POSSIBILITIES FOR ASSESSING THE EFFECTIVENESS OF TREATMENT OF ATOPIC DERMATITIS BASED ON ANALYSIS OF COLOR CHARACTERISTICS OF VIDEO DERMATOSCOPIC IMAGES

The subject of the article is the study of the color characteristics of video dermatoscopic images of affected skin areas of children with atopic dermatitis and the development of an automated diagnostic system for processing and analysis of dermatoscopic images. The aim of the work is to develop an objective method for assessing the skin condition of children with atopic dermatitis based on numerical analysis of images of affected skin areas. The objectives of the work were to collect a life history of children with atopic dermatitis, study the color characteristics of video dermatoscopic images of affected skin areas and further develop an automated diagnostic system for processing and analyzing dermatoscopic information. Research Methods. During the diagnostic examinations of children with atopic dermatitis, a history of life was collected and the initial dermatological status of patients was described. A comprehensive assessment of the severity of the disease was performed using the SCORAD index. Image registration was carried out using a UM039 digital video dermatoscope with optical magnification up to 200 times, resolution of the receiving matrix 2880 × 1800 image elements, equipped with a built-in block of adjustable LED lighting, a tripod and a rotary 3-inch display. The images were captured on a microSD card with subsequent transfer of data to the database on the computer. The results of the study, based on the data obtained, allowed us to assess the intensity and dynamics of the inflammatory processes of the affected areas of the skin of children with atopic dermatitis and to formulate the principles of the automated diagnostic system for processing and analysis of dermatoscopic images. Conclusion. At the end of the study, the authors conclude that to monitor the skin condition in the treatment of atopic dermatitis, the analysis of the color components of the affected areas on the HSV scale can be used, which allows the specialist to intuitively observe the results of the therapy in a natural color space for human perception. As prospects for the development of the work, the authors substantiate the prerequisites for the development of a complete automated system for the comprehensive diagnosis of atopic dermatitis and its clinical trial. Such a system can make it possible to form a preliminary diagnosis and determine the severity of the disease based on the evaluation of color channels of images of affected skin areas and additional diagnostic data.

Keywords: atopy; dermatitis; brightness; HSV; color.

Formulation of the problem

Atopic dermatitis (AD) is one of the most common skin diseases that affects up to 20% of children and 2-8% of the adult population [1]. The disease has a significant impact on the quality of life of the patient and his family, causing sleep disturbance, decreased productivity, emotional and mental problems, impaired physical activity and social life [2]. It can be a cause of disability.

Atopic dermatitis (AD), a multifactorial inflammatory-immunopathological disease, is characterized by a relapsing course, accompanied by intense itching, more often in infancy and early childhood. Atopic dermatitis is currently one of the most common chronic diseases. For many years, it was believed that the first manifestations of atopy, such as a hereditary predisposition to IgE-associated environmental allergens and atopic march, ultimately lead to the development of asthma and allergic rhinitis. In support of this, all studies of past years were focused on the study of the humoral and T-cell immune response, and the results cast doubt on the main role of allergic mechanisms in the development of atopy, although they did not reduce the importance of immune responses. Modern molecular studies increasingly indicate the important role of the epidermis and its barrier function as the main link in the development of atopic processes.

One of the most important risk factors today is considered a hereditary predisposition to atopic diseases, in particular to AD. Various studies show that with an existing atopic disease in family members, the probability of manifestation of an atopic condition in the next generation exceeds 80%. The hereditary predisposition to AD is realized under the influence of environmental factors and the lifestyle of the individual. Among them are the so-called Western diet with a high content of sugar and polyunsaturated fatty acids; Other factors include living in urban areas and regions with weak exposure to ultraviolet radiation and low humidity, as well as the small composition of the family with a high level of education of its members.

One of the fundamental genetic risk factors for the development of atopic dermatitis is considered to be a zero mutation in the filaggrin gene. This protein is formed from profilaggrin through proteolysis in keratogial granules and plays a role in the aggregation of keratin filaments in the upper layers of the epidermis, holding lipids and proteins together between keratinocytes of the stratum corneum. In addition, filaggrin affects the differentiation of cells and promotes the formation of components of a natural moisturizing factor, which are of great importance for skin hydration. Recently, it has also been found that by inhibiting the generation of house dust mite antigen, filaggrin can directly affect allergens. There is evidence that the absence of filaggrin breakdown products contributes to transepidermal water loss, allergen penetration and skin colonization of Staphylococcus aureus. This explains why a higher level of total IgE, more pronounced sensitization, a more severe course of AD, and the development of asthma are associated with a filaggrin mutation and loss of its function.

