Ryabtsev V.G., Andrienko V.A., Kolpakov I.A. A Lot Of The Versions For Diagnosing Microcircuits Memory Devices Of Critical Computer Control Systems

Ladyzhensky Y.V., Popoff Y.V. Software System For Distributed Event-Driven Logic Simulation

Andrey U. Eltsov, Dmitry V. Ragozin. 3D pipeline workload for convergent DSP-CIL Processor

Dmitry V. Ragozin, Maxim O. Shuralev, Maxim A. Sokolov, Dmitry K. Mordivinov. DSP Core for Hardware Based CIL Machine

Zaychenko A.N., Krotenko A.G., Pavelko A.V. The Viterbi Algorithm Modification

Valérie-Anne Nicolas, Bertrand Gilles, Laurent Lemarchand, Lionel Marecé, Bruno Castel. A Maintenance-Oriented Board Testing Approach

Petrenko A., Vetrova M., Yevtushenko N. Adaptive Test Generation for Nondeterministic Networks

Yeliseyev V.V., Largin V.A. Program-Technical System (PTS) Diagnosis on The Basis of Microprocessor Monitoring And Control Subsystem

Pavlo Tymoshchuk, Mykhaylo Lobur. Optimization of WTA Neural Network by Genetic Algorithms

Gladkikh T.V., Leonov S. Yu. Models of Computer's Elements in CAD Based on the K-Value Differential Calculus

Sharshunov S.G., Belkin V.V., Rudnitskaya V.P. Detecting Malfunctions of Current Processor Control Hardware

Michail F. Karavay. Fault-Tolerant Design For Hamiltonian Target Graphs

Scobtsov Y.A., Ermolenko M.L. The Test-Programs Generation of Microprocessor Systems on the Basis of Genetic Programming

A.V. Babich, O.B. Skvortsova, A.A. Krasovskaya, A.A. Kovalenko. Method of Implicit Defects and Bottlenecks Location Based on Active Experiment Planning

Gennadiy Kryvulya, Yevgeniya Syrevitch, Andrey Karasyov, Denis Cheglikov. Test Generation for VHDL Descriptions Verification

Gorbachov V.A., Adamenko N.N. The Two-Level Method of Describing Semantic Database Model

V.A. Gorbachov, J.S. Leshchenko. Deadlock problem in distributed information systems, possible ways of improvement of its searching and resolving
Ami Gorodetsky. Contactless Mixed-Signal In-Circuit Testing...207

Yakymets Nataliya, Kharchenko Vyacheslav, Ushakov Andrey. Projects diversification of fault-tolerant digital systems with programmed logic using genetic algorithms......................208

V.S. Kharchenko, I.V. Lysenko, V.V. Sklyar, O.D. Herasimenko. Safety and reliability assessment and choice of the redundant structures of control safety systems...212

V. Kharchenko, O. Tarasyuk, A. Gorbenko, N. Khilchenko. A Metric-Probabilistic Assessment of Software Reliability: Method, Tool and Application...219

Ushakov A.A., Kharchenko V.S., Golovir V.A. Self-repairing FPGA-systems using multi-parametrical adaptation to cluster faults...225

A. Čitavičius, M. Knyva. Investigation of Measuring Device Software Functionality………231

K.S. Smelyakov, I.V. Ruban, S.V. Smelyakov, A.I. Tymochko. Segmentation of Small-sized Irregular Images...235

Dmitriy Elchaninov, Sergey Matorin. A perspective approach to structural design automation...242

Vyacheslav Evgrafov. Throughput Evaluation of MIN in Case of Hot Spot Traffic With Arbitrary Number of Hot Spots...246

Belous Natalie, Kobzar Gleb, Evseev Alexander. Contour based technique for person recognition by hand geometry identifier...251

Irina Hahanova, Volodymyr Obrizan, Wade Ghribi, Vladimir Yeliseev, Hassan Ktiaman, Olesya Guz. Hierarchical hybrid approach to complex digital systems testing...254

Stanley Hyduke, Eugene Kamenuka, Irina Pobezhenko, Olga Melnikova. Emulation Processor Network for Gate-Level Digital Systems...257

Vladimir Hahanov, Oleksandr Yegorov, Sergiy Zaychenko, Alexander Parfeniy, Maryna Kaminska, Anna Kiyaschenko. Assertions-based mechanism for the functional verification of the digital designs...261

Karina Mostovaya, Oleksandr Yegorov, Le Viet Huy. Software Test Strategies..........................266

Sergey G. Mosin. Design-for-Testability of Analog and Mixed-Signal Electronic Circuits (Abstract)...268

Sergey G. Mosin. Extraction of Essential Characteristics of Analog Circuits’ Output Responses Required for Signature Analysis...269

Olga Melnikova, Dmitriy Melnik, Yaroslav Miroshnichenko. IP core and testbench generator for CORDIC algorithm...271

Shabanov-Kushnarenko Yu., Klimushev V., Lukashenko O., Nabatova S., Obrizan V., Protsay N. Brainlike Computing...274

