

Abstract — The set of macro operations POBS over

Boolean 2n-component vectors is offered, which essentially
facilitates programming calculations in many-dimensional
Boolean space. The application of that set is illustrated by
examples of the analysis of partial Boolean functions on a
monotony and presence of functional regularities, solving
problems of sequential composition and decomposition. An
important role is played by operations of interaction between
adjacent units of the space.

Index Terms — Boolean space, programming combinatorial

problems, efficient macro operations.

I. INTRODUCTION
 set composed of 2n Boolean n-component vectors is

called the Boolean n-dimensional space. The relation
of neighborhood is defined there − two vectors are called
adjacent, if they differ by values exactly in one component.
This relation can be represented by a graph, where nodes
correspond to elements of the Boolean space, and edges
join nodes corresponding to adjacent elements. Such graphs
are widely used in the educational literature for the
description of methods of Boolean functions minimization
and solution of other logical design tasks. However, already
at n>5 the graph image becomes too complicated and
inconvenient for practical usage which is illustrated by Fig.
1.

More acceptable from the programming point of view is
the representation of n-dimensional Boolean space as a
Boolean 2n-vector, i.e. a vector with 2n components
corresponding to elements of the space. These components
are numbered starting with zero: component with number k
corresponds to an element of the considered Boolean space
which represents n-component Boolean vector specifying
the binary code of number k. Assigning to components of
2n-vector the values from set {0, 1}, it is possible to set any

Manuscript received February 20, 2008.
This work was supported in part by the Belarusian Republican Fond of

Fundamental Researches (Project Ф07МС-034).
Arkadij Zakrevskij is with the United Institute of Informatics Problems

of the National Academy of Sciences of Belarus, 220023, Minsk; e-mail:
zakr@newman. bas-net. by.

Boolean function of n variables. For example, the Boolean
vector

f = 10000000 00000000 00001000 00000001
10000000 00000000 00110000 00000001

defines a Boolean function f of six variables x1, x2, x3, x4,
x5, x6, receiving the value 1 on the following sets of their
values: 000000, 010100, 011111, 100000, 110010,
1100011, 111111.

For convenience of visual perception the vector f is
divided into eight fragments corresponding to intervals of
the Boolean space with internal variables x4, x5, x6. These
fragments represent coefficients of disjunctive Shannon
decomposition of the function f by variables x1, x2, x3.

Boolean 2n-vectors serve as main objects of conversions
performed at solution of manifold logic combinatorial tasks,
which arise at design of discrete devices and developing
systems of artificial intelligence [1]. With the purpose of
raising the efficiency of their programming a basic set of
macro operations over such vectors is offered in this paper.
It is called POBS (Parallel Operations in Boolean Space).

As experience shows, the set POBS appears rather
efficient, allowing fast operating on a modern PC with long
Boolean vectors representing arbitrary Boolean functions of
many variables, up to 27 including. A row presenting such a
vector (containing 227 = 134 217 728 characters) would
need a paper strip of length more than 250 kilometers.

II. COMPONENT-WISE OPERATIONS OVER BOOLEAN
VECTORS

The elementary operations of the set POBS are
component-wise operations: the operation of inverting over
one vector and arbitrary two-place Boolean operations over
two vectors of the same size. We illustrate them by the
following examples.

Designate as g and h the Boolean vectors representing
Boolean functions g(x) and h(x), where x = (x1, x2, x3, x4,
x5). Let

g = 10001100 00100010 11100001 00101010,
h = 00110010 10001111 01100011 01100011.

Then
⎯g = 01110011 11011101 00011110 11010101,

g ∨ h = 10111110 10101111 11100011 01101011,
g ∧ h = 00000000 00000010 01100001 00100010,

 g ⊕ h = 10111110 10101101 10000010 01001001, etc.

Programming Calculations in Many-
Dimensional Boolean Space

Arkadij Zakrevskij

A

R&I, 2008, No 1 19

Fig. 1. Six-dimensional cube

More complicated is the operation of permutation of

arguments of a Boolean function, which is presented by a
Boolean 2n-vector. It is defined by a permutation on the set
of variable numbers and results in the appropriate
permutation of components of the vector.

For example, as a result of permutation of numbers
(4, 2, 1, 3), the variables of the set x = (x1, x2, x3, x4) will
rearrange in a new sequence (x4, x2, x1, x3). It leads to the
appropriate permutation of components of vector f,
representing the Boolean function f(x). The component fk is
relocated in place with number i, if the binary code k of
number k represents the result of multiplying the
permutation matrix P by the binary code i of number i. In
other words, the vector k is equal to the component-wise
disjunction of columns of matrix P, marked with ones in
vector i. It is illustrated below by the example of
substitution of the component f13 by f14:

 P i k

 1 0 0 0 1 1 1
 2 0 1 0 0 1 1
 3 1 0 0 0 × 0 = 1
 4 0 0 1 0 1 0

 1 2 3 4 13 14

Thus, permutation (4, 2, 1, 3) on the set of components of
vector x results in the following permutation on the set of
components of vector f :

(0, 8, 1, 9, 4, 12, 5, 13, 2, 10, 3, 11, 6, 14, 7, 15).

Let f = 0111 1010 0100 1001. Then the
considered permutation on the set of
components of this vector results in its new
value f * =0100 1110 1110 0001,
corresponding to the new order (x4, x2, x1, x3)
of arguments.

III. OPERATIONS OVER ADJACENT ELEMENTS
OF BOOLEAN SPACE

The set POBS contains also operations of
interaction between different components of
one Boolean 2n-vector f, specifying a
function f (x) = f (x1, x2, …, xn). Most
important are the operations over adjacent
elements of Boolean space. Boolean n-
vectors are adjacent if they differ by their
values only in one component. For
representation of Boolean space as a many-
dimensional Boolean cube such vectors are
presented by nodes joint with edges.

Usage of such structure allows to perform
parallel logical calculations and by that to
accelerate them considerably. This idea is not
new. So, a special supplement to the

universal computer, called L-machine, was developed in
1961-1962 in the Siberian Physical-Technical Institute,
which essentially accelerates the process of solving logical
design problems [2]. The basic idea consists in executing of
distributed in a Boolean space logic operations on a series
of information fields playing the role of some registers. The
fields are structurally similar to ten-dimensional Boolean
cubes and allow to represent immediately Boolean
functions of ten variables and complete component-wise
operations over them. One of the fields is named main, and
is used for conversions limited by one function. The circuit
implementation of the main field provides simultaneous
execution of any two-place Boolean operation within of
each from 512 couples of elements adjacent by some
selected variable.

The same idea was put in the basis of the commutative
computer offered by W.D. Hillis in 1978 and designed by
Thinking Machine Corporation in 1985. This computer
provides information exchange in a multiprocessor
computer, which components are immediately connected
with each other similarly to nodes of the n-dimensional
Boolean cube. Transfer of a portion of information
between any two processors in such computer takes no
more than n time clicks. Several commutative computers
where created and used by the researches working in the
field of artificial intelligence to solve the logic inference
problems [3].

When the number of arguments n exceeds 5 it is
convenient to set vector f by a Boolean matrix of size
25 × 2n-5, representing its 32-element rows by words in the
computer memory (what is adequate for the majority of
modern computers). In this case any two units of the space
M adjacent by the variable xk belong to the same word if k <

20 R&I, 2008, No 1

6, and belong to different words otherwise, that should be
taken into account at programming. Let's remark, that in
presented below examples it is more convenient for visual
perception to use matrices by the size 24 × 2n-4.

We introduce the following elementary operations of
conversion of a Boolean function f (x) = f (x1, x2, …, xn)
presented with vector f, by interaction of adjacent units:

 f − k − assignment of value 0 to argument xk,
 f + k − assignment of value 1 to argument xk.

These operations are illustrated by the following
matrices, splitting the set of elements of vector f into two
parts corresponding to different values of the selected
variable xk and called below conditionally left (marked bold
font for x4) and right:

f f − 4

 -------- -------- 3 ---- ---- ---- ---- 4 -- -- -- -- -- -- -- -- 5 - - - - - - - - - - - - - - - - 6
 0110110101011110 0110011001010101
 | 0010010000010110 0010001000010001
| 1100101001110001 1100110001110111
|| 0100010111010011 0100010011011101

 1101110111101110 0110110101011110
 | 0100010001100110 0010010000010110
| 1010101000010001 0110110101011110
|| 0101010100110011 0010010000010110

1 2 f + 4 f − 1

At execution of the operation f − k both elements in
each couple adjacent by the variable xk accept value from
the left part, at execution of the operation f + k − from the
right part. If n < 6 (in the given example if n < 5) this
operation is implemented by means of appropriate shift of
columns in the matrix, otherwise – of rows.

By way of generalization we shall enter the following
operations, in which instead of the scalar k the n-
component Boolean vector u is used:

f − u − assignment of value 0 to all arguments xk, which
correspond to 1-components (having value 1) uk of vector
u,
f + u − assignment of value 1 to all arguments xk, which
correspond to 1-components uk of vector u.

The first of these operations can be interpreted as
obtaining the initial coefficient f0 of disjunctive Shannon
decomposition of function f by all variables of the set u (in
this case all variables receive value 0), the second − as
obtaining the finite coefficient f1 (when all variables receive
value 1).

For example, if n = 8 and u = 01100010, the operation
f − u is equivalent to the composition ((f − 2) − 3) − 7, and
the operation f + u is equivalent to the composition
((f + 2) + 3) + 7. Thus the same value is assigned to
variables x2, x3 and x7.

Let's introduce also the operation of symmetrization
S f * k, at which execution the both adjacent by variable xk
elements in each couple gain an identical value, as a result
of application of the operator *, selected from the set {∨, ∧,
→, ⊕, …}, to the initial values of the elements of a couple.
This operation also is reduced to the surveyed above, as

S f * k = (f – k) * (f + k).

For example,

 f S f ⊕ 1
 -------- -------- 3 ---- ---- ---- ---- 4 -- -- -- -- -- -- -- -- 5 - - - - - - - - - - - - - - - - 6
 0110110101011110 1010011100101111
 | 0010010000010110 0110000111000101
| 1100101001110001 1010011100101111
|| 0100010111010011 0110000111000101

 0111111101111111 0000110000001100
 | 0011011000110110 0000000000000000
| 1111101111111011 1100000000110000
|| 1101011111010111 0000000011000011

1 2 S f ∨ 3 S f ∧ 6

In particular, operation S f ⊕ k represents the well known
operation of derivation of a Boolean function by the
variable xk.

The operation of symmetrizing S f * k also is generalized
by usage of a vector u instead of a scalar k. It is represented
by expression S f * u and is equivalent to the sequence of
operations S f * ki, in which scalars ki represent the numbers
of 1-components of vector u. In this case operator * is
selected from the set {∨, ∧, ⊕}.

For example, if u = 010011, the operation S f ∧ u is
equivalent to the expression

S(S(S f ∧ 2) ∧ 5) ∧ 6.

It can be interpreted in such a way: all elements of the
fragment of vector f, corresponding to conjunction
⎯x1⎯x3⎯x4, gain value 0, if even one of them was equal to 0.

IV. OPERATIONS OF CONVERSION OF DIMENSION OF
BOOLEAN VECTORS

Such operations allow to implement interaction between
Boolean vectors of different dimension.

Consider two Boolean vectors:
n-vector u with k ones marking some k variables from the

set x = (x1, x2, …, xn),
2k-vector h, specifying the Boolean function h of the

marked variables.
We introduce into set POBS the operation h × u of

transfer of the function h into a fragment of the Boolean
space of n variables, which corresponds to the conjunction
of inversions of not marked in u variables. By that all
elements of remaining fragments gain value 0.

Let, for example, n = 5, u = 01101 and h = 10010011.