For a long time, these features were considered as secondary effects of immunological mechanisms. Nevertheless, the insight of genetically determined epidermal defects, which contribute to the development of
Atopic dermatitis, has shifted the focus of the problem toward breaking the epidermal barrier. It is important to note that the violated epidermal barrier is not limited to defects in the structural proteins of the skin and is found not only in carriers of the filaggrin protein gene mutation. Other hereditary factors, environmental factors, such as the use of soap, detergents, exposure to exogenous proteases (for example, house dust mites), as well as repeated damage to the integrity of the epidermis (excoriation) worsen the condition of the skin. Thus, various combinations of hereditary and exogenous factors are involved in violations of the epidermal barrier. Important data presented by T. Werfel et al. Indicate that dysfunction of the barrier properties of the skin of newborns is also a prognostic factor in food allergy, which confirms the theory of percutaneous sensitization to allergens. The detected changes that affect the deterioration of the skin, mainly in open areas exposed to aeroallergens, increase sensitization in patients with AD and suggest that due to epidermal barrier dysfunction, prolonged exposure of the agent is accompanied by direct penetration of allergens into the skin.

A distinctive feature in the development of AD is inflammation in the skin, which is characterized by consistent and progressive models of inflammatory cell infiltration, in particular CD4 + cells. Signs of subclinical inflammation with an increase in the number of T helper cells (Th2 and Th22 and to a lesser extent Th17) and a pro-inflammatory cytokine environment are already detected on the visually unaffected skin of children with AD. Enhanced T cell infiltration expresses various skin adhesion molecules, such as cutaneous lymphocytic antigen, chemokines, and lipid chemotactic receptors that penetrate various layers of the skin. In addition, an increase in the number of Th2-cytokine-producing lymphocytes in the affected areas with atopic dermatitis leads to increased inflammation in the skin. In a systematic review of 113 studies, no clear evidence was found of the relationship between the role of specific infections or vaccination in the manifestation of AD, but the dependence of the development of AD on the use of broad-spectrum antibiotics during pregnancy and the postpartum period was found [3].

Sometimes a person can suffer from AD throughout life – from infancy to death. During the year, periods of exacerbation and hyperemia are also periodically observed, manifested by a change in the color of the skin.

In children with the initial stage of AD, subject to the timely appointment of a hypoallergenic diet and elimination measures, external therapy and drug treatment, in many cases it is relatively easy to achieve the reverse development of skin rashes, whereas with untimely and inadequate therapy, the transition from the initial stage of AD to the stage of pronounced changes is noted on the skin.

At the stage of marked changes in patients, along with eczematous changes and peeling of the skin, the appearance of lichenization was noted. Around the foci, the appearance of papular elements or plaques was noted. Patients were worried about severe itching of the skin. In unaffected areas of the skin, 73% of the observed patients showed red, and in 27%, white dermographism [4].

In conditions of a prolonged chronic course of the disease, the problem of an objective assessment of the severity of skin lesions at each particular moment of the disease becomes particularly relevant. Both the volume of therapy for stopping a particular exacerbation and the development of a patient management strategy will depend on this assessment [5, 6].

Currently, one of the most informative methods for assessing the condition of the skin during dermatological studies is considered to be dermatoscopy. The modern market of dermatoscopes is represented by a wide selection of samples, distinguished by their functionality and price range.

The VEOS DS3 dermatoscope (fig. 1) is a portable digital dermatoscope with a touch screen, an improved lighting system, which allows the study of skin, subcutaneous structures and vascular pattern. Dermatoscopy can be performed by contact and non-contact methods (non-polarizing and polarizing methods). Focus adjustment can be carried out both in manual and automatic modes. The design features of the optical system make it possible to avoid optical aberrations, as well as to carry out high-quality focusing and scaling. The device is equipped with 2 contact boards (immersion and cross-polarized).

![Fig. 1. Digital dermatoscope VEOS DS3](image)

Dermatoscope (trichoscope) irefly DE330T (fig. 2) has an optical magnification up to 165x; digital up to 495x. Allows you to take pictures with a maximum resolution of 2 mps (1600 x 1200). Equipped with a three-layer glass - 650 nm. and a built-in polarizer with 12 gradations. There is the possibility of video recording. The backlight is represented by a system of 8 ultra-bright LEDs with adjustable brightness.

