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Abstract. The Assertions Based Verification 
(ABV) has gained worldwide acceptance as verifi-
cation methodology of electronic systems designs. 
Assertions provide basic blocks for building func-
tional verification concept. Due the declarative 
form of the temporal formulas of assertions a lot of 
verification efforts are being cut down, tending to 
better product quality and verification speed. Most 
of implementations are integrated with HDL based 
design environments. The SystemC open initiative 
provides an alternative to HDL based design envi-
ronments by enabling C++ with hardware con-
cepts. SystemC already became a very popular 
environment for modeling at system-level abstrac-
tion. This work enables SystemC designs with 
industry standard assertions notations. The plat-
form was build upon assertions simulator inte-
grated into Riviera™ HDL based verification envi-
ronment. 
Keywords: device simulation, computer aided 
design, verification, assertions, system level mod-
eling. 
1. Introduction 
The Assertions Based Verification (ABV) has 
gained worldwide acceptance as verification meth-
odology of electronic systems designs. There was 
number of papers [1-3] that explain in-depth this 
methodology. The original concept of assertion 
comes from software development where it (in 
particular the assert() macro defined in C language 
[4]) has proved to be a very powerful tool for 
automatic bug and regression detection [5]. Asser-
tions for hardware designs employ Linear Time 
Logic (LTL) to define expected and/or forbidden 
behavior. The foundation for ABV are Hardware 
Verification Languages (HVLs). HVLs combine 
semantics of LTL with constructs for building re-
usable verification IP units. Verification IP units 
need to be bind to some design for effective use. 
Thus HVLs provide constructs to specify connec-
tions with models in Hardware Description Lan-
guages (HDLs). Most of ABV implementations are 
part of HDL–based integrated design environments 
(IDEs). 
The SystemC open initiative [6] provides an alter-
native to HDLs as it enables C++ [7] – the industry 
strength notation for complex systems – with 
hardware concepts of RTL and system-level in 
form of C++ templates library. In its original ap-
proach SystemC models are processed standard 
C++  toolset and executed as standalone applica-

tions. SystemC became a very popular environ-
ment for modeling at system-level abstraction. The 
HDL-based IDEs offer co-simulation capabilities 
with SystemC engine but it still remain external 
unit to the HDL simulator. The idea of applying 
ABV to the SystemC designs is natural step of 
HDL and SystemC environments integration. 
Since HDL design can be co-simulated with Sys-
temC model, there is an easy way to associate veri-
fication unit with SystemC one: the SystemC unit 
needs to be connected to HDL wrapper unit that 
will provide entry point for verification unit bind – 
as shown on fig. 1. This method doesn’t require 
any additional tools assuming availability of HDL 
simulator. 

 
Fig. 1. Connecting verification unit to SystemC unit with 

intermediate HDL wrapper 
 
However there are some serious limitations for this 
kind of connection: 
• Only units interface signals can be accessed this 
way. This highly limits usability of assertions. One 
of the most appreciated features of HVLs is their 
ability for seamless access to any signal within 
HDL design across any kind of interface and/or 
encapsulation constructs. However this rule will 
mostly not work behind co-simulation interface. 
Usually co-simulation connections supports only 
units interfaces signals. 
• Verification formulas cannot refer directly to the 
source object and their native types. SystemC has a 
rich set of data types and it can even be extended 
with additional user types. Some HVLs (in exam-
ple – the PSL) allow to build formulas with use of 
semantics of description language for attached 
target unit. Unfortunately co-simulation interface 
will enforce conversions of all source data types 
into types system of the intermediate HDL. 
• HDL simulator has to be used, even when no 
HDL models are actually used in a design. 
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To overcome above limitations assertions shall be 
compiled into SystemC native units and linked 
directly with related SystemC model elements. 
Such approaches were already attempted – in ex-
ample: Große and Drechsler [8,9] - however they 
relayed on non-standard notations of formulas. 
An approach presented here utilizes industry stan-
dard HVL notations: OVA [10] and PSL [11], 
which are widely used within HDL verification 
environments. This system does not transform the 
design model in anyway. Rather than we provide a 
specialized co-simulation engine and a mecha-
nisms for direct linkage of properties models to the 
design structures at the native SystemC level. In 
this way there is no additional limitations for de-
sign coding – any C++ constructs (especially dy-
namic data structures, classes and templates) can 
be used to build electronic systems models of a 
very high level abstraction. 
The system was derived from already existing as-
sertions entry in Riviera™ HDL oriented simula-
tion-based verification environment [12]. We re-
used industry proven multi-lingual assertions com-
piler and high-performance assertions simulation 
engine. The assertions compiler supports number 
of industry standards notations as OVA, PSL and 
others. 
Thanks to properly designed framework of the 
entry and right architectural decisions while defin-
ing key interfaces between main components of 
Riviera™ system, the task of integration with Sys-
temC environment was reduced to finding equiva-
lents between HDL-based system semantics and 
SystemC semantics and than porting concepts of 
the entry’s building blocks and their realizations 
from HDL to SystemC domain. 
Goal of this paper is to describe construction of 
the Assertions for SystemC platform and to present 
key architectural decisions that lead to re-use 
without problems a proven assertions entry origi-
nally designed for HDL based simulator. The main 
research topics include: 
• how to model assertions checkers for efficient 
co-simulation efficiently with minimal impact on 
related design model processing, 
• how to abstract assertions checkers models from 
related design modeling environment and how to 
encapsulate assertions into units that will match 
native binary formats of that environment, 
• comparison of HDL and SystemC simulation 
engines and SystemC kernel supplement with ex-
tensions required for handling details of assertions 
semantics, 
• how combination of SystemC (C++) semantics 
and properties language semantics opens new ca-
pabilities for electronic systems modeling and veri-
fication. 
 

