
 
 

  
Abstract — One class of nonstationary vector random 

processes is investigated in the article. On the basis of triangle 
models of quasiunitary operators the structure of 
corresponding correlation matrix was investigated, 
representations for special matrix were got, by which the 
correlation matrix is retrieved after solving the Darboux-
Goursat problem. 
 

Index Terms— correlation matrix of nonunitarity; triangle 
model of Cayley transform; evolutionary interpretable vector 
curve in Hilbert space 

I. INTRODUCTION 
ET us consider a vector non-stationary random process 
(VNRP) of the type )),t(),,t(()t( 21 ωξωξ=ξ ( Ω∈ω  

(probabilistic space) and ),0[t ∞∈ ) with 0),t(M j =ωξ  and 

continuous correlation matrix (CM) 
),s(),t(M)s,t(K ωξωξ= βααβ . VNRP after embedding into 

the Hilbert space )t(cVH kjj,k

,n1j
k,j

ξ=

=

 will result in vector 

curve in H  of the type ))t(x),t(x()t(x 21= , at the same 
time the elements of CM can be calculated as corresponding 
scalar products in H : )s(x),t(x)s,t(K βααβ =  [1-3]. 

In the following with purpose of simplification we will 
suppose, that H)t(cVH kjj,k

k
j =ξ=  ( 2,1j = ).  

The case of uncorrelated )t(1ξ  and )t(2ξ  is of little 
interest, as in this case 21 HHH ⊕= , and 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=αβ )s,t(K0

0)s,t(K
)s,t(K

22

11 , and practically reduce 

to scalar variant [3]. 
If additional conditions for correlation matrix [4], are 

fulfilled, the curve )t(x  is the following 

)xe,xe()t(x 02
tT

01
tT 21= , where kT  ( 2,1k = ) are linear 
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bounded operator in H .   
The case when jT  have the form of jiA , and 

∞<− βα H)AA(dim *  is considered in [4]. 

If iATT 21 == , where A  is the selfadjoint operator, 
then we will have stationary vector curve [5, 6]. 

In this article the jT  is investigated, which slightly 
deviates from unitary ones in the meaning that  

∞<− H)TTI(dim i*j , ( 2,1j,i = ) [7, 8]. 

In case when UTT 21 == , where  U  is a unitary 
operator, the rank of nonstationarity corresponding to the 
vector evolutionary interpretable curve )xe,xe( 02tT01tT  is 
equal to infinity. 

Purpose of this work is setting numerical and functional 
characteristics allowing to describe deviations of vector 
random process from the process, which is represented in 
corresponding Hilbert space as )xe,xe( 02tU01tU , where U  
is a unitary operator. 

Definition. The vector curve )xe,xe( 02tU01tU  will be 
designated as unitary. 

It is easy to get a spectral representation of such curve 
and corresponding correlation matrix using spectral 

decomposition of unitary operator ∫
π

λλ=
2

0
dEU  ( λE  is a 

resolution of identity): 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
ληλη= ∫∫

π
λ

π
λ

2

0
2i

2

0
1i )(d)teexp(,)(d)teexp()t(x ,  

where j0j xE∆)(∆ λ=λη  are processes with uncorrelated 
increments, and the corresponding correlation matrix is the 
following  

=λ+= ∫
π

αβ
λ−λ

αβ
2

0

ii )(dF)seteexp()s,t(K  

),st,st(K)(dF))sin)stsin((i

)sin)st(cos((e
2

0

cos)st(

+−=λλ−+

+λ−=

αβαβ

π
λ+∫  

where  
)(∆)(∆M)(∆),(∆)(F∆

H
ληλη=ληλη=λ βαβααβ . 
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II. STATEMENT OF PROBLEM 
It is evident that infinitesimal correlation matrix with 

components )s,t(K)st( αβ∂+∂  does not describe the 
structure of deviation of vector curve from unitary curve. 
Other characteristic should be introduced, which in case of 
unitary evolutionary interpretable vector curve will be 
identically equal to 0. Such characteristic can be matrix-
function )s,t(N̂  with elements of the following type: 

)s,t(K
st

)s,t(K
)s,t(N

2
αβ

αβ
αβ −

∂∂
∂

= ,    (1) 

which we will designate as a correlation matrix of 
nonunitarity. 

It is clear that for unitary curve 0)s,t(N ≡αβ . 

The recovery of correlation matrix )s,t(Kαβ  demands 
solution of equation in partial derivatives of telegraphic 
type:  

)s,t(N)s,t(K
st

)s,t(K2
αβαβ

αβ =−
∂∂

∂
, 

by additional conditions: )t(F)0,t(K αβαβ = ,  

)s(G)s,0(K αβαβ = ,  )t(G)t(F βααβ = ,  i.e. it comes to the 
Darboux-Goursat problem. 

