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Abstract - The overview of results in area of the experiments 
theory with linear automata is given. This theory is a 
fundamental base to devise methods of discrete systems 
technical diagnosis. 
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I. INTRODUCTION 
he mathematical model of processes and devices, 
named the finite–state machines (automaton), is a very 
simple one, however, its model is very convenient and 

being widely used in informatics and engineering. The the-
ory of the finite–state machines is a fundamental unit of the 
modern informatics, but the theory of experiments with 
automata has a direct connection to the reliability problem 
of discrete devices. 

An automaton is considered as a system with unknown 
internal structure but we are able to observe “external” be-
havior of automaton (response of automaton on input se-
quence). 

Some results of research in theory of experiments with 
finite-state machines up to 1960s were sum up by A. Gill in 
[1]. 

According to A. Gill, experiment is a process of applying 
input sequences to automaton, observation of resultant out-
put sequences and conclusions, based on those observations. 

One of the central questions in the theory of experiments 
is how to find an input sequence for experiment process. It 
is shown in [1] that for the most general model (Mealy 
automaton) the construction methods of above mentioned 
input sequences are very labor-consuming. 

One of possible ways to reduce the complexity is the way 
of research of particular automaton class. In our article the 
results for linear automata (LA) are represented. The spe-
cific character of LA simplifies the method of experiment 
construction and significantly decreases the experiment 
length. 

It is important to notice that LA is an adequate model of 
many processes and devices in real life, e.g., devices for 
encoding and decoding of information process, signature 
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analysis process, multiplication and division of binary poly-
nomials can be defined by LA models. 

Author of this article was involved in research of experi-
ment automata theory for a long time. Some of our results 
we shortly introduce here but others were published in [3]. 

II. BASIC DEFINITIONS 
Let’s begin with the description of LA model [2]. LA is a 

system with finite number l and m of input and output poles, 
respectively. Input signals apply to all inputs in discrete 
time moments simultaneously. It is assumed that input sig-
nals are values from the field }1,...,1,0{)( −= ppGF , 
where p is a prime number. 

LA state is an ordered set of the element delay states, 
which are part of LA structure. Let the number of such de-
lays is n. The number n is called LA dimension and state set 
of LA is designated as nS . 

Let’s introduce the following notations: 
′= )](),...,([)( 1 tututu l , ′= )](),...,([)( 1 tytyty m , 

′= )](),...,([)( 1 tststs n . 

Here )(tu , )(ty , )(ts  are input, output and vector–
state respectively and t is a discrete time moment. 

The functioning of LA is given by a system of equations 
of state and output respectively: 

)()()1( tuBtsAts +=+ ,     (1) 
)()()( tuDtsCty += ,              (2) 

where nnjiaA ×= ][ , , lnjibB ×= ][ , , nmjicC ×= ][ , , 

lmjidD ×= ][ ,  are called characteristic matrices. Every 

matrix consists of the elements of )( pGF . 
Using the mathematical induction method, we can prove 

that the final state and output response on input sequence 
)(),...,1(),0( kuuu , of the length k–1, can be calculated 

by the following formulas, where )0(s  is an initial LA    
state: 

+++=+ −+ )1()0()0()1( 11 uBAuBAsAks kkk  
)()1(... kuBkuAB +−++ ,            (3) 

+++= −− )1()0()0()( 21 uBCAuBCAsCAky kkk . 
)()1(... kuDkuCB +−++ .                (4) 

 

T 
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Now we shall define various types of experiments which 
will be used in our research. To keep it more compact, we 
shall make it with regard to the general model of Mealy 
automaton. 

Mealy automaton is a set of five objects  
),,,,( λδYXSA = , 

where S, X, Y are finite sets of the states, input and output 
alphabets respectively, but SXS →×:δ  and 

YXS →×:λ  are the maps. These maps are called tran-
sition and output functions. Let S is set },...,{ 1 nxxS =  

and X is set },...,{ 1 lxxX = . 

Definition 1. The input sequence 
aiii xxxp ,...,,

21
=  is 

called a synchronizing sequence (SS) if 
),(),(, 2121 pspsSss jjjj δδ =∈∀ . 

Definition 2. The input sequence 
aiii xxxp ,...,,

21
=  is 

called a homing sequence (HS) if Sss jj ∈∀ 21 ,  

),(),(),(),( 2121 pspspsps jjjj δδλλ =→= . 
It is obvious that SS is a singular HS, as applied SS leads 

LA to the known final state, however there is no need to 
observe automaton response.      