2. Architecture of assertions entry 
The assertions processing entry in Riviera™ con-
sists of the following main components, grouped 
into the compilation (fig. 2) and simulation parts 
(fig. 3): 
• the compilation front-end including lexical and 
syntax analyzers for the OVA and PSL notations; 
• a common notation-independent modeling layer 
of assertion semantics; 
• a synthesizer of pipelined RTL checkers struc-
tures that perform detection of the assertion for-
mula matching sequences occurrences while the 
design evaluation; 
• a specialized simulation engine for evaluating 
assertions with high-performance interface for the 
direct sampling of the design data. 
Evaluation of assertions is based on RTL struc-
tures synthesized upon formulas expressed in de-
clarative style. In principle the RTL structured 
checkers can be physically implemented in various 
domains. This paper focus on Riviera™ system, 
which uses simulation, oriented software based 
implementation. But there is also Riviera-IPT™ 
system [13] in which assertions checkers are being 
compiled and implemented into FPGA based ac-
celerator. These RTL structures could also be used 
with formal proof engine. 

Fig. 2. Assertions engine architecture: compilation part 
 

Fig. 3. Assertions engine architecture: simulation part 
On fig. 4 a basic idea of the RTL checker synthesis 
is shown. A more in-depth study of the RTL 
checkers structures is beyond scope of this paper, 
one can find more details in [14]. 
 
 

IEEE EWDTW, Odessa, September 15-19, 2005 55



Fig. 4. Basic RTL checker structure 
 
Although the assertions entry contain separate 
compiler it does not provide it’s own binary stor-
age format nor loader and linker toolset. It depends 
on design verification toolset. Compiled assertions 
units shall be binary compatible with the librarian 
system and simulation engine of the targeted veri-
fication environment. To meet this requirement the 
assertion checker logic is packed into standard 
container unit within the verification environment 
(fig. 5).  
The container unit encapsulates assertion checker 
construction details and provide binary format for 
compiled storage form compatible with rest of the 
system. At the model startup phase when design 
components are loaded from library and linked 
together inside simulator, the container unit inter-
face mapping automatically solves problem of 
connecting to design objects data structures that 
were referenced from assertion formula (fig. 6). 

 

@clk 

data 
 

Fig. 5. Packing assertions models into the native con-
tainer unit of the verification environment 

 
 
 

 
 
 
 
HDL simulator 

HDL unit 

@clk 

data 

HVL unit 

 
 
HDL unit 

load & link 

 
Fig. 6. Startup phase of the simulation with assertions 

 

The RTL structure of the checker is 
encoded within container unit in form 
of initial process that contains se-
quence of calls to so-called 
builder-API of the assertion engine. 
The build-script is executed while de-
sign model initialization phase and 
thus the assertions RTL structures are 
created too. The container unit is filled 

also with continuous processes synchronized with 
clock signals as defined in assertion formula. The 
processes provide synchronization service for as-
sertion engine while run-time phase making a call 
to Run() routine from the assertions API at each 
clock tick (fig. 6). 
As the assertions engine API is invoked only from 
within container unit, there is no need for physical 
static dependency between simulator module and 
assertions module. All the calls can be realized 
with means of a standard extensions interfaces like 
PLI interface defined in Verilog-HDL. The asser-
tions engine remains a fully independent and port-
able module. 
The assertions engine has to be fed with stream of 
data from the design model and synchronized with 
related clock signal events. Just at the beginning of 
the system construction the requirement was de-
fined that the interface for data sampling and syn-
chronization needs to provide hi-performance 
throughput but is has to be abstracted enough to 
separate assertions engine implementation from 
HDL simulator. In this way the assertions engine 
actually can be fed from various sources – not only 
from simulator module (HDL – based one or event 
non-HDL) – but in example from simulation data-
base streams: files, waveforms, etc. 
To separate assertions logic from exact types of 
values accessed from design model, the concept of 
abstract data samplers was introduced (fig. 7).  
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Fig. 7. The signals samplers design pattern 
Almost all semantic of assertions formulas is de-
fined over Boolean and linear time domains. The 
underlying HDL typing system is converted into 
Boolean domain just at the references to HDL ob-
jects from assertions formulas. Placing the HDL 

PSL definition: 
 
vunit v 
{ 
  default clock = @rose(clk); 
  property e4 = always {e1; e2}; 
  assert e4; 
} 

Synthesized RTL 
checker structure: 
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data conversion into Boolean at the sampling inter-
face highly reduces the size of the data stream for 
assertions engine. Finally it is possible to provide 
specializations of the samplers for each data type 
(logic bit, vector, vector selection or slice, real, 
etc.) and each kind of design evaluation engine – 
optimized for performance. The samplers are 
linked directly to the references objects representa-
tions at the design simulation engine (fig. 8) – with 
full knowledge of the native data format in the 
simulation engine and no intermediate communi-
cation interfaces nor channels, the samplers offer 
best possible performance. Also the simple sam-
plers concept made a foundation layer for higher 
order samplers like edge samplers, which are im-
plemented over simple samplers. Initially the as-
sertions engine was supplied with data samplers 
family specialized for Riviera™ simulator. 
 

@clk 

data 

 
HDL 
unit 

HVL  
container 

(HDL unit) 

HDL simulation engine Assertions engine

Run() 

Builder-API 

Fig. 8. HDL and assertions engines deployment diagram.  
Samplers are linked directly to the native data source 

objects of design 
Despite of the fact that assertion checker logic 
description is packed into container unit and ini-
tially the design objects references are obtained 
thru standard port-maps connection mechanism, 
the whole RTL structure is created and resides at 
assertions module side and the samplers re-link the 
connections into direct references to the referenced 
objects while initialization phase to eliminate any 
performance loss. 
3. Assertions entry for SystemC 
SystemC design platform can be easily enabled 
with assertions using the previously described ar-
chitecture. Due the flexibility of assertions engine 
and extensibility of SystemC library, only minimal 
extensions are required in both to use assertions at 
system level. 
The front-end of assertions entry remains un-
touched - OVA and PSL sources can still be proc-
essed by the same compiler as for HDL architec-
ture. In this case, to meet the requirement of the 
formats compatibility with the design verification 
toolset, the assertions RTL structures logic should 
be generated in form of SystemC source code.  
Assertions model startup at the SystemC design 
elaboration phase is implemented with already 
discussed builder-API of the assertions engine – 
only recompiled for C linkage binary compatibil-
ity. In the SystemC native container unit the asser-
tions compiler generates the SystemC modules that 

implement container units with build-scripts 
placed in the constructors. These modules encap-
sulate SystemC environment specific implementa-
tion details from the assertions simulation engine 
and provide native high-performance streams of 
input data and synchronization.  
The idea of value and edge samplers, introduced in 
previous section, can also be easily applied to Sys-
temC designs. Assertions engine should have sup-
port for samplers, which can query values from 
various types of SystemC ports and channels while 
preserving common interface requirements for all 
samplers (fig. 9). Such data access could be done 
without difficulties, as the SystemC data structures 
are shared as open source.  
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Fig. 9. SystemC channel specific samplers 
The requirement to the channel samplers is that 
they must implement specific access mechanism 
for stored values. For primitive channels, like 
sc_signal, sc_semaphore, sc_fifo, or for SystemC 
and C++ data types, like sc_logic, sc_int, the im-
plementation of sampling is obvious, as it only 
demands proper mapping between common sam-
pling and channel value access interfaces. 
Complex user-defined channels can also be linked 
to the assertions engine, if they meet the require-
ments of common value/edge sampling interfaces. 
Generally, value of the user-defined channel is not 
bound to integral types, like in HDLs. For complex 
data structures – i.e.: system-level transactors - 
user has to define converters to bool type, to 
clearly state which value should be considered as 
false, and which value change should trigger signal 
edge events. 
Having input data from specific samplers, the as-
sertions engine can be linked to the standalone 
executable SystemC design as an additional dy-
namic linked library (fig. 10). 
 

 
Fig. 10. Simple architecture of assertions for SystemC 
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After the design elaboration phase assertions en-
gine becomes part of the executable SystemC de-
sign model, reacting on all assertions violations 
within the simulation process, which is controlled 
by the master SystemC verification toolset. 
However, because of scheduling differences be-
tween SystemC and HDL engines (fig. 11), a few 
extensions are also required in the core of SystemC 
library: 

Fig. 11. Comparison between System Verilog  
and SystemC scheduling rules 

To avoid errors with sampling values at incorrect 
moment of processing, which are connected with 
unpredictable simulation order of the parallel 
threads, special preponed processes have to be 
introduced within the SystemC simulation engine. 
Implementation of the support for these processes 
is trivial: preponed methods just need to be exe-
cuted at the beginning of the timeslot before start-
ing the first evaluation phase. The intention is to 
sample the values before any signal has changed 
the state within the considered timeslot. Preponed 
processes have the following important properties: 
• preponed processes cannot modify any object 
under control of scheduler, in other words, they 
should not schedule execution of any other proc-
ess; 
• preponed processes have to be only methods; 
there should be no possibility to suspend the exe-
cution by call to wait-construction. 
It is also necessary, that the assertions engine step 
should be activated as postponed process. The 
reference materials for the assertions notations 
explicitly specify to evaluate the asserted property 

expressions only after all other design processes 
had stabilized. This approach prevents the poten-
tial improper evaluation of the assertions in case, 
when the clock domain signals are affected several 
times across the delta-cycles of the single simula-
tion step. 
Postponed processes can be easily enabled within 
the SystemC scheduler by invoking them after the 
stabilization of all regular processes. Similarly to 
the preponed ones, postponed processes cannot 
suspend the execution with the wait-construction. 
Besides, they can affect any signals and trigger 
new events, which will be handled at the next 
timeslot. 
To enable simulation and assertions checking of 
SystemC units among with ordinary HDL modules 
within the single harmonic design, much more 
complex co-simulation environment is required 
(fig. 12). 
In this environment SystemC engine is no longer a 
primary component. Instead, the simulation control 
is transferred to the special co-simulation interface, 
synchronizing cooperation of HDL simulator, Sys-
temC scheduler and other external simulation 
components (f. ex., embedded software debugger, 
analog and mixed-signal AMS simulator). Much 
deeper changes are required within original 
sources of the SystemC library to convert it from 
master simulator into slave one under the control 
of co-simulation environment. 

Fig. 12. Advanced co-simulation environment for check-
ing assertions upon SystemC models 

One more noticeable issue is a model binding. In 
HDL architecture binding modules for assertions 
are generated automatically, as compiler either 
processes HDL modules in the same compilation 
pass (HDL and assertions compilers of Riviera™ 
are integrated together and can exchange data 
while compilation), or has access to the compiled 
library through flow-specific interface. It is than 
possible to check the binding connections during 
assertions compilation. 
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In case, when the SystemC modules are used 
among with HDL units within co-simulation envi-
ronment, binding wrapper can be also generated 
easily, assuming the information about the Sys-
temC unit interface, structure and internal signals 
is already presented in the co-simulation design 
library. Typically, this step is required anyway to 
enable co-simulation of SystemC module within 
HDL-oriented environment. 
Less convenient case is the standalone SystemC 
application. Assertions compiler can still generate 
connections between design model and assertions 
engine, basing on the OVA/PSL binding specifica-
tion, but unfortunately without strict type checking 
at compilation time. Implementation assumes that 
any kind of type mismatch problems will be 
caught automatically while building the SystemC 
application within C++ IDE. This could be im-
proved, but would require an integration with C++ 
compilation system.  
4. Assertions for SystemC: a case study 
Let’s demonstrate the benefits of the assertions 
based approach on a SystemC design, which con-
tains a transaction level model of a dual-port RAM 
block (fig. 13). Such memory blocks are typical for 
many ASIC and FPGA designs. Simulating RAMs 
at such high level of abstraction is sufficient, as 
RTL or gate-level memory block representation 
leads to large performance overheads. Having 
RAM model at high software level is very effec-
tive on the early design phases, as it strongly in-
creases the simulation speed.  

