АКСИЗ ПРОПУСКНОЙ СПОСОБНОСТИ BLUETOOTH-ПИКОСЕТИ
ВУСЛОВИЯХ СОВМЕСТНОЙ РАБОТЫ С ТОЧКОЙ ДОСТУПА СТАНДАРТА 802.11G

В настоящее время устройства стандарта Bluetooth повсеместно используются в различных портативных устройствах, таких как КПК, мобильные телефоны и ноутбуки. Устройства Bluetooth работают в MSU диапазоне (2402...2483 МГц). В этом же диапазоне работают широко распространенные Wi-Fi устройства стандарта 802.11b и 802.11g, применяемые для разъединения локальных беспроводных сетей передачи данных.

Цель данной работы – анализ степени влияния активной сети стандарта 802.11g на производительность Bluetooth-пикосети.

Работа Bluetooth-устройств на физическом уровне основана на методе скачкообразной перестройки частоты. Ведущее устройство 360 раз в секунду выбирает один из 79 частотных каналов по псевдослучайному алгоритму. Ширина одного канала составляет 1 МГц. [1] Точка доступа стандарта 802.11g занимает один из 13 перекрывающихся частотных каналов шириной 22 МГц. [2] Спектры сигналов Bluetooth и 802.11g приведены на рис.1, из которого видно, что 95% мощности сигнала 802.11g сосредоточены в полосе 16 МГц. [3]. Следовательно, активная точка стандарта 802.11g будет занимать 6 частотных каналов Bluetooth.

Передача пакетов Bluetooth ведется в таймслотах, продолжительность одного

\[T_S = 1/1600 = 625 \text{ мкс} \]

В зависимости от типа пакет может занимать до 5 таймслотов, в таком случае частотный канал не меняется до окончания передачи пакета. Сам процесс передачи занимает интервал \(T_p = 366 \text{ мкс} \) (для пакета, занимающего 1 таймслот), разница в 625 – 366 = 259 мкс используется для перестройки оборудования на другой частотный канал. Временные характеристики пакетов представлены на рис. 2.

В стандарте 802.11 передача ведется фрагментами с последующим подтверждением каждого фрагмента (рис.3), отправка подтверждения о получении фрагмента и передача следующего фрагмента разделены интервалами SIFS (short interframe space). Для 802.11g ап длина составляет 5 мкс. [4].

Вероятность коллизии пакетов Bluetooth и 802.11 будет комбинацией вероятности частотной и временной коллизий. Вероятность коллизии \(P_{802.11} \) определяется по формуле

\[P_{802.11} = \frac{T_p}{T_S} \times C_{802.11} \times C_B, \]

где \(T_p \) – длина пакета Bluetooth в мкс, \(T_S \) – длина таймслота, \(C_{802.11} \) – количество каналов, занимаемых 802.11, \(C_B \) – количеств каналов, доступных Bluetooth (79 или 23 в зависимости от региона).

Приведенные выше выражения справедливы только для сценария взаимодействия одной сети 802.11 и одной Bluetooth-пикосети, в случае работы нескольких несинхронизированных пикосетей, каждая из них также будет являться помехой для рассматриваемой пикосети.
Рассмотрим ситуацию, когда в зоне действия одной пикосети i работает другая несинхронизированная пикосеть j (рис. 4).

Вероятность коллизии пакетов двух пикосетей определяется выражением

$$P_{C(i,j)} = \frac{T_{p_i} + T_{p_j}}{\max(T_{s_i}, T_{s_j}) + 625} \cdot \frac{1}{C_B},$$

где T_{p_i}, T_{p_j} — длины пакетов пикосетей i и j, мкс, T_{s_i}, T_{s_j} — длины слотов пикосетей i и j, мкс, C_B — количество каналов, доступных для работы Bluetooth.
Характеристики пакетов Bluetooth представлены в табл. 1