One of the most important problems of correlation theory 
of random processes is getting spectral representations for 
processes and corresponding correlation matrixes. Using of 
(1) and triangle models of quasiunitary operators [7, 8] 
allows to get model representations for )s,t(Nαβ , and 
accordingly for CM as solution of corresponding Darboux-
Goursat problem for equations in partial derivatives of 
hyperbolic type. This work is intended for getting such 
representations. 

 

III. SOLUTION OF PROBLEM.  
For evolutionary representable vector curve in ξH  it is 

easy to get the following expressions for  )s,t(Nαβ : 

H
* )s(x),t(x)TTI()s,t(N βαβααβ −= .   (2) 

Theorem 1. In order that vector evolutionary 
interpretable curve )xe,xe()t(x 022tT011tT=  ( ∞<kT ) 
will be a unitary one, it is necessary and enough that 

0)s,t(N ≡αβ . 
Proof. Necessity is evident, for adequacy it should be 

taken in consideration that from (1) follows    

0)s(xb,)t(xa)TTI(
H

2n

1l
ll

1n

1j
jj* ≡− ∑∑

=
β

=
αβα . 

Turning to closure we will have  
0h,h)TTI( 21* =− βα  

for each Hh,h 21 ∈ , i.e. 0TTI * =− βα . 

From this follows that jT  are unitary operators 
(supposed that β=α ). 

By β≠α  ( 2,1 =β=α ) 0TTI 2*1 =− , but as 1
1

*1 TT −= , 

it follows from this that 21 TT = . 
Definition. Maximal rank of quadratic forms  

...),2,1m(z,z)s,t(N̂
m

1j,k
jk =∑

=

rr
 

is determined as nonunitary index, where 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
= )2(

k

)1(
kk

z
z

z
r

,  

)j(
kz   are arbitrary complex numbers. 
The following theorem is the criterion of non-unitary 

index finiteness. 
Theorem 2. In order that non-unitary index of 

evolutionary interpretable vector random process will be a 
finite one, it is necessary and enough that 

∞<− H)TTI(dim i*j . 
Proof of evidence is similar to the proof of theorem 3 of 

the work [4] and therefore it is left out. 
In the following we will be confined by investigation of 

non-unitary vector curves of the type 
)xe,xe()t(x 02tT01tT= ,  ∞<T , ITT* ≠ .   (3) 

which we will define as a primary nonunitary vector 
random processes. 

For evolutionary interpretable non-unitary vector process 
it is easy to get the coincidence criterion of 1T  and 2T  (3). 

In fact, we will suppose that 1*
2T −  exists. Let us consider 

a random scalar process 021*
2

*2 x)tTexp()t(x −−= . 

We will find a cross-correlation function )t(x1  and 

)t(x*2 : 02
1*

2sT
011tT*12 xe,xe)s,t(K

−
= . Now we will 

calculate )s,t(K
st

)s,t(K)s,t(N *12
*122

*12 −
∂∂

∂
= . From the 

definition )s,t(K*12  it follows that  

)s(x),t(x)ITT()s,t(N *2111
2

*12 −= − . 

It is evident the following: if 12 TT = , then  

0)s,t(N*12 ≡ . 

On the other hand if 0)s,t(N*12 ≡ , then by reasoning in 
similar way like by  proof of theorem 1 we will have 

0ITT 11
2 =−− , so 21 TT = . In such way we will have the 

following criterion. 
Theorem 3. In order that vector non-stationary 

evolutionary interpretable random process 
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)xe,xe( 022tT011tT  will be a primary one, it is necessary and 

enough that 0)s,t(N*12 ≡ . 

We will establish bond between )s,t(K*12  and   

)s()t(M)s(x),t(x)s,t(K 21H2112 ξξ== . 

We should note that 02
1*

2tT*2 xe)t(x
−

=  is a solution of 
Cauchy problem: 

⎪
⎩

⎪
⎨

⎧

=

= −

.x)0(x

),t(xT
dt

)t(dx

02*2

*21*
2

*2
         (4) 

In the following with purpose of simplification we will 
suppose, that 

gg,TTI 2*2 ⋅=− ,         (5) 

i. е. in 2T  is a one-dimensional value of non-unitary 
component (it is not difficult to integrate in case of 

ρ=− H)TTI(dim 2*2  ( ∞<ρ≤2 )). 

After changing in (4) 1*
2T −  to 2T  from (5) 

( gTg,gg,TT 1*
21121*

2
−− =⋅+= ), we will have the 

following: 

1
1

2tT
02

*22
*2 gge,xxT

dt
dx −

+= .     (6) 

We will define ge)t(
1

2tT
g

−
=Λ  – gΛ  as a curve  for 

operator 1
2T−  with one-dimensional non-unitary 

component; )t(gΛ  will be recovered by spectrum with 
precision to unitary equivalence  [11]. 

