СОДЕРЖАНИЕ

ОБЩИЕ ВОПРОСЫ МЕТРОЛОГИИ И ИЗМЕРИТЕЛЬНОЙ ТЕХНИКИ

А. А. Данилов. Развитие измерительных систем и их метрологического обеспечения ... 3
О. А. Богоят, И. П. Захаров. Влияние закона распределения показаний средств измерений на точность оценок неопределенности измерений .. 12
В. Ю. Кондаков, В. С. Крылов, Э. М. Шейнин. Повышение достоверности метрологического контроля многоганальных измерительных систем 18

ЛИНЕЙНЫЕ И УГОЛЬНЫЕ ИЗМЕРЕНИЯ

М. И. Этингоф. Приборы активного контроля для шлифовальных станков: состояние и перспективы развития ... 23

ОПТИКО-ФИЗИЧЕСКИЕ ИЗМЕРЕНИЯ

К. И. Гасанзаде. Построение информационно-измерительной системы для оперативного измерения и оценки основных параметров нефти и нефтепродуктов ... 29

МЕДИЦИНСКИЕ И БИОЛОГИЧЕСКИЕ ИЗМЕРЕНИЯ

Ю. А. Кузевов, Е. В. Кулеба, О. Н. Мележа, М. В. Зеленова, А. Н. Паньков. Анализ нормативного обеспечения измерений национальной активности биологически и химически активных веществ ... 36

ФИЗИКО-ХИМИЧЕСКИЕ ИЗМЕРЕНИЯ

Р. Б. Шаевич. Обеспечение правильности результатов измерений малых и ультралитых значений компонентов в веществах, материалах и средах. Ч. 1. Состояние проблемы ... 46

Содержание на английском языке см. на 3-й странице обложки

Редколлегия журнала «Измерительная техника»

Свидетельство о регистрации ПИ № ФС 77-21573 от 15.07.2003 г.

Адрес редакции: 119361 Москва, ул. Огородная, 46, ФГУП «ВНИИМС»; тел. +7 (495) 781-45-70;
e-mail: izmt@vniims.ru, izmt@yandex.ru;
www.vniims.ru/izmt-technika.html

Адрес для переписки: 119361 Москва, ул. Огородная, 46,
ФГУП «ВНИИМС» редакция журнала «Измерительная техника»

Редактор И. В. Емельянова
Корректор М. В. Бучная
Компьютерная верстка И. А. Остапенко

Сдано в набор 10.08.2016. Подписано в печать 25.08.2016. Формат 60х84/16. Бумага офсетная. Гарнитура Таймс. Печать офсетная. Усл. п. л. 3,95. Уч.-изд. л. 3,50. Тираж 220 экз. Заказ 1531.

Калужская типография стандартов, 248021 Калуга, ул. Московская, 256

© Измерительная техника, 2016
Влияние закона распределения показаний средств измерений на точность оценок неопределяемости измерений

О. А. Бочора, И. П. Захаров

Харьковский национальный университет радиоэлектроники, Харьков, Украина, e-mail: newzip@ukr.net

Исследованы относительные погрешности оценивания стандартной и расширенной неопределённости, возникающие при отличии распределения показаний средства измерений от нормального закона.

Ключевые слова: стандартная неопределённость измерения, расширенная неопределённость, закон распределения показаний, распределение Стьюденца.

The relative errors of the standard and expanded measurement uncertainty evaluation arising from the difference of the measuring instrument readings distribution from the Gaussian were investigated.

Key words: standard measurement uncertainty, expanded uncertainty, law of propagation of distributions, t-distribution.