 Definition 3. The input sequence 
aiii xxxp ,...,,

21
=  is 

called a diagnostic sequence (DS) if   Sss jj ∈∀ 21 ,  

2121 ),(),( jjjj sspsps =→= λλ . 
It is clear that every DS is HS, at the same time, but the 

contrary statement is false. 

III. CONDITIONS OF SS, HS AND DS EXISTENCE FOR LA 
Let’s note that conditions of existence of SS, HS and DS 

were defined in [1] but it has been made in terms of a com-
plex construction of a successor-tree and therefore condi-
tions verification is a very labor-consuming process. 

The results given below will show that these conditions 
for LA can be easily verified. 

Note that all statements listed in the article are given 
without proof. These proofs are done in the articles [4-10] 
and monograph [3] mentioned in References. 

Theorem 1. A necessary and sufficient condition that LA 
A has SS of length k is ]0[=kA . 

Here [0] is a null-matrix. 
Theorem 2.If there is a certain SS of  length  t for LA 

then every input sequence of the same length or more is also 
SS for this LA. 

Theorem 3. A length of minimal SS for LA of dimension 
n is not more than n.  

This theorem provides a simple rule for SS existence veri-
fication: we need to exponentiation the matrix A k-times 
(k=2,3,…) until ]0[=kA . If nk ≤  then SS exits, other-
wise the process is stopped, SS does not exist for this LA. 

Theorem 4. HS of the length k+1 for LA A~  exists if and 

only if ]0[])0[( 1

0
=∨≠∈∀ +

=
∨ kd

k

d
n AsCASs . 

Here ∨
=

k

d 0
 is a conjunction of )1( +k expressions after 

this sign. 
Theorem 5. If LA A~  with a nonsingular characteristic 

matrix C has at least one HS of length )1( +k  then all se-
quences of the same length and more are HSs for this LA. 

It means that HS construction problem comes to a prob-
lem how to find a natural number k that HS of the length k 
for given LA exists. Note that the same problem for Mealy 
automaton is not trivial and required labor-consuming solu-
tion methods. 

Theorem 6. A length of minimal HS for LA of dimension 
n is not more than n.  

Now we shall consider DS. 
Theorem 7. DS of the length t for LA A~  of the dimen-

sion n exists if and only if the rank of matrix  
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is equal to n. 
Theorem 8. If LA has at least one DS of length k then 

any input sequence of length k and more will be also DS for 
this LA. 

It was proved in [1] that in the general case the minimal-
ity of Mealy automaton is a necessary but not sufficient 
condition of DH existence for these automata. The follow-
ing statement is true for LA. 

Theorem 9. If LA is minimal automata then DS for this 
LA exists. 

Corollary. A length of minimal DS for LA of the dimen-
sion n is not more than n. 

Finding DH for given LA is called a diagnostic problem. 
It is known [1] that the ability to solve such problem de-
pends on set of admissible initial states and used methods. It 
was shown in [1] that the most powerful method to solve 
the diagnostic problem is multiple experiments. Simple un-
conditional experiments are less helpful in this situation. 
The following statement shows that above mention is not 
true for LA.  

Theorem 10. The diagnostic problem is always solvable 
by a simple unconditional diagnostic experiment for any 
minimal LA and for any set of admissible initial states. 

IV. EXPERIMENTS WITH THE NON-STATIONARY LA 
Now we shall consider so-called non-stationary LA (NLA) 

that is described by system of equations 
)()()()()1( tutBtstAts +=+ , 
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)()()()()( tutDtstCty += . 
The matrix dimensions in these equations are the same as 

in (1) and (2). 
It is proved by analogy with LA that the final state and 

the output response of NLA after application of input se-
quence )(...,),1(),0( tuuu  can be calculated by the fol-
lowing formulas: 

+−=+ )0()0()...1()()1( sAtAtAts  

∑
−

=

++−+
1

0

)()()()()(1()...1()(
t

i
tutBiuiBiAtAtA , 

+−= )0()0()...1()()( sAtAtCty  

∑
−

=

++−+
1

0
)()()()()1()...1()(

t

i
tutDiuiBiAtAtC . 

Here )0(s  is the initial state of NLA. 
The validity of below listed statements is proved in [3].  
Theorem 11. The input sequence )(...,),1(),0( tuuu  

is SS for NLA A~  if and only if  
)~()0(),0( 21 AInitss ∈∀    

]0[)]0()0([)0()...1()( 21 =−− ssAtAtA . 

Here )~(AInit  is admissible initial state set of NLA A~ . 

Corollary 1. If nSAInit =)~(  then a necessary and suf-

ficient condition of existence of SS of length )1( +t  for 

NLA A~  is the following one: 
]0[)0()...1()( =− AtAtA . 