Solution of equation (6) is the following  

∫ −ΛΛ+=
t

0
1gg022*2 du)ut()u(,x)t(x)t(x , 

where 12tT
1g ge)t( =Λ . 

We will note that 1gΛ  curve can also be recovered only 
by spectrum with precision to unitary equivalence. 

Then for )s,t(K*12  we will get the representation: 

.du)us(,xe)u(,x

)s,t(K)s,t(K
s

0
1g01tTg02

12*12

∫ −ΛΛ+

+=

   (7) 

If  0g = , i. е. 1
2

*2 TT −= , then )s,t(K)s,t(K 12*12 = . 

The representation (7) for )s,t(K*12  can be considered as 
a “canonical” one, as by transfer to unitary equivalent 
elements the scalar products will not be changed. 

Notice. If we will consider the deviation of vector 
random process from the stationary one, i.e. by 
consideration of the process of the type 

)xe,xe( 022itA011itA , then for )xe,xe( 02itA01itA , where 
*AA ≠ , it is necessary and enough that  

0)s,t(W*12 ≡ , 

where 02
*
2isA

011itA*12 xe,xe)st()s,t(W ∂+∂−= . 

Now let us consider linear continuous systems, 
associated with unitary operator unit [3, 8–10], containing a 
non-unitary operator T  of the type 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=
Ψ+=

Φ+=

αα

ααα

αα
α

,x)0(x
),t(xKuv

,u)t(Tx
dt

)t(dx

0

      (8) 

where Hx ∈α , Eu ∈α , Fv ∈α , and linear mappings 
]H,H[T ∈ , ]H,E[∈Φ , ]F,E[K ∈ , ]F,H[∈Ψ  satisfy 

relations of unitary operator unit [9], which represents 

condition of operator matrix unitary ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ψ

Φ
=

K
T

D  (taking 

into consideration indefinite metric in external spaces E  

and F ), IDD =+ : ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Ψ

Φ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Φ
Ψ

++

+

I0
0I

K
T

K
T*

: 

ITT* =ΨΨ+ + , 
0KT* =Ψ+Φ + , 
0KT =Ψ+Φ ++ , 
IKK =+ΦΦ ++ . 

(the remaining 4 ratios resulting from the condition  
IDD =+  are not used in the following and not stated). 

We should note that in case when 1T−  exists, the spaces 
F  and E  can be chosen as coincident, and mapping Φ  and 
Ψ  as independent [10]. 

Theorem 4. The matrix-function )s,t(Nαβ  (1) is 
expressed by correlation matrixes of input and output 
signals in the following way: 

FE ]v,v[]u,u[)s,t(N βαβααβ −= , 
where the indefinite scalar product in spaces E  and F  
correspondingly is stated in square brackets. 

The proof follows from the next chain of ratios based on 
equations of associated opened system (8): 

=ΦΦ+Φ+

+Φ+−=

=−Φ+Φ+=

=−=

=−
∂∂

∂
=

βα
+

β
+

α

βα
+

βα

βαββαα

βα
βα

αβ
αβ

αβ

]u,u[)]s(Tx,u[

]u),t(Tx[)s(x),t(x)ITT(

)s(x),t(xu)s(Tx,u)t(Tx

)s(x),t(x
ds

)s(dx
,

dt
)t(dx

)s,t(K
st

)s,t(K
)s,t(N

*

2
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.]v,v[]u,u[]u,u[]Ku,Ku[

]v,Ku[]Ku,v[]Kuv,Kuv[

]Ku,Ku[]u,u[]Kuv,Ku[

]Ku,Kuv[)]s(x),t(x[

]Ku,Ku[]u,u[)]s(x,Ku[

]Ku),t(x[)s(x),t(x

FEEF

FFF

FEF

F

βαβαβαβα

βαβαββαα

βαβαβαα

βααβα

βαβαβα

βαβα
+

−=++

+−−−−−=

=−+−−

−−−ΨΨ−=

=−+Ψ−

−Ψ−ΨΨ−=

 As a result we have the following ratio: 
FE ]v,v[]u,u[)s,t(N βαβααβ −= . 

In the following, the most interesting for applications is 
the case when ∞<Edim , ∞<Fdim . In this case 

[ ] =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

= βαβα v,v
I0
0I

)s(v),t(v
s

r   

)s,t(K)s,t(K vv −
αβ

+
αβ −= ,  Fdimsr =+ ; 

[ ] =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

== βαβαβα u,u
I0
0I

u,uJ)s(u),t(u
q

p
E

)s,t(K)s,t(K uu −
αβ

+
αβ −= ,  Edimqp =+ .  

Therefore )s,t(Nαβ  is equal to difference of 
corresponding correlation matrixes of input and output 
signals. 