R&I, 2008, No 1 21

Then a Boolean 25-vector is created, in which the
fragment corresponding to the conjunction ⎯x1⎯x4 is
selected (marked with bold):

00000000 00000000 00000000 00000000,

and the vector h is inscribed in it. As a result, the following
vector is obtained:

h×u= 10000100 00001100 00000000 00000000

The operation f : u is introduced by analogy: it realizes
a return carry of the information from the selected fragment
of 2n-vector to the vector h, specifying obtained by that
Boolean function h of k variables. So, if u = 01010 and

f = 00110010 11100000 11100110 00011101

then the fragment is found, which corresponds to
conjunction ⎯x1⎯x3⎯x5

00110010 11100000 11100110 00011101

and the information contained in it is used for build-up of
the required vector:

h = f : u = 0111.

If it is known, that function f represented by vector f
depends only on variables of the set u (the rest variables
appear fictitious), then by means of the operation f : u the
latter are deleted from the function and the result is
represented by vector h.

V. OPERATIONS OVER PARTIAL BOOLEAN FUNCTIONS
Let's pass to reviewing partial (not completely defined)

Boolean functions widely used when solving problems of
logical design.

Any arbitrary partial Boolean function f of n variables
can be represented by a corresponding 2n-component
ternary vector f −. For programming it is more convenient to
set it by a couple of Boolean vectors f 1 and f 0, also 2n-
component. By that ones in the vector f 1 mark components,
on which the function f receives value 1, and in the vector f
0 they mark components, where the function is equal to
zero. In other words, the vectors f 1 and f 0 represent
accordingly characteristic sets M 1 and M 0 of the function f.

Let, for example,

f − = 1-001010 011--01-1.
Then

f 1 = 10001010 011000101,
f 0 = 00110101 100001000.

In this case the operation of assignment of value 0 to
argument xk will be represented by the couple of operations
f 1– k , f 0– k, and that of value 1 – by the couple f 1 + k,
f 0 + k.

Similarly to f, the Boolean vector u also can appear
ternary, for example when representing some elementary
conjunction Then it also should be replaced by a pair of
Boolean vectors u1 and u0, in this case n-component. For

example, in the operation of disjunctive decomposition of a
partial Boolean function f by all variables of the united set
u1 ∪ u0 the obtaining of the coefficient at that conjunction is
carried out by the series of operations

f 1– u0 , f 0– u0, f 1+ u1 , f 0+ u1.

VI. PROGRAMMING IN BASIS POBS
Let's show some examples of using a software

technology in basis POBS to solve tasks of the theory of
Boolean functions.

A.. Testing a partial Boolean function on monotony
Consider a partial Boolean function f(x) = (x1, x2, …, xn),

given by two sets of argument values collections: by the set
M 1, on which it receives value 1, and the set M 0, where it
receives value 0. Let's term it as monotone or, in particular,
a positive function, if for any couple of collections p ∈ M 1
and q ∈ M 0 condition p > q (vector p is greater than
vector q) is satisfied, i.e. for any couple (pi, qi) of vector
components pi ≥ qi and at least for one couple pi > qi .

A simple method of checking the function for monotony
could be applied, which is based on exhaustive search of all
couples (p, q) and testing each of them on satisfying the
condition p > q . However, with increase of the number of
variables n and corresponding growth of power of sets M 1
and M 0 such method appears too labour-consuming. The
offered below method using operations from the set POBS
is more efficient.

Let's set the function f (x) by two Boolean 2n-vectors: f 1
and f 0. The elements of set M 1 are represented by ones in
vector f 1, the elements of set M o - by ones in vector f 0.
Designate as M* the set of such elements of Boolean space,
each of which is greater than some element from set M 1 or
equals it, and present this set by vector f*.

The affirmation 1. The function f(x) is monotone, if
and only if f * f 0 = 0.

The vector f * can be found with the help of introduced
above operations of the set POBS, by a sequence of n steps.
At first we receive the vector f 2 = (f 1 – 1) ∨ f 1, presenting
set M1, supplemented with elements of Boolean space,
adjacent "from above" to some elements from M1 by
variable x1. Then the obtained set is expanded similarly by
the next variable x2: f 3=(f 2 – 1) ∨ f 2. After iterating this
operation by all remaining variables we receive the required
vector f n+1 = f *.