В основу оценивания неопределенности измерений положен так называемый «модельный подход GUM» [1], базирующийся на математической модели зависимости искомой в измерительной задаче выходной величины Y от соответствующих входных величин $X_1, X_2, ..., X_m$:

$$Y = f(X_1, X_2, ..., X_m).$$

При этом за оценку каждой измеряемой входной величины X_i по n показаниям средства измерений (СИ) $x_{i1}, x_{i2}, ..., x_{in}$ принимают их среднее арифметическое \bar{x}_i, а за оценку стандартной неопределенности типа A — выборочное стандартное отклонение среднего арифметического $s(\bar{x}_i) = s_i/\sqrt{n}$, где s_i — выборочное среднее квадратическое отклонение [2]. Аналогичным образом поступают и в отношении выходной величины Y, которую определяют как результат преобразования средних арифметических показаний СИ, измеряющих входные величины, или как среднее арифметическое результатов преобразования отдельных одновременных показаний СИ [1].

В процессе применения GUM [1] рабочей группой № 1 Объединённого комитета по подготовке руководств в метрологии (JCGM) было вынесено и зафиксировано в Руководстве JCGM-104 [5], что «существуют измерительные ситуации, при которых способы оценивания неопределенности по GUM не могут считаться удовлетворительными. Это справедливо, в том числе, если функция измерений нелайнна, распределения вероятности для входных величин асимметричны, $|c_i|u(x_i), ..., |c_p|u(x_p)$, дающие вклад в неопределенность не являются величинами приблизительно одного порядка, распределение вероятностей для выходной величины либо асимметрично, либо существенно отличается от нормального распределения или t-распределения.

Иногда заранее трудно решить, позволяет ли данная измерительная задача применить способ оценивания неопределенности по GUM. Эти случаи обусловлены основными источниками неопределенности в рассматриваемой измерительной задаче — неадекватностью модели (1), отсутствием надёжной информации о виде распределения результатов многократных измерений входных величин и связанными с этим проблемами оценивания параметров этих распределений.

В настоящее время в рамках модельного подхода GUM [1] наиболее точно неопределенности измерений оценивают с помощью так называемого закона распределения распределений, реализуемого методом Монте-Карло [7]. Согласно этому закону информация о выходной величине извлекается из её плотности распределения вероятности (ПВВ) $g(Y)$. Значение $g(Y)$ получают в результате преобразования ПВВ входных величин $g(X)$, осуществляемого на основе принятой математической модели (1). Таким образом, на точность оценивания неопределенности измерений влияет выбор вида ПВВ $g(X)$. Metrolgia № 3, 2016 12 Metrolgia № 3, 2016 13
Далее согласно [8] методом Монте-Карло проанализировано влияние закона распределения на точность оценивания стандарной и расширенной неопределённостей выходной величины уравнения (1) при неизвестных математическом ожидании и дисперсии ряда показаний СИ.

Наблюдаемой входной величиной X, используя теорему Байеса, можно приписать нецентральное масштабированное распределение Стьюдента с числом степеней свободы $v = n-1$ и ПРВ вида [7]:

$$
g_X(\xi) = \frac{\Gamma(\frac{n}{2})\left\{1 + \frac{(n-1)^{-1}(\xi - \bar{x})\sqrt{n/s^2}\right\}^{n/2}}{\Gamma((n-1)/2)\sqrt{(n-1)/\pi}(s/\sqrt{n})},
$$

где $\Gamma(\cdot)$ — гамма-функция.

Распределение (2) при $n \geq 3$ имеет математическое ожидание и стандартное отклонение $s(x)\sqrt{n - 1}/[(n - 3)n]$, которое больше оценки стандартной неопределённости среднего арифметического $x(\bar{x})$ [1] в $\alpha_{\nu} = \sqrt{(n - 1)/(n - 3)}$ раз. Если гипотеза о нормальном распределении показаний СИ неправедива, то коэффициенты α^* будут отличаться от коэффициентов α_{ν}. В этом случае коэффициенты Стьюдента $t_{0.95;v}$ также будут отличаться от рассчитанных значений $t_{0.95;v}$. В [9] показано, что при доминирующим вкладе неопределённости по типу А расширенной неопределенности для вероятности 0,95 будет определяться как $U_{0.95} = t_{0.95;v}S(\bar{x})$.