Now we will consider T  – a quasiunitary operator with 

one-dimensional deficient subspace 1H)TTI(dim * =− , 

i. е. gg,)TTI( * ⋅=− , where g  is a channel element T  
[8, 9]. 

Then for primary non-unitary vector evolutionary 
interpretable random process )s,t(Nαβ  can be presented as 

)s()t()s,t(N βααβ ψψ= ,     (9) 

where ge,xg,xe)t( *tT00tT
ααα ==ψ . 

For investigation the structure )t(αψ  we can use triangle 
models of quasiunitary operators [7, 8, 12]. 

Going to (9) to unitary equivalent elements we will have 
the following 

Ĥ
*0 ĝ)T̂texp(,x̂)t( αα =ψ ,     (10) 

where αα = 00 Uxx̂ , 1** UUTT̂ −= , Ugĝ = , and 

]Ĥ,H[U ∈  is a unitary operator. 
Taking into consideration that by some additional 

conditions the operator T  is unitary equivalent to its 
triangle model [12], in the representation (10) a  triangle 
model can be taken as *T̂ , it allows to get model 
representations for )t(αψ , and correspondingly  for 

)s,t(Nαβ  for different cases of spectrum. 
So in case when the operator T  has only a discrete 

spectrum }{ kµ , located inside the unit circle of plane of 

complex numbers (constriction), the model space Ĥ  is 
coincides with )( 2

k
2 βl , and  )t(αψ  has representation 

∑
∞

=
αα Λ=ψ

1k
k0 )t()k(x)t( , where functions )t(kΛ  are 

reestablished only by spectrum { }1, kk <µµ , 

(
k

k
k 1

1
λ−
λ−

=µ , where )(
2

i 2
k

2
k

kk ∞<β
β

+α=λ ∑  is a 

discrete spectrum of dissipative operator Â  in Cayley 
transform 1)iIÂ)(iIA(T −+−= ) of discrete triangle model 

of the operator T̂ : 

( )∫
γ

−λ λλ−
π

−
==Λ dg)IT̂(e

i2
1)g)T̂t(exp()t( k

1*tk*k ,  (11) 

where γ  includes all the spectrum of the operator T̂ . 
Using the discrete part of the triangle model of the 

operator T̂  and supposing with purpose of simplification 
that jk µ≠µ , jk ≠ , calculating the resolvent value on 
channel element, it is easy to get the following 
representations for )t(kΛ :   

∫ ∏
γ

−

=

λ
λ

λ

λ
⋅

λ−λ

λλ−

λ−λ
λ−

π
−

=Λ d
1e1

i2
1)t(

j

j1k

1j j

j

k

t2
kk . 

For continuous spectrum the model space Ĥ  coincides 
with ))x((L2

]l,0[ σ  and for )t(αψ  we can get the following 

representation ∫ Λ=ψ αα
l

0
0 du)t,u()u(x)t( , where )t,u(Λ  is 

the following 

∫
γ

−λ λλ−
π

−
=Λ d)u(f)IT̂(e

i2
1)t,u( 1*t ,   (12) 

where  1)iIÂ)(iIÂ(T̂ −+−=  is a Cayley transform of the 

operator Â  ( ∫+α=
l

x
dt)t(fi)x(f)x(fÂ ). 

The representations (11), (12) we will designate as 
canonical ones. By different representations relatively )x(α  

( 0)x( =α , 1)x( α=α , x)x( =α , 
⎩
⎨
⎧

<≤α
<≤α

=α
lxx,
,xx0,

)x(
12

11  

etc.) we can get explicit expressions for )t,u(Λ  by the way 
of special functions. 
 

IV. CONCLUSION 
By means of triangle models of quasiunitary operators 

the representations for non-unitary matrix were got, which 
is determined by the spectrum of quasiunitary operator 
only, located inside the circuit of unit radius in plane of 
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complex numbers and infinite-fold spectrum located on unit 
circumference. 

Scientific novelty. A new class of non-stationary random 
processes was introduced, which is described by means of 
new characteristics of nonstationarity – correlation matrix 
of nonunitarity )s,t(Nαβ . The “conservation law” for 

matrix )s,t(Nαβ  was obtained too, which connects this 
matrix with correlation matrixes of input and output random 
signals of the corresponding associated opened system. 

Perspectives of investigation. The method proposed in 
the article can be used for obtaining spectral 
decompositions of non-stationary vector curves, and for 
modeling of correlation functions of non-stationary vector 
random signals. Model representations for )s,t(Nαβ  in 

case of rH)TTI(dim * =−  ( ∞<≤ r2 ) can be got using 
universal models of constrictions. 

Practical significance of the work consists in the fact 
that the approach proposed in the article allows to construct 
models of nonstationary vector random signals on the 
spectrum only, using triangle and universal models of 
quasiunitary operators.  
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