 
Fig. 13. Example of dual-port RAM block 

RTL and lower description levels of the RAM in-
volve many ports, such as clock, reset, address and 
data i/o buses, write and clock enable signals, 
which altogether should be set in the right order to 
perform verification operations. For a dual-port 
RAM the groups of signals are duplicated for each 
port. Using the SystemC, such RAM interface can 
be replaced by a convenient C++ transaction level 
channel, hiding the RAM control details behind 
the high-level entry methods: 
SC_MODULE DPRAMTrans 
{ 
    //////////////////////////////////// 
 

    /** Transactor sampling codes */ 
    static const int NO_ACTIVE_WRITE = 1; 
    static const int WRITE_STARTED   = 2;  
    /** Clock signal */ 
    sc_in<sc_logic> clk; 
    /** RAM component */ 
    DPRAM * theRAM; 
    //////////////////////////////////// 
    /** Memory reset method */ 
    virtual void reset (); 
    /** Port enabling/disabling method */ 
    virtual void set_enabled (bool enabled); 
/** Accesses the specified memory word 
     * 
     *  @param addr    Address of the memory word 
     *  @return   Stored value 
     */ 
    virtual sc_int read (sc_int addr); 
    /** Modifies the specified memory word 
     *  
     * @param addr     Address of the memory word 
     * @param value    Value to store 
     * @return         Actually stored value 
     */ 
    virtual sc_int write (sc_int addr, 
                          sc_int value); 
    /** Generic sampling operator */ 
    template<int SMPL_TYPE> bool Evaluate () const; 
    /** Checks whether the active addresses  
     *  of two specified ports overlap 
     * 
     * @param portA    First port channel 
     * @param portB    Second port channel 
     */ 
    static bool AddrOverlap (DPRAMTrans* portA, 
                             DPRAMTrans* portB); 
     //////////////////////////////////// 
}; 
As the interface of each RAM port is identical, the 
RAM itself should contain two instances of the 
port transactor class (fig. 14): 
SC_MODULE DPRAM 
{ 
    // … 
    DPRAMTrans* portA; 
    DPRAMTrans* portB; 
    // … 
}; 

Fig. 14. Dual-port RAM with transactor ports 
Duality of the RAM interface allows performing 
two simultaneous read/write operations at the same 
time, including different clock domains. Typical 
problem of the designs with RAMs are collisions: 
two simultaneous write operations upon the same 
memory cells. At simulation level this typically 
brings the memory into the unknown state, but 
such situation is highly undesirable in the actual 
hardware. The following PSL assertion (with Sys-
temC flavor), detecting the possible collision situa-
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tion, might be very helpful for verification of the 
entire design: 
vunit ram_write_collision_detector (DPRAM) 
{ 
    sequence active_wr(DPRAMTrans p) =  
       {p<DPRAMTrans::NO_ACTIVE_WRITE>; 
        p<DPRAMTrans::WRITE_STARTED>; 
       [*1]} @(p.clk); 
 
    sequence a_wr = active_wr(a); 
    sequence b_wr = active_wr(b); 
    sequence sim_wr = {{{a_wr} within {b_rw}}  
                      |{{b_wr} within {a_wr}}}  
                      @(a.clk or b.clk); 
 
    property collision = {sim_wr} |=>  
          DPRAMTrans::AddrOverlap(a, b); 
 
    assert never collision; 
} 
This assertion checks whether there is an overlap-
ping of the addresses within two active simultane-
ous write operations. It should be checked at each 
edge of the RAM clocks, meaning start-
ing/finishing moments of any read/write operation. 
Assertion uses values of the elementary SystemC 
signals (a.clk, b.clk) and also the user-defined con-
ditions for determining the writing activity, ad-
dress overlapping. To enable such high-level con-
structions for the assertions engine, being de-
scribed in this paper, user has to define proper 
value sampling interfaces for unique design ele-
ments: 
template<> 
bool DPRAMTrans::Evaluate<NO_ACTIVE_WRITE> 
() 
{ 
    // … 
} 
 