<table>
<thead>
<tr>
<th>Тип пакета</th>
<th>(T_p), мкс</th>
<th>(T_t), мкс</th>
<th>Пропускная способность дуплексного симметричного канала, (мбит/с)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM1</td>
<td>366</td>
<td>625</td>
<td>108,8</td>
</tr>
<tr>
<td>DH1</td>
<td>366</td>
<td>625</td>
<td>172,8</td>
</tr>
<tr>
<td>DM3</td>
<td>1616</td>
<td>1875</td>
<td>256,0</td>
</tr>
<tr>
<td>DH3</td>
<td>1616</td>
<td>1875</td>
<td>384,0</td>
</tr>
<tr>
<td>DM5</td>
<td>2866</td>
<td>3125</td>
<td>286,7</td>
</tr>
<tr>
<td>DH5</td>
<td>2866</td>
<td>3125</td>
<td>432,6</td>
</tr>
</tbody>
</table>

Для \(N\) взаимодействующих пикосетей определяется количество пикосетей, оказывающих мешающее воздействие на рассматриваемую пикосеть:

\[
N_{INT}(R_{INT}) = \int_{r} N(r) \cdot r \cdot dr \cdot d\beta
\]
(3)

где \(N(r) = N_0 \cdot \exp(-k \cdot r)\), \(N_0\) — плотность размещения устройств \((м/м^2)\), \(r\) — радиус зоны взаимного влияния, \(k\) — постоянная, \(k=2\); параметры интегрирования \(r = (0, R_{INT}), \beta = (0, 2\pi)\).

 Для окончательного вычисления влияющих пикосетей воспользуемся формулой

\[
N_{INT}(R_{INT}) = \frac{2\pi}{k^2} N_0 \cdot [1 - (kR_{INT} + 1) \cdot \exp(-kR_{INT})].
\]
(4)

Вероятность потери пакета пикосети при воздействии \(N_{INT}\) влияющих пикосетей определяется выражением

\[
P_{BL}(N_{INT}) = 1 - (1 - P_{(i,j)})^{N_{INT}}.
\]
(5)

Из выражений (1), (2) и (6) определяется вероятность потери пакета Bluetooth при взаимодействии одной сети 802.11 и \(N_{INT}\) пикосетей Bluetooth:

\[
P_{c}(N) = 1 - (1 - P_{802.11}) \prod_{N=1}^{N_{INT}} (1 - P_{BL}(N_{INT})).
\]
(6)

Результаты моделирования представлены на рис. 5.
Пропускная способность и Bluetooth пикосети тестирулась при одновременной работе сети 802.11 с Bluetooth пикосетью, используя пакеты DHCP (теоретическая пропускная способность составляет 432,6 кбит/с.) рис.6

![Diagram](image)

Рис. 6

Для анализа пропускной способности в сети Bluetooth использовалась специализированная программа Bandwidth Test.

Пропускная способность сети Bluetooth при передаче реального трафика с использованием протокола TCP без вмешательства 802.11 составляла 331,4 кбит/с. После включения точки доступа 802.11 пропускная способность упала до 262,5 кбит/с. Уменьшение пропускной способности составило 68,9 кбит/с, что составляет 20,8 %. Теоретическое уменьшение пропускной способности для этого сценария составляет

\[P_{802.11} = \frac{T_e \cdot C_{802.11}}{T_s \cdot C_{80}} = \frac{2866 \cdot 16}{3125 \cdot 79} = 18,6\% \]

Выводы

На основании экспериментальных и теоретических исследований показано, что в условиях всевозрастающей плотности использования офисного беспроводного оборудования локальных сетей появляется опасность возникновения их электромагнитной совместимости. Учитывая возможность адаптации беспроводных сетей к изменению сигнально-помеховой обстановки, снижение качества передаваемой информации проявляется в снижении пропускной способности, которая может падать на 20 и более процентов. Приведенный выше метод оценки пропускной способности получил подтверждение на практике, и может применяться для оценки пропускной способности Bluetooth-пикосети в условиях совместной работы с точкой доступа стандарта 802.11g.

Харьковский национальный университет радиоэлектроники

Поступила в редколлегию 13.02.2006

150 ISSN 0485-8972 Радиотехника. 2006. Вып. 4