В настоящей работе коэффициенты $\alpha^*, t_{0.95;v}$ для аномальных законов распределения получены методом Монте-Карло на основе обратных функций распределений вероятностей (табл. 1) с использованием пакета MathCAD [7] для законов арксинуса, равномерного, треугольного и двойного экспоненциального. Выборки объёма $n = 4...10$ моделировались $N = 10^{6}$ раз. Для каждой j-й выборки вычисляли параметр $T_j = \bar{x}_j/s_j(\bar{x})$, массив значений которого описывался распределением Стьюдента с $v = n-1$ степенями свободы, и находили коэффициенты (табл. 2):

$$
\alpha^* = \sqrt{\frac{1}{N(N-1)} \sum_{j=1}^{N} (T_j - \bar{T})^2},
$$

где $\bar{T} = \frac{1}{N} \sum_{j=1}^{N} T_j$.

Далее по вариационному ряду значений T_j для его порядковых статистик уровней 0,025N и 0,975N вычисляли коэффициенты

Таблица 1

<table>
<thead>
<tr>
<th>Закон распределения</th>
<th>Границы исходных равномерных распределений</th>
<th>Функция обратного преобразования</th>
</tr>
</thead>
<tbody>
<tr>
<td>Арксинус</td>
<td>$[-1; 1]$</td>
<td>$X = \sqrt{2} \sin(\pi(Z - 0.5))$</td>
</tr>
<tr>
<td>Равномерный</td>
<td>$[-\sqrt{3}; \sqrt{3}]$</td>
<td>Без преобразования</td>
</tr>
<tr>
<td>Треугольный</td>
<td>$[-\sqrt{1.5}; \sqrt{1.5}]$</td>
<td>$X = Z_1 + Z_2$</td>
</tr>
<tr>
<td>Двойной экспоненциальный</td>
<td>$[0; 1]$</td>
<td>$X = \frac{\ln(2Z)}{\sqrt{2}}$, если $Z \in [0; 0.5]$</td>
</tr>
</tbody>
</table>

Таблица 2

<table>
<thead>
<tr>
<th>n</th>
<th>Арксинус</th>
<th>Равномерный</th>
<th>Треугольный</th>
<th>Нормальный</th>
<th>Двойной экспоненциальный</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5,503</td>
<td>2,234</td>
<td>1,767</td>
<td>1,732</td>
<td>1,495</td>
</tr>
<tr>
<td>5</td>
<td>2,448</td>
<td>1,645</td>
<td>1,435</td>
<td>1,414</td>
<td>1,292</td>
</tr>
<tr>
<td>6</td>
<td>1,744</td>
<td>1,427</td>
<td>1,306</td>
<td>1,291</td>
<td>1,216</td>
</tr>
<tr>
<td>7</td>
<td>1,457</td>
<td>1,315</td>
<td>1,237</td>
<td>1,225</td>
<td>1,171</td>
</tr>
<tr>
<td>8</td>
<td>1,319</td>
<td>1,240</td>
<td>1,193</td>
<td>1,183</td>
<td>1,147</td>
</tr>
<tr>
<td>9</td>
<td>1,240</td>
<td>1,195</td>
<td>1,163</td>
<td>1,155</td>
<td>1,124</td>
</tr>
<tr>
<td>10</td>
<td>1,191</td>
<td>1,163</td>
<td>1,140</td>
<td>1,134</td>
<td>1,109</td>
</tr>
</tbody>
</table>
Стьюдента $t_{0.95,n-1} = (T_{0.975,N} - T_{0.025,A})/2$, значения которых представлены в табл. 3. Полученные по этим данным зависимости относительной погрешности оценок стандартной и расширенной неопределённостей от вида распределения вероятностей и объёма выборки приведены на рисунке.

Анализ результатов статистического моделирования показывает, что при минимальном объёме выборки $n=4$ относительная погрешность оценивания стандартной неопределённости по типу A на основе гипотезы о нормальном распределении многократных показаний СИ достигает в случае фактических законов распределения арксинуса, равномерного, треугольного и двойного экспоненциального соответственно 69; 22; 2 и 16 %. Соответственно погрешности оценивания расширенной неопределённости при доминирующем вкладе неопределённости по типу A составляют 43; 17; 1,6 и 16 %. С увеличением числа измерений указанные погрешности уменьшаются и при $n=10$ составляют порядка 5 %.

Таким образом, планируемая Объединённым комитетом по руководствам в метрологии JCGM разработка Дополнения 3 к GUM является актуальной задачей. Также важно исследование влияния на точность оценивания неопределённости измерений и выбора вида распределений вероятностей по более широкому перечню.

Литература

6. JCGM 103 Evaluation of measurement data — Supplement 3 to the «Guide to the expression of uncertainty in measurement» — Developing and using measurement models.

8. Захаров Н. П., Штеден В. В. Алгоритмы эффективного и достоверного оценивания неопределённости измерений по типу А // Измерительная техника. 2005. № 5. С. 9—15.

Дата принятия: 29.06.2016.

ПОВЫШЕНИЕ ДОСТОВЕРНОСТИ МЕТРОЛОГИЧЕСКОГО КОНТРОЛЯ МНОГОКАНАЛЬНЫХ ИЗМЕРИТЕЛЬНЫХ СИСТЕМ

В. Ю. КОНДАКОВ, В. С. КРЫЛОВ, Э. М. ШЕЙНИН

Сибирский государственный научно-исследовательский институт метрологии, Новосибирск, Россия, e-mail: kondakov@snlmm.ru

Рассмотрены вопросы проверки многоканальных измерительных систем.

Ключевые слова: автоматизированные системы, измерительные системы, достоверность контроля.

Questions of checking of multi-channel measuring systems are considered.

Key words: the automated systems, measuring systems, metrological providing, the accuracy of the control.

Изменение Федерального закона «Об обеспечении единства измерений» (включение измерений, выполняемых при учёте энергоресурсов, отдельным пунктом в перечень измерений относящихся к сфере государственного регулирования) существенно стимулировало разработку метрологического обеспечения автоматизированных информационно-измерительных систем (АИИС) учёта электроэнергии, газа, тепловой энергии и теплоносителя [1]. Такие системы активно разрабатывают как для серийного выпуска, так и в качестве типовых проектов. Сведения о типовых проектах АИИС содержат раздел «Сведения об утвержденных типах средств измерений» Государственного реестра средств измерений (СИ) Федерального информационного фонда по обеспечению единства измерений (ФИФ ОЕИ).

Автоматизированные информационно-измерительные системы применяют для коммерческого учёта энергоресурсов в секторе жилищно-коммунального хозяйства, где большое количество измерительных каналов (тысячи и десятки тысяч) рассредоточены в пределах одного или нескольких населённых пунктов. Такие системы получили название больше [2].

Легитимное использование измерительных систем утверждённого типа (типов проектов) после их монтажа на месте эксплуатации предполагает проведение первичной и периодических поверок. Это верно и в отношении АИИС, утверждаемых в качестве единичных экземпляров СИ.

Метрологическое обеспечение многоканальных измерительных систем (в особенности больших систем) отличает трудоёмкость поверки, которая может во много раз превышать трудоёмкость их испытания в целях утверждения типа. Для испытаний достаточно подтверждения технических и метрологических характеристик измерительного канала (ограниченной выборки для однотипных каналов вне зависимости от их количества), а при поверке — метрологических характеристик каждого измерительного канала.

Отсутствие в «Едином перечне измерений относящихся к сфере государственного регулирования ОЕИ» обязательных требований к измерениям, выполняемым с применением АИИС, позволяет энергоснабжающим организациям не проводить первичную поверку типовых АИИС, а поверять только отдельные измерительные компоненты, а также использовать АИИС не утверждённого типа.

В последнее время делаются попытки разработки методик, предусматривающих снижение трудоёмкости поверки. Методики поверки больших систем учёта электрической энергии (АИИС КУЭ) ООО «Матрица», Сервисного центра «Энергия» допускают выборочный контроль измерительных каналов, дистанционную поверку. Методы автоматизации поверки в них основаны на упрощённых процедурах подтверждения достоверности (достоверизации) передаваемых по каналам связи результатов измерений. В то же время большинство методик