Eugene Kovalyov, Olga Skvortsova, Alexandr Babaev, Yaroslav Miroshnichenko, Konstantin Kolesnikov. ASFTEST – Testbench generator for Extended Finite State Machines..280

Eugene Kovalyov, Evgeniya Syrevitch, Elvira Kulak, Evgeniya Grankova. High level FSM design transformation using state splitting...282

A. Chatterjee. Conformal Built-in Test and Self-calibration/Tuning of RF/MULTI-GHz circuits (Abstract)...284

Chumachenko S.V., Chugurov I.N., Chugurova V.V. Verification And Testing RKHS Series Summation Method For Modelling Radio-Electronic Devices...285
Abstract. One of the problems in the testbench generation for extended finite state machines (EFSM) is existence of internal variables. In fact the usage of these variables in the condition of transition increases real quantity of states by orders. Even for a variable with bit length 20 it leads to the state explosion problem [1]. But for some control unit it is possible to make redesign of the project by including state variables to state register. The transformation algorithm contains phases of state splitting, transition splitting, unreachable (dead) state reduction and equivalent states minimization. The results of such transformation can be used for design analysis, optimization, validation, verification, synthesis and implementation.

1. Introduction

This paper was motivated by author’s work in the project ASFTest – a testbench generator for Aldec finite state machines[2]. Graphical user interface used in state-of-the-art software allows to create environment for design entry with finite state machine abstract usage. Such form of design description is used in many software and hardware design tools like StatedCAD, FPGA Advantage, Stateworks, Stateflows, etc. The algorithm is described in the graphical way using the extended FSM notation. VHDL is chosen as target language. Synthesis is made by Xilinx synthesis tool which is included in Xilinx Webpack environment [3]. The target device is CPLD CoolRunner II.

2. Design entry

The quantity of the explicit states in the model A is 8. Quantity of bits in internal variables is 6. The total quantity of the states including implicit states in internal variables is \(8 \times 2^6 = 512\).

3. State splitting

After state splitting based on the boolean variable quantity of explicit states are multiplied by 2.

4. Dead state reduction

After design transformation we can see unreachable (dead) states. They are redundant for design and can be removed. It’s easy to find 2 kinds of dead states: without incoming transition and with unfeasible condition of transition.

5. Equivalent states reduction

Is is possible to make equivalent states reduction (hold_state and hold_state_ace in example). After transformation we obtain 12 explicit states and \(12 \times 2^5 = 384\) total states.
6. Design verification

The model behavior does not change during these transformations and we can use the same testbench for verification. But ATPG can give different sequence for Model A, B, and C depending on the quantity of the explicit states.

FSM testbenches metrics. After state splitting and reduction FSM contains 172 states and 562 transitions.

HDL level testbench metrics using CodeCoverage tool for different settings of FSM to VHDL transformation.

7. Implementation

Implementation for DEVICE XCR3032XL-5VQ44 using Xilinx synthesis tool (XST) gives different results for model A and B.

Model A. The best implementation result

<table>
<thead>
<tr>
<th>RESOURCE</th>
<th>AVAIL.</th>
<th>USED</th>
<th>UTILIZATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock Inputs</td>
<td>4</td>
<td>1</td>
<td>25.00%</td>
</tr>
<tr>
<td>Global C-Terms</td>
<td>4</td>
<td>0</td>
<td>0.00%</td>
</tr>
<tr>
<td>Func Blocks</td>
<td>2</td>
<td>2</td>
<td>100.00%</td>
</tr>
<tr>
<td>I/O Pins</td>
<td>32</td>
<td>14</td>
<td>43.75%</td>
</tr>
<tr>
<td>Macro Cells</td>
<td>32</td>
<td>9</td>
<td>28.13%</td>
</tr>
<tr>
<td>PLA P-Terms</td>
<td>96</td>
<td>79</td>
<td>82.30%</td>
</tr>
<tr>
<td>PLA S-Terms</td>
<td>32</td>
<td>16</td>
<td>50.00%</td>
</tr>
<tr>
<td>Block C-Terms</td>
<td>16</td>
<td>0</td>
<td>0.00%</td>
</tr>
<tr>
<td>Fbk Nands</td>
<td>0</td>
<td>0</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

Model B. The best implementation result

<table>
<thead>
<tr>
<th>RESOURCE</th>
<th>AVAIL.</th>
<th>USED</th>
<th>UTILIZATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macro Cells</td>
<td>32</td>
<td>13</td>
<td>40.63%</td>
</tr>
<tr>
<td>Registers</td>
<td>32</td>
<td>9</td>
<td>28.13%</td>
</tr>
<tr>
<td>PLA P-Terms</td>
<td>96</td>
<td>60</td>
<td>62.50%</td>
</tr>
<tr>
<td>PLA S-Terms</td>
<td>32</td>
<td>13</td>
<td>40.63%</td>
</tr>
</tbody>
</table>

8. Summary

State splitting can be used for small control unit designs for design minimization, analysis, implementation, and testbench generation.

References: