
MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

KHARKOV NATIONAL UNIVERSITY OF RADIOELECTRONICS

ISBN 966-659-113-8

Proceedings of IEEE
East-West Design & Test

Workshop
(EWDTW’05)

Copyright © 2005 by The Institute of Electrical and
Electronics Engineers, Inc.

Odessa, Ukraine, September 15 – 19, 2005

CONTENTS

M. Renovell. Modelisation and Detection of Realistic Defects
in CMOS Technology (Abstract)………………………………………………………………...8

Kaushik Roy. Leakage Power Analysis and Reduction for Nano-Scale Circuits……………….9

Yervant Zorian. Design for Yield and Reliability (Abstract)………………………………….14

Steve Burns. Research at Intel's Strategic CAD Labs (Abstract)………………………………14

Marina Brik, Elena Fomina, Raimund Ubar, A Proposal for Optimisation of Low-Powered
FSM Testing……………………………………………………………………………………..15

Elena Fomina, Marina Brik, Roman Vasilyev, Alexander Sudnitson. A New Approach to
State Encoding of Low Power FSM…………………………………………………………….21

Nerijus Bagdanavičius, Pranciškus Balaišis, Danielius Eidukas, Andrius Žickis.
Investigation of Integrated Systems Network Efficiency……………………………………….27

Speranskiy D.V., Ukolova E.V. Test Synthesis for Linear Automata with Genetic Algorithms
Application….….….………………………………………………………………………….....33

Fedeli, U. Rossi, F. Fummi, G. Pravadelli. SYMBAD: Formal Verification in System Level-
based Design ….….….….….….….….….….…………………………………………………..36

A.Yu. Matrosova, E.S. Loukovnikova. Test Patterns Generation For Single and Multiple
Stuck-At Faults at the CLB Poles of a Combinational Circuit………………………………….42

P. Tervydis, D. Eidukas, P. Balaisis. Statistical Modeling of Information Transmission over
Electronic Networks…………………………………………………………………………….48

Miroslaw Forczek, Sergiy Zaychenko. Assertions based verification for SystemC………….54

Drozd A., Lobachev M., Reza Kolahi. Effectiveness of On-Line Testing Methods in
Approximate Data Processing…………………………………………………………………..62

Andrei Karatkevich. Verification of Implementaion of Parallel Automata (Testing Approach).66

Adamski M., Barkalov A., Bukowiec A. Structures of Mealy FSM Logic Circuits under
Implementation of Verticalized Flow-Chart……………………………………………………70

Barkalov A.A., Titarenko L., Wisniewski R. Optimization of the Amount of Lut-Elements
in Compositional Microprogram Control Unit with Mutual Memory………………………….75

Alexander Barkalov, Remigiusz Wisniewski. Implementation of Compositional
Microprogram Control Unit On FPGAs………………………………………………………...80

A.A. Barkalov, A.A. Krasichkov, I.J. Zelenyova. Synthesis of Finite State Machines
With Object’s Codes Transformation…………………………………………………………...84

Romankevich A., Romankevich V., Kononova A., Rabah Al Shboul. GL-models
of K(2,N) FTMpS……………………………………………………………………………….88

N. Kascheev, V. Beloborodov, Y. Bazhanov. Efficient Test Generation using
Continuous Extensions of Boolean Functions…………………………………………………..92

B. Sokol, V. N. Yarmolik. Memory Faults Detection Techniques with use of Degrees
of Freedom in March Tests ……………………………………………………………………..96

Saposhnikov V.V., Saposhnikov Vl.V., Urganskov D.I. Composite Structure Of Binary
Counter of Ones Arbitrary Modulo……………………………………………………………102

Puczko M, Yarmolik V.N. Power Conscious Testing Issues In BIST……………………….107

Rustinov V.A., Saatchyan A.G. Approach for Teaching of IP-Cores Design:
An Example of AES Cryptoprocessor…………………………………………………………111

IEEE EWDTW, Odessa, September 15-19, 2005 5

Ryabtsev V.G., Andrienko V.A., Kolpakov I.A. A Lot Of The Versions For Diagnosing
Microcircuits Memory Devices Of Critical Computer Control Systems……………………...115

Ladyzhensky Y.V., Popoff Y.V. Software System For Distributed Event-Driven Logic
Simulation……………………………………………………………………………………...119

A.E. Yankovskaya, Y.R. Tsoy. Optimization Of A Set Of Tests Selection Satisfying
The Criteria Prescribed Using Compensatory Genetic Algorithm…………………………….123

Andrey U. Eltsov, Dmitry V. Ragozin. 3D pipeline workload for convergent DSP-CIL
Processor……………………………………………………………………………………….127

Dmitry V. Ragozin, Maxim O. Shuralev, Maxim A. Sokolov, Dmitry K. Mordivinov.
DSP Core for Hardware Based CIL Machine…………………………………………………131

Zaychenko A.N., Krotenko A.G., Pavelko A.V. The Viterbi Algorithm Modification……..137

Asadov Hikmat Hamid. Principle Of Implicit Dimension Lowering For Optimization of
Information Systems. Application for Information Location Systems……………………….141

Valérie-Anne Nicolas, Bertrand Gilles, Laurent Lemarchand, Lionel Marcé,

Bruno Castel. A Maintenance-Oriented Board Testing Approach…………………………...143

Petrenko A., Vetrova M., Yevtushenko N. Adaptive Test Generation for Nondeterministic
Networks……………………………………………………………………………………….148

Yeliseyev V.V., Largin V.A. Program-Technical System (PTS) Diagnosis on The Basis of
Microprocessor Monitoring And Control Subsystem…………………………………………152

Pavlo Tymoshchuk, Mykhaylo Lobur. Optimization of WTA Neural Network
by Genetic Algorithms………………………………………………………………………...156

Gladkikh T.V., Leonov S. Yu. Models of Computer's Elements in CAD Based
on the K-Value Differential Calculus………………………………………………………….160

A.V. Kolomeets, M.L. Gromov, S.V. Zharikova, D.D. Popov. Digital Controller for
Multiphase Inverters…………………………………………………………………………...165

Sharshunov S.G., Belkin V.V., Rudnitskaya V.P. Detecting Malfunctions of Current
Processor Control Hardware…………………………………………………………………...169

Michail F. Karavay. Fault-Tolerant Design For Hamiltonian Target Graphs………………..175

Scobtsov Y.A., Ermolenko M.L. The Test-Programs Generation of Microprocessor
Systems on the Basis of Genetic Programming……………………………………………….181

Yu.Yu. Zavizistup, А.А. Коvalenko, S.A. Partyka, A.V. Babich. TCP VEGAS against TCP
RENO: Throughput Comparison And Simulation Results……………………………………186

A.V. Babich, O.B. Skvortsova, A.A. Krasovskaya, A.A. Kovalenko. Method of Implicit
Defects and Bottlenecks Location Based on Active Experiment Planning……………………189

Gennadiy Kryvulya, Yevgeniya Syrevitch, Andrey Karasyov, Denis Cheglikov.
Test Generation for VHDL Descriptions Verification………………………………………...191

O. Gavrilenko, A. Kulik, O. Luchenko. The Adaptive Approach to Active Fault Tolerance
Maintenance of Automatic Control Systems…………………………………………………..195

Gorbachov V.A., Adamenko N.N. The Two-Level Method of Describing Semantic
Database Model………………………………………………………………………………..201

V.A. Gorbachov, J.S. Leshchenko. Deadlock problem in distributed information systems,
possible ways of improvement of its searching and resolving………………………………...203

6 IEEE EWDTW, Odessa, September 15-19, 2005

Ami Gorodetsky. Contactless Mixed-Signal In-Circuit Testing...207

Yakymets Nataliya, Kharchenko Vyacheslav, Ushakov Andrey. Projects diversification
of fault-tolerant digital systems with programmed logic using genetic algorithms…………...208

V.S. Kharchenko, I.V. Lysenko, V.V. Sklyar, O.D. Herasimenko. Safety and reliability
assessment and choice of the redundant structures of control safety systems………………...212

V. Kharchenko, O. Tarasyuk, A. Gorbenko, N. Khilchenko. A Metric-Probabilistic
Assessment of Software Reliability: Method, Tool and Application………………………….219

Ushakov A.A., Kharchenko V.S., Golovir V.A. Self-repairing FPGA-systems using
multi-parametrical adaptation to cluster faults………………………………………………...225

A. Čitavičius, M. Knyva. Investigation of Measuring Device Software Functionality………231

K.S. Smelyakov, I.V. Ruban, S.V. Smelyakov, A.I. Tymochko. Segmentation
of Small-sized Irregular Images……………………………………………………………….235

Dmitriy Elchaninov, Sergey Matorin. A perspective approach to structural
design automation……………………………………………………………………………...242

Vyacheslav Evgrafov. Throughput Evaluation of MIN in Case of Hot Spot Traffic With
Arbitrary Number of Hot Spots………………………………………………………………..246

Belous Natalie, Kobzar Gleb, Evseev Alexander. Contour based technique for person
recognition by hand geometry identifier………………………………………………………251

Irina Hahanova, Volodymyr Obrizan, Wade Ghribi, Vladimir Yeliseev, Hassan Ktiaman,
Olesya Guz. Hierarchical hybrid approach to complex digital systems testing………………254

Stanley Hyduke, Eugene Kamenuka, Irina Pobezhenko, Olga Melnikova.
Emulation Processor Network for Gate-Level Digital Systems……………………………….257

Vladimir Hahanov, Oleksandr Yegorov, Sergiy Zaychenko, Alexander Parfeniy,
Maryna Kaminska, Anna Kiyaschenko. Assertions-based mechanism for the functional
verification of the digital designs……………………………………………………………...261

Karina Mostovaya, Oleksandr Yegorov, Le Viet Huy. Software Test Strategies………….266

Sergey G. Mosin. Design-for-Testability of Analog and Mixed-Signal Electronic Circuits
(Abstract)………………………………………………………………………………………268

Sergey G. Mosin. Extraction of Essential Characteristics of Analog Circuits’
Output Responses Required for Signature Analysis…………………………………………..269

Olga Melnikova, Dmitriy Melnik, Yaroslav Miroshnychenko.
IP core and testbench generator for CORDIC algorithm……………………………………...271