Corollary 2. If nSAInit =)~(  and there is a certain SS 
of length t for NLA then every input sequence of the length t 
or more is also a SS for this NLA. 

It is easy to see that in the general case the length of SS 
has no upper bound. 

Let’s consider NLA with the following characteristic ma-
trices: 

EiA =)(  for ,0)(,1,...,1,0 =−= tAti  
where E is init matrix. It is clear from Theorem 11 that such 
NLA has SS of length (t+1) but every input sequence of the 
length less than (t+1) is not SS. As far as t is an arbitrary 
parameter therefore above mentioned statement is true. 

Now we shall consider the special class of NLA, so-called 
periodical NLA. Every such automaton has periodical char-
acteristic matrices. In other words, there is integer positive 
number λ  that )()( tAtA =+ λ , )()( tBtB =+ λ , 

)()( tCtC =+ λ , )()( tDtD =+ λ . 

Now we construct a stationary automata stA~  (based on 

NLA A~ ) with the following transition function: 
)(ˆ)1( tsAts ⋅=+ , 

where )0(...)2()1(ˆ AAAA −−= λλ . 

Theorem 12. There is SS for periodical NLA A~  if and 
only if there is SS for the stationary automata stA~ . 

Theorem 13. If λ  is a period of characteristic matrix 

)(tA  of NLA A~  then the length of minimal SS is not more 
than nλ , where n is NLA dimension.  

Theorem 14. The input sequence )(...,),1(),0( tuuu  

is HS for periodical NLA A~  if and only if  
)~()0(),0( 21 AInitss ∈∀    ],0[ tk ∈∃  

∨≠−− ])0[)]0()0()[0()...1()(( 21 ssAkAkC  

])0[)]0()0()[0()...1()(( 21 =−−∨ ssAtAtA  
Corollary. If there is a certain HS of length t for periodi-

cal NLA then every input sequence of the same length or 
more is also HS for this NLA. 

By analogy with the stationary LA we introduce so-called 
diagnostical matrix of NLA: 
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Theorem 15. The input sequence )(...,),1(),0( tuuu  
is DS for periodical NLA if and only if 

,nKrank t =  
where n is NLA dimension. 

Corollary. If there is a certain DS of the length t for the 
periodical NLA then every input sequence of the same 
length or more is also DS for this NLA. 

V. LA TESTING 
Faults can occur during exploitation of digital devices 

(DD) therefore its checks should be carried out. One of 
ways for fault detection is applying a special input sequence 
(test) to device. A response of DD on test must differ sub-
ject to a technical state of DD (good or faulty). Conse-
quently, the fault detection process is an experiment with 
DD.  

It is clear that experimenter must know the initial state of 
this DD before application of DD test. The identification of 
initial state in some cases may be carried out by SS, HS and 
DS that was described in 3rd section. The test construction 
methods that were known earlier contained hard restrictions 
with regard to DD structure and information about the ini-
tial state of DD.  

The methods of the test construction suggested below 
don’t demand to comply with mentioned restrictions and 
less labor-consuming.  

Now we shall define a problem which is investigated in 
this section. 

LA and its fault admissible modification are given. It is 
required to construct the input sequence (test) which will 
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detect above mentioned fault. In other words, the response 
of good and faulty LA on test must be different regardless of 
initial states. 

Let’s remind some definitions we’ll use further. 
We say that LA A~ has a finite memory of depth µ  if for 

any time moment t takes place the following equality: 
))(),...,1(),(),...,1(),(()( µµ −−−−= tytytututufty

It means that we can predict LA reaction in any time mo-
ment t if we know an input sequence and response of LA in 
previous µ  time moments. 

It is known [2] from LA theory that every LA has a finite 
memory of depth µ  where n≤µ  (n is LA dimension). 

We say that LA is µ -definite one if LA response in dis-
crete moment t depends only on previous µ  inputs: 

))(),...,1(),(()( µ−−= tututufty  
Now pass on to description of test construction method. 

Let 1A , 1B , 1C , 1D  be the characteristic matrices of 

faulty LA  1
~A . 

Let’s consider a case when good LA and a faulty one are 
both µ -definite ones but values of parameters µ  are dif-

ferent. Let ),max( 21 µµµ =  where )( 21 µµ  is a depth 

of memory for LA )~(~
1AA . It is proved in [2] that a neces-

sary and sufficient conditions for µ -definiteness of LA is 

the equality ]0[=µCA  This implies that ]0[=kCA  and 

]0[11 =kAC  for any µ≥k . Take into account these 
equalities and (4), then the reaction on input sequences 

)(...,),1(),0( µuuu  both LAs, regardless of their initial 
states, should be  

+++= −− ...)1()0()( 21 uBCAuBCAy µµµ  
)()1( µµ uDuCB +−+ , 

+= − )0()( 1
1

111 uBACy µµ  
)(...)1( 11

2
11 µµ uDuBAC +++ − . 