The device has a size of 13x3.6 cm. The diameter of the chamber is 4 cm.
The DELTA 20 dermatoscope (fig. 3) has a color rendering coefficient CRI> 87. The color rendering system is represented by 4 LEDs. Two LEDs can be turned off for side lighting.

The optics of the device allows a 10-16-fold increase; undistorted all over the plane. The adjustable eyepiece has individual focusing with a correction range from –6 to +6 diopters.

The Eurolight D30 dermatoscope (fig. 4) has a contact glass with a diameter of 25 mm, a backlight system with an illumination intensity (12,000 Lux) with a service life of up to 50,000 hours, focusing range: from –6 to +3.5 D, tenfold optical zoom, scale for early detection of pigmentation changes in the skin.

Visual analysis of the medical image allows the doctor to make a preliminary conclusion about the condition of the skin in a specific period of the disease. However, this method of obtaining information does not allow to extract the entirety of the data necessary to clarify the diagnosis and predict the further development of the disease. Methods of digital processing and analysis of dermatological images based on instrumental methods of data recording allow constructing an objective picture of the course of the disease, which allows the clinician to reasonably choose a strategy for further treatment of a patient with AD with a minimal subjective factor.

Purpose of work. The aim of the work is to develop an objective method for assessing the condition of the skin with AD based on numerical analysis of images of affected skin areas.

Materials and methods

Studies of children with AD were conducted at the Department of Propaedeutics of Pediatrics No. 2 of KhNMU.

All patients and their parents voluntarily consented to participate in the study.

Among the children there are 5 girls, 5 boys. Children age - from 2 to 12 years.

The researchers collected an anamnesis and described the initial dermatological status of patients. Clinical monitoring involved determining the severity of the following symptoms: skin edema, erythema, papular elements, excoriation, itching, dryness.

Patients received systemic therapy, which included taking antihistamines. Outwardly, basic therapy with emollients and anti-inflammatory therapy with corticosteroids were used.

The dynamics of the skin process was evaluated on the 3rd, 14th, 17th and 28th day of treatment.

A comprehensive assessment was performed using the SCORAD index (Scoring of Atopic Dermatitis - Atopic Dermatitis Scale) [5].

The criteria for the effectiveness of therapy was the reduction or disappearance of dryness and signs of skin inflammation.

The condition of patients on the background of the therapy was evaluated: as a clinical recovery - full resolution of the skin inflammatory process; significant improvement - a decrease in the SCORAD index by 75% compared to the original data; improvement - a decrease in the SCORAD index by 25-50%; no change - decrease in the SCORAD index by less than 25% or no change.

The images were recorded using a digital video dermatoscope UM039 with optical magnification up to 200 times [7], the resolution of the receiving matrix was 2880 × 1800 image elements, equipped with a built-in block of adjustable LED lighting, a tripod and a rotary 3-inch display. The images were captured on a microSD card with subsequent transfer of data to the database on the computer.

The appearance of the device and an example of a diagnostic video dermatoscopic image are shown in fig. 5 and fig. 7 (a - e), respectively.
The automated diagnostic system for processing and analyzing dermatoscopic information is presented in fig. 6.

As a device for recording graphic information, a digital video dermatoscope UM039 was used; the interface module, which is a means of transmitting information to the database, can be implemented in the form of wired or wireless channels for transmitting information. The information preprocessing module includes means for monitoring data entered by a doctor for their correctness and consistency, as well as algorithms for eliminating image defects and improving its quality (methods for suppressing noisy components, correcting brightness and contrast). The image analysis module includes algorithms for evaluating color components and image segmentation. The preliminary diagnostic conclusion module includes various data classification algorithms.

The main research material. The article examined cases typical of the studied patient groups.

Clinical case 1. The patient is 8 years old. Registered by a dermatologist about ATD fig. 7. On examination, against the background of minor erythema, a few papular elements were noted in the neck fig. 8.

For the studied dermatoscopic images, the average values of the brightness channels in the RGB color model of the table were obtained 1.

As a device for recording graphic information, a digital video dermatoscope UM039 was used; the interface module, which is a means of transmitting information to the database, can be implemented in the form of wired or wireless channels for transmitting information. The information preprocessing module includes means for monitoring data entered by a doctor for their correctness and consistency, as well as algorithms for eliminating image defects and improving its quality (methods for suppressing noisy components, correcting brightness and contrast). The image analysis module includes algorithms for evaluating color components and image segmentation. The preliminary diagnostic conclusion module includes various data classification algorithms.