Shabanov-Kushnarenko Yu., Klimushev V., Lukashenko O., Nabatova S.,
Obrizan V., Protsay N. Brainlike Computing………………………………………………..274

Eugene Kovalyov, Olga Skvortsova, Alexandr Babaev, Yaroslav Miroshnichenko,
Konstantin Kolesnikov. ASFTEST – Testbench generator for Extended Finite
State Machines…………………………………………………………………………………280

Eugene Kovalyov, Evgeniya Syrevitch, Elvira Kulak, Evgeniya Grankova.
High level FSM design transformation using state splitting…………………………………..282

A. Chatterjee. Conformal Built-in Test and Self-calibration/Tuning of RF/MULTI-GHz
circuits (Abstract)……………………………………………………………………………...284

Chumachenko S.V., Chugurov I.N., Chugurova V.V. Verification And Testing RKHS
Series Summation Method For Modelling Radio-Electronic Devices………………………...285

IEEE EWDTW, Odessa, September 15-19, 2005 7

ASSERTIONS BASED VERIFICATION FOR SYSTEMC
Miroslaw Forczek1, Sergiy Zaychenko2

1 Aldec-ADT, Compilers Division, ul. Lutycka 6, 44-100 Gliwice, Poland, mirekf@aldec.com.pl
2 Design Automation Department, Kharkiv National University of Radio Electronics,

Lenin ave, 14, Kharkiv, 61166 Ukraine E-mail: sergeyz@cooldocteam.com

Abstract. The Assertions Based Verification
(ABV) has gained worldwide acceptance as verifi-
cation methodology of electronic systems designs.
Assertions provide basic blocks for building func-
tional verification concept. Due the declarative
form of the temporal formulas of assertions a lot of
verification efforts are being cut down, tending to
better product quality and verification speed. Most
of implementations are integrated with HDL based
design environments. The SystemC open initiative
provides an alternative to HDL based design envi-
ronments by enabling C++ with hardware con-
cepts. SystemC already became a very popular
environment for modeling at system-level abstrac-
tion. This work enables SystemC designs with
industry standard assertions notations. The plat-
form was build upon assertions simulator inte-
grated into Riviera™ HDL based verification envi-
ronment.
Keywords: device simulation, computer aided
design, verification, assertions, system level mod-
eling.
1. Introduction
The Assertions Based Verification (ABV) has
gained worldwide acceptance as verification meth-
odology of electronic systems designs. There was
number of papers [1-3] that explain in-depth this
methodology. The original concept of assertion
comes from software development where it (in
particular the assert() macro defined in C language
[4]) has proved to be a very powerful tool for
automatic bug and regression detection [5]. Asser-
tions for hardware designs employ Linear Time
Logic (LTL) to define expected and/or forbidden
behavior. The foundation for ABV are Hardware
Verification Languages (HVLs). HVLs combine
semantics of LTL with constructs for building re-
usable verification IP units. Verification IP units
need to be bind to some design for effective use.
Thus HVLs provide constructs to specify connec-
tions with models in Hardware Description Lan-
guages (HDLs). Most of ABV implementations are
part of HDL–based integrated design environments
(IDEs).
The SystemC open initiative [6] provides an alter-
native to HDLs as it enables C++ [7] – the industry
strength notation for complex systems – with
hardware concepts of RTL and system-level in
form of C++ templates library. In its original ap-
proach SystemC models are processed standard
C++ toolset and executed as standalone applica-

tions. SystemC became a very popular environ-
ment for modeling at system-level abstraction. The
HDL-based IDEs offer co-simulation capabilities
with SystemC engine but it still remain external
unit to the HDL simulator. The idea of applying
ABV to the SystemC designs is natural step of
HDL and SystemC environments integration.
Since HDL design can be co-simulated with Sys-
temC model, there is an easy way to associate veri-
fication unit with SystemC one: the SystemC unit
needs to be connected to HDL wrapper unit that
will provide entry point for verification unit bind –
as shown on fig. 1. This method doesn’t require
any additional tools assuming availability of HDL
simulator.

Fig. 1. Connecting verification unit to SystemC unit with

intermediate HDL wrapper

However there are some serious limitations for this
kind of connection:
• Only units interface signals can be accessed this
way. This highly limits usability of assertions. One
of the most appreciated features of HVLs is their
ability for seamless access to any signal within
HDL design across any kind of interface and/or
encapsulation constructs. However this rule will
mostly not work behind co-simulation interface.
Usually co-simulation connections supports only
units interfaces signals.
• Verification formulas cannot refer directly to the
source object and their native types. SystemC has a
rich set of data types and it can even be extended
with additional user types. Some HVLs (in exam-
ple – the PSL) allow to build formulas with use of
semantics of description language for attached
target unit. Unfortunately co-simulation interface
will enforce conversions of all source data types
into types system of the intermediate HDL.
• HDL simulator has to be used, even when no
HDL models are actually used in a design.

54 IEEE EWDTW, Odessa, September 15-19, 2005

To overcome above limitations assertions shall be
compiled into SystemC native units and linked
directly with related SystemC model elements.
Such approaches were already attempted – in ex-
ample: Große and Drechsler [8,9] - however they
relayed on non-standard notations of formulas.
An approach presented here utilizes industry stan-
dard HVL notations: OVA [10] and PSL [11],
which are widely used within HDL verification
environments. This system does not transform the
design model in anyway. Rather than we provide a
specialized co-simulation engine and a mecha-
nisms for direct linkage of properties models to the
design structures at the native SystemC level. In
this way there is no additional limitations for de-
sign coding – any C++ constructs (especially dy-
namic data structures, classes and templates) can
be used to build electronic systems models of a
very high level abstraction.
The system was derived from already existing as-
sertions entry in Riviera™ HDL oriented simula-
tion-based verification environment [12]. We re-
used industry proven multi-lingual assertions com-
piler and high-performance assertions simulation
engine. The assertions compiler supports number
of industry standards notations as OVA, PSL and
others.
Thanks to properly designed framework of the
entry and right architectural decisions while defin-
ing key interfaces between main components of
Riviera™ system, the task of integration with Sys-
temC environment was reduced to finding equiva-
lents between HDL-based system semantics and
SystemC semantics and than porting concepts of
the entry’s building blocks and their realizations
from HDL to SystemC domain.
Goal of this paper is to describe construction of
the Assertions for SystemC platform and to present
key architectural decisions that lead to re-use
without problems a proven assertions entry origi-
nally designed for HDL based simulator. The main
research topics include:
• how to model assertions checkers for efficient
co-simulation efficiently with minimal impact on
related design model processing,
• how to abstract assertions checkers models from
related design modeling environment and how to
encapsulate assertions into units that will match
native binary formats of that environment,
• comparison of HDL and SystemC simulation
engines and SystemC kernel supplement with ex-
tensions required for handling details of assertions
semantics,
• how combination of SystemC (C++) semantics
and properties language semantics opens new ca-
pabilities for electronic systems modeling and veri-
fication.

2. Architecture of assertions entry
The assertions processing entry in Riviera™ con-
sists of the following main components, grouped
into the compilation (fig. 2) and simulation parts
(fig. 3):
• the compilation front-end including lexical and
syntax analyzers for the OVA and PSL notations;
• a common notation-independent modeling layer
of assertion semantics;
• a synthesizer of pipelined RTL checkers struc-
tures that perform detection of the assertion for-
mula matching sequences occurrences while the
design evaluation;
• a specialized simulation engine for evaluating
assertions with high-performance interface for the
direct sampling of the design data.
Evaluation of assertions is based on RTL struc-
tures synthesized upon formulas expressed in de-
clarative style. In principle the RTL structured
checkers can be physically implemented in various
domains. This paper focus on Riviera™ system,
which uses simulation, oriented software based
implementation. But there is also Riviera-IPT™
system [13] in which assertions checkers are being
compiled and implemented into FPGA based ac-
celerator. These RTL structures could also be used
with formal proof engine.

Fig. 2. Assertions engine architecture: compilation part

Fig. 3. Assertions engine architecture: simulation part
On fig. 4 a basic idea of the RTL checker synthesis
is shown. A more in-depth study of the RTL
checkers structures is beyond scope of this paper,
one can find more details in [14].

IEEE EWDTW, Odessa, September 15-19, 2005 55

Fig. 4. Basic RTL checker structure

Although the assertions entry contain separate
compiler it does not provide it’s own binary stor-
age format nor loader and linker toolset. It depends
on design verification toolset. Compiled assertions
units shall be binary compatible with the librarian
system and simulation engine of the targeted veri-
fication environment. To meet this requirement the
assertion checker logic is packed into standard
container unit within the verification environment
(fig. 5).
The container unit encapsulates assertion checker
construction details and provide binary format for
compiled storage form compatible with rest of the
system. At the model startup phase when design
components are loaded from library and linked
together inside simulator, the container unit inter-
face mapping automatically solves problem of
connecting to design objects data structures that
were referenced from assertion formula (fig. 6).

@clk

data

Fig. 5. Packing assertions models into the native con-
tainer unit of the verification environment

HDL simulator

HDL unit

@clk

data

HVL unit

HDL unit

load & link

Fig. 6. Startup phase of the simulation with assertions

The RTL structure of the checker is
encoded within container unit in form
of initial process that contains se-
quence of calls to so-called
builder-API of the assertion engine.
The build-script is executed while de-
sign model initialization phase and
thus the assertions RTL structures are
created too. The container unit is filled

also with continuous processes synchronized with
clock signals as defined in assertion formula. The
processes provide synchronization service for as-
sertion engine while run-time phase making a call
to Run() routine from the assertions API at each
clock tick (fig. 6).
As the assertions engine API is invoked only from
within container unit, there is no need for physical
static dependency between simulator module and
assertions module. All the calls can be realized
with means of a standard extensions interfaces like
PLI interface defined in Verilog-HDL. The asser-
tions engine remains a fully independent and port-
able module.
The assertions engine has to be fed with stream of
data from the design model and synchronized with
related clock signal events. Just at the beginning of
the system construction the requirement was de-
fined that the interface for data sampling and syn-
chronization needs to provide hi-performance
throughput but is has to be abstracted enough to
separate assertions engine implementation from
HDL simulator. In this way the assertions engine
actually can be fed from various sources – not only
from simulator module (HDL – based one or event
non-HDL) – but in example from simulation data-
base streams: files, waveforms, etc.
To separate assertions logic from exact types of
values accessed from design model, the concept of
abstract data samplers was introduced (fig. 7).

Engine X

Engine X

Native
connection

Native
connection

Object
A

En
gi

n
e

X

sp
ec

ia
liz

ed

 b
oo

l s
am

pl
er

En
gi

n
e

Y

sp
ec

ia
liz

ed

bo
ol

 s
am

pl
er

Object
B As

se
rt

io
ns

En
gi

ne

A
bs

tr
ac

t
B

oo
le

an
 S

am
pl

er

l
A

ti
E

i

C
om

m
on

 E
dg

e
Sa

m
le

r

Fig. 7. The signals samplers design pattern
Almost all semantic of assertions formulas is de-
fined over Boolean and linear time domains. The
underlying HDL typing system is converted into
Boolean domain just at the references to HDL ob-
jects from assertions formulas. Placing the HDL

PSL definition:

vunit v
{
 default clock = @rose(clk);
 property e4 = always {e1; e2};
 assert e4;
}

Synthesized RTL
checker structure:

56 IEEE EWDTW, Odessa, September 15-19, 2005

data conversion into Boolean at the sampling inter-
face highly reduces the size of the data stream for
assertions engine. Finally it is possible to provide
specializations of the samplers for each data type
(logic bit, vector, vector selection or slice, real,
etc.) and each kind of design evaluation engine –
optimized for performance. The samplers are
linked directly to the references objects representa-
tions at the design simulation engine (fig. 8) – with
full knowledge of the native data format in the
simulation engine and no intermediate communi-
cation interfaces nor channels, the samplers offer
best possible performance. Also the simple sam-
plers concept made a foundation layer for higher
order samplers like edge samplers, which are im-
plemented over simple samplers. Initially the as-
sertions engine was supplied with data samplers
family specialized for Riviera™ simulator.

@clk

data

HDL
unit

HVL
container

(HDL unit)

HDL simulation engine Assertions engine

Run()

Builder-API

Fig. 8. HDL and assertions engines deployment diagram.
Samplers are linked directly to the native data source

objects of design
Despite of the fact that assertion checker logic
description is packed into container unit and ini-
tially the design objects references are obtained
thru standard port-maps connection mechanism,
the whole RTL structure is created and resides at
assertions module side and the samplers re-link the
connections into direct references to the referenced
objects while initialization phase to eliminate any
performance loss.
3. Assertions entry for SystemC
SystemC design platform can be easily enabled
with assertions using the previously described ar-
chitecture. Due the flexibility of assertions engine
and extensibility of SystemC library, only minimal
extensions are required in both to use assertions at
system level.
The front-end of assertions entry remains un-
touched - OVA and PSL sources can still be proc-
essed by the same compiler as for HDL architec-
ture. In this case, to meet the requirement of the
formats compatibility with the design verification
toolset, the assertions RTL structures logic should
be generated in form of SystemC source code.
Assertions model startup at the SystemC design
elaboration phase is implemented with already
discussed builder-API of the assertions engine –
only recompiled for C linkage binary compatibil-
ity. In the SystemC native container unit the asser-
tions compiler generates the SystemC modules that

implement container units with build-scripts
placed in the constructors. These modules encap-
sulate SystemC environment specific implementa-
tion details from the assertions simulation engine
and provide native high-performance streams of
input data and synchronization.
The idea of value and edge samplers, introduced in
previous section, can also be easily applied to Sys-
temC designs. Assertions engine should have sup-
port for samplers, which can query values from
various types of SystemC ports and channels while
preserving common interface requirements for all
samplers (fig. 9). Such data access could be done
without difficulties, as the SystemC data structures
are shared as open source.

Channel
Interfaces

S
ys

te
m

C
 c

h
an

n
el

sp

ec
if

ic

sa
m

pl
er

Common
value

sampler

Common
edge

sampler

A
ss

er
ti

on
s

En
gi

ne

SystemC
Design

Unit

Fig. 9. SystemC channel specific samplers
The requirement to the channel samplers is that
they must implement specific access mechanism
for stored values. For primitive channels, like
sc_signal, sc_semaphore, sc_fifo, or for SystemC
and C++ data types, like sc_logic, sc_int, the im-
plementation of sampling is obvious, as it only
demands proper mapping between common sam-
pling and channel value access interfaces.
Complex user-defined channels can also be linked
to the assertions engine, if they meet the require-
ments of common value/edge sampling interfaces.
Generally, value of the user-defined channel is not
bound to integral types, like in HDLs. For complex
data structures – i.e.: system-level transactors -
user has to define converters to bool type, to
clearly state which value should be considered as
false, and which value change should trigger signal
edge events.
Having input data from specific samplers, the as-
sertions engine can be linked to the standalone
executable SystemC design as an additional dy-
namic linked library (fig. 10).

Fig. 10. Simple architecture of assertions for SystemC

IEEE EWDTW, Odessa, September 15-19, 2005 57

After the design elaboration phase assertions en-
gine becomes part of the executable SystemC de-
sign model, reacting on all assertions violations
within the simulation process, which is controlled
by the master SystemC verification toolset.
However, because of scheduling differences be-
tween SystemC and HDL engines (fig. 11), a few
extensions are also required in the core of SystemC
library:

Fig. 11. Comparison between System Verilog
and SystemC scheduling rules

To avoid errors with sampling values at incorrect
moment of processing, which are connected with
unpredictable simulation order of the parallel
threads, special preponed processes have to be
introduced within the SystemC simulation engine.
Implementation of the support for these processes
is trivial: preponed methods just need to be exe-
cuted at the beginning of the timeslot before start-
ing the first evaluation phase. The intention is to
sample the values before any signal has changed
the state within the considered timeslot. Preponed
processes have the following important properties:
• preponed processes cannot modify any object
under control of scheduler, in other words, they
should not schedule execution of any other proc-
ess;
• preponed processes have to be only methods;
there should be no possibility to suspend the exe-
cution by call to wait-construction.
It is also necessary, that the assertions engine step
should be activated as postponed process. The
reference materials for the assertions notations
explicitly specify to evaluate the asserted property

expressions only after all other design processes
had stabilized. This approach prevents the poten-
tial improper evaluation of the assertions in case,
when the clock domain signals are affected several
times across the delta-cycles of the single simula-
tion step.
Postponed processes can be easily enabled within
the SystemC scheduler by invoking them after the
stabilization of all regular processes. Similarly to
the preponed ones, postponed processes cannot
suspend the execution with the wait-construction.
Besides, they can affect any signals and trigger
new events, which will be handled at the next
timeslot.
To enable simulation and assertions checking of
SystemC units among with ordinary HDL modules
within the single harmonic design, much more
complex co-simulation environment is required
(fig. 12).
In this environment SystemC engine is no longer a
primary component. Instead, the simulation control
is transferred to the special co-simulation interface,
synchronizing cooperation of HDL simulator, Sys-
temC scheduler and other external simulation
components (f. ex., embedded software debugger,
analog and mixed-signal AMS simulator). Much
deeper changes are required within original
sources of the SystemC library to convert it from
master simulator into slave one under the control
of co-simulation environment.

Fig. 12. Advanced co-simulation environment for check-
ing assertions upon SystemC models

One more noticeable issue is a model binding. In
HDL architecture binding modules for assertions
are generated automatically, as compiler either
processes HDL modules in the same compilation
pass (HDL and assertions compilers of Riviera™
are integrated together and can exchange data
while compilation), or has access to the compiled
library through flow-specific interface. It is than
possible to check the binding connections during
assertions compilation.

58 IEEE EWDTW, Odessa, September 15-19, 2005

In case, when the SystemC modules are used
among with HDL units within co-simulation envi-
ronment, binding wrapper can be also generated
easily, assuming the information about the Sys-
temC unit interface, structure and internal signals
is already presented in the co-simulation design
library. Typically, this step is required anyway to
enable co-simulation of SystemC module within
HDL-oriented environment.
Less convenient case is the standalone SystemC
application. Assertions compiler can still generate
connections between design model and assertions
engine, basing on the OVA/PSL binding specifica-
tion, but unfortunately without strict type checking
at compilation time. Implementation assumes that
any kind of type mismatch problems will be
caught automatically while building the SystemC
application within C++ IDE. This could be im-
proved, but would require an integration with C++
compilation system.
4. Assertions for SystemC: a case study
Let’s demonstrate the benefits of the assertions
based approach on a SystemC design, which con-
tains a transaction level model of a dual-port RAM
block (fig. 13). Such memory blocks are typical for
many ASIC and FPGA designs. Simulating RAMs
at such high level of abstraction is sufficient, as
RTL or gate-level memory block representation
leads to large performance overheads. Having
RAM model at high software level is very effec-
tive on the early design phases, as it strongly in-
creases the simulation speed.

Fig. 13. Example of dual-port RAM block

RTL and lower description levels of the RAM in-
volve many ports, such as clock, reset, address and
data i/o buses, write and clock enable signals,
which altogether should be set in the right order to
perform verification operations. For a dual-port
RAM the groups of signals are duplicated for each
port. Using the SystemC, such RAM interface can
be replaced by a convenient C++ transaction level
channel, hiding the RAM control details behind
the high-level entry methods:
SC_MODULE DPRAMTrans
{
 ////////////////////////////////////

 /** Transactor sampling codes */
 static const int NO_ACTIVE_WRITE = 1;
 static const int WRITE_STARTED = 2;
 /** Clock signal */
 sc_in<sc_logic> clk;
 /** RAM component */
 DPRAM * theRAM;
 ////////////////////////////////////
 /** Memory reset method */
 virtual void reset ();
 /** Port enabling/disabling method */
 virtual void set_enabled (bool enabled);
/** Accesses the specified memory word
 *
 * @param addr Address of the memory word
 * @return Stored value
 */
 virtual sc_int read (sc_int addr);
 /** Modifies the specified memory word
 *
 * @param addr Address of the memory word
 * @param value Value to store
 * @return Actually stored value
 */
 virtual sc_int write (sc_int addr,
 sc_int value);
 /** Generic sampling operator */
 template<int SMPL_TYPE> bool Evaluate () const;
 /** Checks whether the active addresses
 * of two specified ports overlap
 *
 * @param portA First port channel
 * @param portB Second port channel
 */
 static bool AddrOverlap (DPRAMTrans* portA,
 DPRAMTrans* portB);
 ////////////////////////////////////
};
As the interface of each RAM port is identical, the
RAM itself should contain two instances of the
port transactor class (fig. 14):
SC_MODULE DPRAM
{
 // …
 DPRAMTrans* portA;
 DPRAMTrans* portB;
 // …
};

Fig. 14. Dual-port RAM with transactor ports
Duality of the RAM interface allows performing
two simultaneous read/write operations at the same
time, including different clock domains. Typical
problem of the designs with RAMs are collisions:
two simultaneous write operations upon the same
memory cells. At simulation level this typically
brings the memory into the unknown state, but
such situation is highly undesirable in the actual
hardware. The following PSL assertion (with Sys-
temC flavor), detecting the possible collision situa-

IEEE EWDTW, Odessa, September 15-19, 2005 59

tion, might be very helpful for verification of the
entire design:
vunit ram_write_collision_detector (DPRAM)
{
 sequence active_wr(DPRAMTrans p) =
 {p<DPRAMTrans::NO_ACTIVE_WRITE>;
 p<DPRAMTrans::WRITE_STARTED>;
 [*1]} @(p.clk);

 sequence a_wr = active_wr(a);
 sequence b_wr = active_wr(b);
 sequence sim_wr = {{{a_wr} within {b_rw}}
 |{{b_wr} within {a_wr}}}
 @(a.clk or b.clk);

 property collision = {sim_wr} |=>
 DPRAMTrans::AddrOverlap(a, b);

 assert never collision;
}
This assertion checks whether there is an overlap-
ping of the addresses within two active simultane-
ous write operations. It should be checked at each
edge of the RAM clocks, meaning start-
ing/finishing moments of any read/write operation.
Assertion uses values of the elementary SystemC
signals (a.clk, b.clk) and also the user-defined con-
ditions for determining the writing activity, ad-
dress overlapping. To enable such high-level con-
structions for the assertions engine, being de-
scribed in this paper, user has to define proper
value sampling interfaces for unique design ele-
ments:
template<>
bool DPRAMTrans::Evaluate<NO_ACTIVE_WRITE>
()
{
 // …
}

template<>
bool DPRAMTrans::Evaluate<WRITE_STARTED> ()
{
 // …
}
Here, such transactor state condition, as writing
activity, is considered as atomic for assertions en-
gine. However, these user-defined transaction level
conditions can group several other sub-transactions
to hierarchically manage various interaction proto-
cols. With the suggested flexible event sampling
architecture, the verification is not limited to a
particular C++ coding style or design organization.
Obviously, enabling assertions for custom Sys-
temC design elements requires some efforts from
the engineer, but they are incomparably smaller
than equivalent testbenches without the assertions
notations. Usage of transaction level sampling
methods is much more convenient at lower levels
of the abstraction, as it does not demand tracing of
the complex signal sequences. So, the demon-

strated example case clearly shows the benefits of
the suggested assertions based approach for Sys-
temC units, which simplifies the designer’s work
by cutting off large verification efforts.
5. Conclusions
The implementation of assertions entry for Sys-
temC was presented in this paper. The assertions
evaluation engine is a key component of Asser-
tions Based Verification (ABV), Functional Veri-
fication (FV) and Coverage Driven Verification
(CDV)–already proven design methodologies for
large-scale electronic systems [15-17]. While as-
sertions support is a standard option now for HDL-
based environments, it is still a novel for SystemC-
based . The system presented here enables design-
ers using SystemC with all the mentioned method-
ologies that were lack of until now.
To build reliable and industry strength verification
platform for SystemC we ported commercial asser-
tions entry proven in the HDL-based Riviera™
verification environment. The stress was put on
demonstrating how the properly structured imple-
mentation of the original HDL-based entry lead in
easy finding of corresponding means in SystemC
domain and in porting the whole solution with
minimal implementation efforts and without break-
ing up the original fundamental concepts put in the
original system.
A similar attempts were made in a past but they
didn’t reach an industry applications level for
number of reasons.
Both systems of Große and Drechsler use formal
proof engine for evaluation of the design and prop-
erties specifications. From theoretical point the
formal engine is better than simulation based one
as it is able to perform exhaustive proof of prop-
erty correctness while simulation based evaluation
is limited to the narrow path of testbench stimula-
tions. But on the other hand the design logic and
properties specifications needs to be transformed
into finite state machines (FSM) representations
before they can be processed by the proof engine.
This requirement seriously limits spectrum of con-
structs that can be used for design modeling. The
transformation step needs advanced algorithms
that are able to map source design logic into FSM
logic. While this is not a problem for designs de-
scribed at gates or RTL level, the complexity of
the task quickly increases for higher level of ab-
stractions: behavioral and system-level. It would
be very hard to develop so advanced transforma-
tion algorithm that would support all of possible
C++ (that is underlying for SystemC) coding
styles.
Unfortunately this reject the main benefits of Sys-
temC concept which enables designers with almost
unlimited variety of system-level abstractions (as
design patterns, interfaces, iterators etc.) built on

60 IEEE EWDTW, Odessa, September 15-19, 2005

top of rich C++ object oriented set of constructs. It
was shown here that the combination of assertions
semantics with SystemC and underlying C++ se-
mantics results in a very powerful toolset for
building fully re-usable system-level models and
verification units. Especially in conjunction with
the Transactions Level Modeling (TLM) [18] the
assertions based methodologies enter into new
dimension of electronic systems abstraction, which
allow easily formulate constraints for a highly
complicated designs.
Considering the compilation entry architecture
various attempts were made too. The CheckSyC
system [9] has an external compiler of non-
standard property language. This unfortunately
declines possibility of using commercially avail-
able verification libraries for popular standard IP
blocks.
The compilation entry architecture used in [8] is
more interesting – the syntax used widely in scien-
tific community for temporal properties specifica-
tions (as in CTL [19], PSL [11]) was emulated
directly at C++ level with means of overloaded
operator functions and lambda expressions [20]. In
this way the properties formulas could be written
together with SystemC code and compiled with
standard C++ compiler. But again it is not possible
to fully emulate all details of industry standard
notations so such system was unable to support
commercial verification libraries too.
The system presented here is not ideal too. There
are limitations in errors checking while compila-
tion of the assertions specifications, especially in
respect to the referred SystemC items from formu-
las. To enable assertions compilation with C++
strict type checking an integration with C++ com-
pilation system would be required. This can be
addressed while further research work.
References:
[1] “Assertion-Based Verification”, Synopsys, March
2003, www.synopsys.com / products / simulation
/assertion_based_wp.html
[2] “Components of a Complete Assertion-based Verifi-
cation Solution”, Cadence, 2005,
www.cadence.com/products/functional_ver/abv_dt.aspx
[3] “Assertion-Based Verification for Complex De-
signs”, 0-In Design Automation Inc., January 2002, http:
// www.0-in.com / whitepapers / Archer_Whitepaper.pdf

[4] International Standard ISO/IEC 9899:1999 “Pro-
gramming languages – C”, second edition, International
Standardization Organization, International Electrotech-
nical Comission, American National Standards Insitute,
1999, 554p.
[5] Lakos J. “Large-Scale C++ Software Design”, Addi-
son – Wesley 1996, 896p.
[6] Open SystemC Initiative Consortium –
www.systemc.org
[7] International Standard ISO/IEC/ANSI 14882:1998:
“Programming Languages – C++”, International Stan-
dardization Organization, International Electrotechnical
Comission, American National Standards Insitute. 1998,
748p.
[8] Große D., Drechsler R. “Formal Verification Of
LTL Formulas For SystemC Designs”, IEEE Interna-
tional Symposium on Circuits and Systems, 2003, pp.
245-248.
[9] Große D., Drechsler R. “CheckSyC: An Efficient
Property Checker for RTL SystemC Designs”, IEEE
International Symposium on Circuits and Systems, 2005,
pp. 4167-4170.
[10] ”OpenVera™ Language Reference Manual: Asser-
tions”, Version 1.4, Synopsys, April 2004, 136p.
[11] “Property Specification Language: Reference Man-
ual”, Version 1.1, Accellera, April 30, 2004, 131p.
[12] Aldec Inc., Riviera-IPT Overwiev, 2005,
http://www.aldec.com/products/riviera-ipt/
[13] Aldec Inc., Riviera Overview, 2005,
http://www.aldec.com/products/riviera/
[14] Forczek M., Hrynkiewicz K. “Formal Properties
Evaluation”, Proceedings of Programmable Devices and
Systems Workshop, 2003, pp. 305-311.
[15] Gonen E. “PSL in Action – ABV Experience Re-
port”, PSL/Sugar Consortium Meeting in
DAC 2004,http://www.pslsugar.org/papers/pm2_EyalGo
nenDAC04.pdf
[16] Ho R. “Maximizing Synergies of Assertions and
Coverage Points within a coverage-Driven Verification
Methodology”, Proc. of DesignCon 2005,
www.designcon.com / conference / 2005 /9-ta3_ho.pdf
[17] Yeung P. “Four Pillars of Assertion-based Verifica-
tion”,Euro DesignCon 2004,
http://www.cs.huji.ac.il/~jarom/vlsi_seminar/papers/4%
20Pillars%20of%20ABV%20Euro%20DesignCon%202
004.pdf
[18] Ghenassia F. “Transaction level modeling with
SystemC: TLM concepts and applications for embedded
systems”, Springer, 2005, 200p.
[19] Jang J.-E., Moon I.-H., Hachtel G. “Iterative ab-
straction-based CTL model checking”, Proceedings of
DATE’2000, Paris, France, 2000, pp. 502-509.
[20] Vandervoorde D., Josuttis N. “C++ templates: the
complete guide”, Addison-Wesley, 2002, 552p.

IEEE EWDTW, Odessa, September 15-19, 2005 61

Camera-ready was prepared in Kharkov National University of Radio Electronics

by Dr. Svetlana Chumachenko and Volodymyr Obrizan

Lenin ave, 14, KNURE, Kharkov, 61166, Ukraine

Approved for publication: 05.09.2005. Format 60×841/8.

Relative printer’s sheets: 33,4. Order: without cash transfer. Circulation: 100 copies.

Published by SPD FL Stepanov V.V.

Ukraine, 61168, Kharkov, Ak. Pavlova st., 311

