurst
exponent as the ftraffic implementations did.
Obviously, the simulative implementations generate
queues of similar size to those arising while the real
traffic passing through the channel. The hypothesis of
equality of mean values of the queues in the buffer
for the actual and simulative traffics was accepted
with a significance level @ =0.05 in each case.

Table 2. Parameters of the simulative traffic

implementation | 'y F H B a,
Osi.dat (1) | 4500 | 5900 | 0.8 | 570000 | 0.45
Tep.dat(2) | 4200 | 7200 | 0.81 | 440000 | 0.35
Osisrc (3) | 3700 | 7100 | 0.82 | 350000 | 0.271
Osidst(4) | 2700 | 5200 | 0.78 | 210000 | 0.31

Figure 7 shows the dependency of the average size of
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the buffer memory when the system loads from 70%
to 95% for the simulative traffic implementations
under study. Thus assuming, for practical researches
the behavior of the real and simulative traffics in a
communicating channel can be considered as to be
identical.
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Fig. 7. Dependence of the average queue length on the
load for the simulative traffic implementations

6.CONCLUSIONS

The paper presents mathematical model of the traffic,
which takes into account the parameters determining
the occurrence of queues when the traffic passing
through the communication system: the average
intensity, the Fano parameter and the Hurst exponent.
The conducted simulation showed that the proposed
model of the network traffic permits to adjust
characteristics of the local network at the design stage
or during its operation.
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