The main research material. The article examined cases typical of the studied patient groups.

Clinical case 1. The patient is 8 years old. Registered by a dermatologist about ATD fig. 7. On examination, against the background of minor erythema, a few papular elements were noted in the neck fig. 8.

For the studied dermatoscopic images, the average values of the brightness channels in the RGB color model of the table were obtained 1.

Clinical case 1. The patient is 8 years old. Registered by a dermatologist about ATD fig. 7. On examination, against the background of minor erythema, a few papular elements were noted in the neck fig. 8.

For the studied dermatoscopic images, the average values of the brightness channels in the RGB color model of the table were obtained 1.

Table 1. The values of the brightness channels of the RGB color model, the studied images

| N fig. channel | 1 | 2 | 3 | 4 | l|normal |
|---------------|---------|---------|---------|---------|--------|
| R | 249.7958| 248.0176| 241.3805| 248.4456| 240.786 |
| G | 170.9561| 142.7206| 157.2449| 160.5349| 154.344 |
| B | 168.7385| 134.5160| 135.6566| 138.7161| 138.76 |
Given (according to the data in table 1) the low visibility when displaying changes in color coordinates in the RGB space when observing the color of the skin surface during ATD in dynamics, it is advisable to switch to the HSV color space to study color changes using the perceptual color model.

For analysis, the images were converted to the HSV color model according to formulas (1–3) [8] and the values of the brightness channels of table 1 were determined.

\[V \leftarrow \max (R, G, B) \quad (1) \]

\[S \leftarrow \frac{V - \min (R, G, B)}{V_{\text{else}}} \quad \text{if } V \neq 0 \]

\[H \leftarrow \begin{cases} \frac{60(G - B)}{S}, & \text{if } V = R \\ \frac{120 + \frac{60(B - G)}{S}}{S}, & \text{if } V = G \\ \frac{240 + \frac{60(R - G)}{S}}{S}, & \text{if } V = B \end{cases} \quad (3) \]

if \(H < 0 \), then \(H = H + 360 \)

Table 2. The values of the brightness channels HSV color model of the studied images

<table>
<thead>
<tr>
<th>Figure</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>1\text{normal}</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>355±4.2</td>
<td>1±4.2</td>
<td>18±4.2</td>
<td>19±4.2</td>
<td>18±3.6</td>
</tr>
<tr>
<td>S</td>
<td>50±4.6</td>
<td>47±3.2</td>
<td>45±3.4</td>
<td>40±2.2</td>
<td>40±2.8</td>
</tr>
<tr>
<td>V</td>
<td>93±9.3</td>
<td>99±8.1</td>
<td>94±8.7</td>
<td>99±7.2</td>
<td>98±8.5</td>
</tr>
</tbody>
</table>

From the analysis of color channels according to table 2 it is obvious that in patients with atopic dermatitis, the skin tone of the affected areas changes significantly when observed in dynamics. So, in the acute stage (at the beginning of treatment), the skin of the affected areas has a purple tint and, under the influence of therapy, shifts to the area of orange tones by an anticlockwise angle of about 20 degrees. The saturation of the skin in this case decreases in dynamics by 10 units. There were no significant differences in the brightness component of the images of the skin during AT in dynamics. It is also necessary to take into account individual anatomical variability and to bind to the patient’s skin color in unaffected areas to increase the reliability of diagnosis under conditions of uncertainty [9, 10]. Additional methods aimed at analyzing video dermatoscopic images, for example, using Mueller-matrix transformations [11], can expand the possibilities of the proposed colorimetric diagnostics.

The method and system proposed in the work allow non-invasive instrumental diagnostics of the skin condition [12-18], which is very important in modern dermatology and can be used to organize telemedicine consultations in conditions of self-isolation [19]. A promising approach based on an accurate assessment of the area of affected skin areas using 3D scanning of the patient’s body can expand the capabilities of the method [20].

Conclusion

Thus, we can conclude that in order to observe the condition of the skin during the treatment of AD in dynamics, one can apply the analysis of the color components of the affected areas on the HSV scale. This allows the specialist to intuitively observe the results of the therapy in an intuitive color space. The prospect of work is the development of a complete automated system for the comprehensive diagnosis of ATD and its clinical trials. Such a system will allow to form a preliminary diagnosis and determine the severity of the disease based on the evaluation of color channels of images of affected skin areas and additional diagnostic data.

References