template<> 
bool DPRAMTrans::Evaluate<WRITE_STARTED> () 
{ 
    // … 
} 
Here, such transactor state condition, as writing 
activity, is considered as atomic for assertions en-
gine. However, these user-defined transaction level 
conditions can group several other sub-transactions 
to hierarchically manage various interaction proto-
cols. With the suggested flexible event sampling 
architecture, the verification is not limited to a 
particular C++ coding style or design organization. 
Obviously, enabling assertions for custom Sys-
temC design elements requires some efforts from 
the engineer, but they are incomparably smaller 
than equivalent testbenches without the assertions 
notations. Usage of transaction level sampling 
methods is much more convenient at lower levels 
of the abstraction, as it does not demand tracing of 
the complex signal sequences. So, the demon-

strated example case clearly shows the benefits of 
the suggested assertions based approach for Sys-
temC units, which simplifies the designer’s work 
by cutting off large verification efforts. 
5. Conclusions 
The implementation of assertions entry for Sys-
temC was presented in this paper. The assertions 
evaluation engine is a key component of Asser-
tions Based Verification (ABV), Functional Veri-
fication (FV) and Coverage Driven Verification 
(CDV)–already proven design methodologies for 
large-scale electronic systems [15-17]. While as-
sertions support is a standard option now for HDL-
based environments, it is still a novel for SystemC-
based . The system presented here enables design-
ers using SystemC with all the mentioned method-
ologies that were lack of until now. 
To build reliable and industry strength verification 
platform for SystemC we ported commercial asser-
tions entry proven in the HDL-based Riviera™ 
verification environment. The stress was put on 
demonstrating how the properly structured imple-
mentation of the original HDL-based entry lead in 
easy finding of corresponding means in SystemC 
domain and in porting the whole solution with 
minimal implementation efforts and without break-
ing up the original fundamental concepts put in the 
original system. 
A similar attempts were made in a past but they 
didn’t reach an industry applications level for 
number of reasons. 
Both systems of Große and Drechsler use formal 
proof engine for evaluation of the design and prop-
erties specifications. From theoretical point the 
formal engine is better than simulation based one 
as it is able to perform exhaustive proof of prop-
erty correctness while simulation based evaluation 
is limited to the narrow path of testbench stimula-
tions. But on the other hand the design logic and 
properties specifications needs to be transformed 
into finite state machines (FSM) representations 
before they can be processed by the proof engine. 
This requirement seriously limits spectrum of con-
structs that can be used for design modeling. The 
transformation step needs advanced algorithms 
that are able to map source design logic into FSM 
logic. While this is not a problem for designs de-
scribed at gates or RTL level, the complexity of 
the task quickly increases for higher level of ab-
stractions: behavioral and system-level. It would 
be very hard to develop so advanced transforma-
tion algorithm that would support all of possible 
C++ (that is underlying for SystemC) coding 
styles.  
Unfortunately this reject the main benefits of Sys-
temC concept which enables designers with almost 
unlimited variety of system-level abstractions (as 
design patterns, interfaces, iterators etc.) built on 
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top of rich C++ object oriented set of constructs. It 
was shown here that the combination of assertions 
semantics with SystemC and underlying C++ se-
mantics results in a very powerful toolset for 
building fully re-usable system-level models and 
verification units. Especially in conjunction with 
the Transactions Level Modeling (TLM) [18] the 
assertions based methodologies enter into new 
dimension of electronic systems abstraction, which 
allow easily formulate constraints for a highly 
complicated designs. 
Considering the compilation entry architecture 
various attempts were made too. The CheckSyC 
system [9] has an external compiler of non-
standard property language. This unfortunately 
declines possibility of using commercially avail-
able verification libraries for popular standard IP 
blocks. 
The compilation entry architecture used in [8] is 
more interesting – the syntax used widely in scien-
tific community for temporal properties specifica-
tions (as in CTL [19], PSL [11]) was emulated 
directly at C++ level with means of overloaded 
operator functions and lambda expressions [20]. In 
this way the properties formulas could be written 
together with SystemC code and compiled with 
standard C++ compiler. But again it is not possible 
to fully emulate all details of industry standard 
notations so such system was unable to support 
commercial verification libraries too. 
The system presented here is not ideal too. There 
are limitations in errors checking while compila-
tion of the assertions specifications, especially in 
respect to the referred SystemC items from formu-
las. To enable assertions compilation with C++ 
strict type checking an integration with C++ com-
pilation system would be required. This can be 
addressed while further research work. 
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