Contour detection and allocation for cytological images using Wavelet analysis methodology

Abstract
Image analysis is one of most powerful tools in various research fields. In the same context, processing of microscopic images in medicine has high priority research area, this is because such studies allow conducting comprehensive diagnosis of human health state, identifying and preventing the development of diseases in the early stages and providing additional research in non-standard symptomatic forms of rare diseases. To overcome analyzing and processing complexities of microscopic images the feasibility of using wavelet analysis methodology had been considered with a high attention to the effect of wavelet transform scaling which is used to detect contours of objects in the image. The new approach showed that the effectiveness of contour detection is largely depends on wavelet transform scaling to identify gaps in the wavelet decomposition of the investigated images.
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Introduction

Medical and biological Image Analysis allows analyzing and studying objects such as tissues, parts of human skeleton, etc., obtained with the help of special methods such as: X‐ray microtomography, 3D X-ray microtomography [1], positron emission tomography [2], ultrasonic analysis [3], light and electron microscopy [4, 5, 6]. These objects cannot be seen or analyzed by means of human vision; because human vision can be easily biased by pre-conceived notions of objects, while automated image analysis provides an unbiased approach to extracting information from image data and testing hypotheses using various methods, approaches and theories[7, 8].
Cytological image processing ideology pursues its goal by selection of certain parts of the image (cells, nucleus) for further study of changes (changes in cell shape, change in cell area) or for specific calculation of certain quantitative characteristics (number of cells, the number of nuclei, cell area). At the same time with a keen interest of post-processing methods of source images (filtering, change of contrast, histogram equalization) in order to enhance the contained information.
Materials and Methods 
M. Saha et. al, deal with the cytological image segmentation to isolate the cell nucleus [8].  G. Mahendran, R. Babu, and D. Sivakumar, discuss the issues of segmentation and classification of cytological image [9] where particular attention is given to the pre-processing of source images in order to obtain more reliable results.

S. Singh and R. Gupta, examine the possibility of applying the texture analysis methods for cytology preparations [10]. The authors point out that the isolation and analysis of the texture of the original image involves implementation of images pre-processing, where filtration and change of contrast can be allotted.

E. Ensink et. al, study the issues of threshold selection for cytological image segmentation [11]. However, as the authors point out, the selection of this threshold depends to a large extend on the baseline characteristics of the original images. Therefore, the authors talk about the necessity of pre-processing of the original image as of some tuning procedure for selecting the optimal threshold for further segmentation. At the same time, the authors offer their approach to the selection of such a threshold, while rejecting traditional methods of calculating the threshold for image segmentation - fixed threshold and Otsu's method [11];

Y. M. George, B. M. Bagoury, H. H. Zayed and M. I. Roushdy, suggest conducting automated segmentation of cells in cytological image under study [12]. In addition, for the implementation of such process of segmentation authors talk about the necessity to change the histogram of the input image in order to enhance its contrast.

R. Malviya, S. P. K. Karri, J. Chatterjee, M. Manjunatha and A. K. Ray, deal with nucleus localization in cytological image under study [13]. To implement this image processing procedure, a special technique is used with staining of clinical specimens. This allows using a simple threshold processing of the input image without its pre-processing. Nevertheless, the authors point out that there may be some ambiguity while localizing nucleus. Thus, it should be noted that by simply changing the brightness, contrast or by filtering it is impossible to solve arising issues with proper quality while processing cytology preparation images.

Possible errors in segmentation of cells on cytology preparations images as a result of the arising differences in relative intensity of their staining is also studied by E. M. van Ingen, L. Leyte-Veldstra, I. Al, G. Wielenga and I. S. Ploem [14].

The reviewed problematic aspects in cytological image processing, eventually served as a basis for finding new methods and approaches to address emerging challenges. In particular to detect and allocate contours in cytological images we suggest using Wavelet analysis methodology.