Subtracting one form another, we get 
...)0(][)()( 1

1
11

1
1 +−=− −− uBACBCAyy µµµµ  

)(][ 1 µuDD −+ .  (5) 
It is clear that the given fault is detected by input se-

quence )(...,),1(),0( µuuu  (test) if 

]0[)()( 1 ≠− µµ yy . 
The relation (5) we shall interpret as a system of linear 

algebraic equations (SLAE) of unknown variables 
)](),...,(),...,0(),...,0([ 11 µµ ll uuuuu = . (6) 

Let Q is the matrix of system (5), then (5) may be written 
in the following form: 

yQu = ,   (7) 
where y is a m-dimensional nonzero vector. 

Let T is the set of all tests for detection of given fault. In 
order to find the set T we need to vary the right side of (7) 
and find solutions of corresponding system. 

It is clear that the number of different nonzero vectors y 
is ( )mp 1+µ . Even for small values µ  and m this value is 
very big. Therefore we shall consider more effective 
method.  

We shall consider a homogeneous system instead of (7)  
]0[=Qu .   (8) 

Let 0U  is a set of solutions for this system. If U is a set 

of all vectors of type (6) then obviously a set 0\UU is a 
set T, so we reduce finding solutions to one homogeneous 
system (8).  

Now we pass on to test construction for lock-in LA. We 
say that LA is a lock-in one if there is an SS for this LA.  

Theorem 16.  Any lock-in LA is a −µ definite LA at the 
same time. 

It is clear that application of above presented test con-
struction method for the lock-in LA can be based on this 
theorem. 

Now we shall describe test construction method for arbi-
trary LA but not for lock-in ones only. This method is based 
on the fact that any LA has a finite memory.  

Let good (faulty) LA has the depth memory )( 21 µµ  and 

),max( 21 µµµ = . It is known from [2] that the output 

functions LA A~  and faulty LA 1
~A  always can be presented 

in the following form: 
+−++−+= )(...)1()()( 10 µµ tuVtuVtuVty  

)(...)1(1 µµ −++−+ tyWtyW , 

+−++−+= )(...)1()()( 11
1

1
01 µµ tuVtuVtuVty  

)(...)1( 11
1 µµ −++−+ tyWtyW , (9) 

where )( 1
ii VV , )( 1

ii WW  are matrices of corresponding 
dimension. 

It is clear that if )(),1(),( tututu −−− µµ  is test of 

the minimal length then )()( 1 jtyjty −=−  for 

µ,...,1=j , but )()( 1 tyty ≠ . 
Subtracting one form from another in (9), we get 

++−=− ...)(][)()( 1
001 tuVVtyty  

+−−+−−+ )1(][)(][ 1
11

1 tyWWtuVV µµµ  

)(][... 1 µµ µ −−++ tyWW .  (10) 
Equating (10) to some nonzero vector, we get SLAE of 

unknown variables, which are the coordinate of vector 
′−−= )](),...,(),...,(),...,([ 11 tutututuu ll µµ . 

Let Q is the matrix of obtained SLAE then this SLAE can 
be written as 

yQu = .   (11) 
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Note that the finding solutions of system (11) is pretty the 
same as for system (7). 

Thus, the construction of all test sets for arbitrary LAs, 
both µ  - definite and lock-in ones, can be reduced to a 
solution of one homogeneous system of equations. 

VI. CONCLUSION 
The above represented results show that the specific of 

LAs significantly simplify the construction of experiment 
theory for them. Thus, this specific makes it possible to 
decrease the upper bound of length for arbitrary types of 
experiments in comparison to corresponding assessment 
that is known for Mealy automaton. In addition, mentioned 
specific allows to reduce the problem of the experiment 
construction (in the general case this problem is very com-
plex and labor-consuming) to more simple existence prob-
lem for such experiments. The last problem is solved by 
simple calculation of multiplying matrices, matrix exponen-
tiation or matrix ranks. In other words, the conditions of 
existences of experiments can be easily verified.  

It should be noted that after experiment’s finished the 
identification of state can be carried out by solution of 
SLAE. There are well known and good developed mathe-
matical methods for that. 

Moreover, it is significant that above described methods 
provide test construction of length 1+µ , where µ  is the 
depth of LA memory. Since, as it’s well known [2], n≤µ , 
where n is LA dimension, the methods shown in this article 
can provide very short test.  
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