Wavelet analysis as a tool for cytological images processing
The selection of wavelet analysis methodology for cytological images processing is because wavelet processing allows taking into consideration the particular characteristics of the images under study by decomposing source data into a plurality of approximate and detailed coefficients depending on image contour detection [15]. Moreover, wavelet analysis has become an integral part of complex stochastic processes of different nature. In addition, image processing results obtained with the help of wavelet analysis, are often more informative [16, 17].
Wavelet analysis is based on wavelet transform. The wavelet transform is a signal decomposition (e.g. of some image) by the system of wavelets where the wavelets are obtained by shifting and scaling a single function – parent wavelet [18]. Wavelet in this case is a function rapidly decreasing to infinity with average value equals to zero. Unlike Fourier analysis, each scale value of wavelet analysis corresponds with the infinite number of shifted function in relation to each other spatially localized functions. If the signal is discontinuous, only those wavelets will have high amplitudes, where the maximum value will appear near the discontinuity point, which will allow detecting image contour. At the same time, discontinuity point is a sharp intermittent transition during some process. Quantitatively, it can be estimated by the value of the first derivative of such process, taking into consideration that the first derivative of intermittent transitions is very high. If the transition is in the form of discontinuity point, then the first derivative tends to infinity. However, real processes in reality cannot have perfect discontinuity points. In fact, the measured fractal transitions are characterized by the finite value of the derivative. The sharper the transition, the higher the derivative value is. Smooth transitions will have small derivative values. This allows us to determine the presence of special characteristics of the analyzed image, as well as the point where these characteristics may arise.
Behind the formalization of the continuous wavelet transform (CWT) there is the use of two continuous and integrable along the whole axis of 
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 functions [18, 19]:
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– Scaling function 
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However, CWT function can be applied only for one-dimensional signals while image is a two-dimensional signal. Therefore, in order to apply CWT to detect image contour we suggest considering the following analysis and contouring detection procedure [15]:
Let us perform calculation for horizontal discontinuities of the original image
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. To do this, we use the following formula to get the so-called matrix of wavelet spectrogram 
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 (based on the sequential processing of each line of the original image
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 to obtain a set of values of its wavelet spectrogram 
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Then, based on the analysis of the obtained spectrogram (
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for each raw of the original image
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) we select a certain line
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according to the following condition [14]:
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Where
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 is the element of wavelet spectrogram of the analyzed row of the original image 
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The selected row will correspond to a specific row in matrix
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, which characterizes the matrix of horizontal discontinuities of the original image
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 (see Fig. 1). 

Processing of all rows of the original image 
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 allows obtaining the matrix of horizontal discontinuities
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In a similar way, we can calculate the vertical discontinuities of the original image 
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 for each column. For this purpose, we use formula (3) and a formula similar to formula (4) to select certain row from the obtained wavelet spectrograms for each column of the original image 
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 [14]:
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Where
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 is the element of wavelet spectrogram of the analyzed column of the original image 
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The selected columns will correspond to a specific columns in matrix 
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 , which characterized the matrix of vertical discontinuities of the original image (see Fig. 2).
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Processing of all columns of the original image 
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 allows obtaining the matrix of vertical discontinuities
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.

Nevertheless, the choice of spectrogram rows based on formula (4) or the formula (5) remains open and controversially. In one case, we can get redundant information to detect the contour of the image.

In another case, on the contrary we have insufficient information to make a decision regarding the presence of the desired gap to detect  the contour of the image. 

This is due to the fact that the information, which is reflected in the spectrogram are heavily altered by the value of the specified scale (
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) and the selected row of wavelet spectrograms for a given scale 
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It should be noted that the construction of wavelet spectrogram pattern 
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 is largely determined by the size of the original image and the used scale parameter.

In this work, we consider the possibility of using wavelet analysis as a tool for processing cytological image with the following parameters:
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 correlates with the linear dimensions of the original image in accordance with the procedure of constructing the matrix of wavelet spectrogram pattern for rows and columns of the image respectively.

Preprocessing of wavelet analysis
To figure out the features of using variable scale in wavelet analysis methodology as a tool to detect contour of cytological image, we choose some images, which are publicly available on the Web (Fig.3, Fig.4).
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Fig.3. Image No. 1                                                                                Fig.4. Image No. 2

The presented images are different in structure and complexity, moreover, all images are presented in colors. However, the implementation of certain functions of wavelet analysis methodology (in particular in the MATLAB system, where the experiments were conducted) involves the work with grayscale images. Therefore, all the original images are preliminary presented in grayscale, which can be considered as the first stage of pre-processing original images (Fig. 5, Fig. 6).
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         Fig. 5. Grayscale of image No. 1                                                    Fig. 6. Grayscale of image No. 2

A visual comparison between original colored images and their grayscale representations shows that the initial information remains the same.

One of the necessary stages of pre-processing of microscopic images in medicine is their contrasting. Contrast is one of the main characteristics of the image; it is directly related to the brightness of pixels that are the sources of information about the objects in the image. Therefore, changing the contrast of the image allows improving both image perception accuracy, as well as the efficiency for further processing. Therefore, for further analysis the grayscale images will be contrasted (Fig. 7, Fig. 8).


Fig. 7-a, 7-b and 7-c respectively show: contrasted grayscale image, histogram of the original grayscale image (image No. 1) in accordance with Fig. 5 and histogram of contrasted grayscale image (image No. 1).


Fig. 8-a, 8-b and 8-c respectively show: contrasted grayscale image, histogram of the original grayscale image (image No. 2) in accordance with Fig. 6 and histogram of contrasted grayscale image (image No. 2).
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Fig. 7. Result of contrasting grayscale image No. 1
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Fig. 8. Result of contrasting grayscale image No. 2

Results and Discussion

Wavelet transform will be held on grayscale images, one of which is the grayscale image obtained from the corresponding colored image, and the second one is a contrasted image of the original grayscale image.

Fig. 9 and Fig. 10, respectively show the results of wavelet processing of the original and contrasted grayscale image No 1 for a given scale
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. It also shows the results of contours detection of objects under preset sequence of values of row 
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and column 
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 in the wavelet spectrogram. At the same time, calculations show that increasing the values of rows and columns will increase the value of 
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and 
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 respectively.
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Fig. 9. Results of wavelet processing of the original grayscale image No 1 (
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Fig. 10. Results of wavelet processing of the contrasted grayscale image No 1  (
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Fig. 11 and Fig. 12, respectively show the results of wavelet processing of the original and contrasted grayscale image No 2 for a given scale
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. It also shows the results of contours detection of objects under preset sequence of values of row 
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and column 
[image: image70.wmf]sc

 in the wavelet spectrogram. At the same time, calculations show that increasing the values of rows and columns will increase the value of 
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and 
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 respectively.
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Fig. 11. Results of wavelet processing of the original grayscale image No 2  (
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Fig. 12. Results of wavelet processing of the contrasted grayscale image No 2  (
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Fig. 13 and Fig. 14, respectively show the results of wavelet processing of the original and contrasted grayscale image No 1 for a given scale
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. It also shows the results of contours detection of objects under preset sequence of values of row 
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and column 
[image: image85.wmf]sc

 in the wavelet spectrogram. At the same time, calculations show that increasing the values of rows and columns will increase the value of 
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and 
[image: image87.wmf]MM

 respectively.
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Fig. 13. Results of wavelet processing of the original grayscale image No 1 (
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Fig. 14. Results of wavelet processing of the contrasted grayscale image No 1 (
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Fig. 15 and Fig. 16, respectively show the results of wavelet processing of the original and contrasted grayscale image No 2 for a given scale
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. It also shows the results of contours detection of objects under preset sequence of values of row 
[image: image107.wmf]st

and column 
[image: image108.wmf]sc

 in the wavelet spectrogram. At the same time, calculations show that increasing the values of rows and columns will increase the value of 
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and 
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 respectively.
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Fig. 15. Results of wavelet processing of the original grayscale image No 2  (
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1. Fig. 16. Results of wavelet processing of the contrasted grayscale image No 2  (
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When comparing the figures fig. 9 through Fig. 16, it is important to note that:

1. Results of contour detection using wavelet transformation for contrasted images is better than not contrasted images.

2. The higher the value of row 
[image: image129.wmf]st

 and column 
[image: image130.wmf]sc

 in the wavelet spectrogram gives better results of contour detection, which is consistent with the conclusions of Formula 4 and Formula 5.

However, the comparison also shows that when using high scale values with high values of rows and columns sometimes lead to bad visual quality, which in turn will reflect negatively on contour detection,.  To avoid such situation, we can control the relationship between the values of scale, rows and column by the following rule: the values of rows and columns should not increase dramatically while increasing the scale value.

Conclusions
In summary, this paper discussed the possibility and feasibility of applying wavelet analysis as a separate procedure for processing cytological image by allocating specific features with a special emphasis on the impact of scale value when constructing wavelet spectrogram, in order to allocate and separate contours. A general rule had been formulated to match the values of scale, row and column in order to avoid any possible bad visual quality. Also in this paper different experiments had been held with different parameters proved the effectiveness of the proposed methodology.
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