Let, for example, n = 5,

f 1 = 00010000 00100000 00000001 00001010,
f 0 = 11000010 00000100 10100000 10000000.

In this case the process of the sequential extension of set
M1, resulting in obtaining vector f * representing set M*,
can be demonstrated by the following sequence of vectors
obtained on the next steps:

f 2 = 00010000 00100000 00010001 00101010 ,

22 R&I, 2008, No 1

f 3 = 00010000 00110000 00010001 00111011 ,
f 4 = 00010001 00110011 00010001 00111011 ,
f 5 = 00010001 00110011 00010001 00111011 ,
f 6 = 00010001 00110011 00010001 00111111= f*

Component-wise conjunction of the obtained vector
with vector

11000010 00000100 10100000 10000000 = f 0

is equal to zero (f *∧f 0=0), therefore, the considered
Boolean function is monotone.

B. Search for functional regularities
An important role in modern information technologies is

played by procedures of data mining, i.e. extraction of
knowledge from the dataflow, search of regularities
allowing discovering right decisions at solution of the
intellectual tasks [4]. A special but important case of
regularities is considered below, namely functional
regularities, often encountered in natural sciences.

The following formal task was considered in [5]. We
assume that a set of objects is preset, each of which is
characterized by some combination of n binary values
(indicating if the corresponding signs are present or not
present). The question is, whether it is possible always to
define uniquely the value of some selected sign, if the
values of remaining ones are known? And if possible, how
to define it?

The initial information in this task can be presented by a
collection R of some elements in n-dimensional Boolean
space M = {0, 1}n of signs. These elements set known
objects and can be considered as the roots of some Boolean
equation F = 1, where x = (x1, x2, …, xn).

This equation is called solvable in regard to some
variable, if this variable can be presented by a Boolean
function of the remaining variables, which is defined on the
set R [5]. We consider the task of detection of such
variables in the equation F = 1 and finding the appropriate
functions.

The affirmation 2. The necessary and sufficient
condition of solvability of the equation F = 1 in regard to
the variable xi is the absence in the set R of couples of
collections, adjacent by xi.

Proof by contradiction (by the rule modus tollens): if
there exists such a couple, the variable xi receives in it
different values on identical sets of values of remaining
variables, which contradicts the definition of the functional
relation.

Let's designate through f(x) the characteristic Boolean
function of set R, where f (qj) = 1 if qj ∈ R and f (qj) = 0 if
¬ (qj ∈ R). Through f (xi = 0) and f (xi = 1) we denote the
result of replacement in the function f (x) the variable xi
with constant 0 or 1, accordingly.

The affirmation 3. The equation F = 1 is solvable in
regard to variable xi, if and only if f (xi = 0) ∧ f (xi = 1) = 0.

This affirmation allows to apply introduced above vector
operations f – i and f + i for checking the equation for
solvability in regard to variable xi. Affirmation 3 can be

reformulated in terms of these operations in the following
way: the necessary and sufficient condition of solvability of
the equation F = 1 in regard to variable xi is the satisfaction
of the relation

(f – i) ∧ (f + i) = 0.

In case if this condition is satisfied there arises a task of
finding an appropriate Boolean function, which generally
appears to be partial, and its optimal determination. The
optimization can consist both in minimization of the
number of arguments of the function, and in simplification
of its algebraic representation, for example in DNF.

Let's consider the first of these tasks. It is similar to the
task of minimization of unconditional diagnostic test and
can be solved by the same method. Some argument xk can
be defined as fictitious, if after its deleting the equation
remains solvable in regard to the variable xi. The operation
of deleting the argument xk can be presented as the
extension of set R by this variable, i.e. as the following
conversion of its characteristic function f

f := f(xk = 0) ∨ f(xk = 1).

In terms of introduced above vector operations it is
defined as S f ∨ k, whence follows

The affirmation 4. The argument xk can be deleted from
the set of arguments of the variable xi defined as a function
of remaining variables, if and only if

((S f ∨ k) – i) ∧ ((S f ∨ k) + i) = 0.

C. Sequential composition of Boolean functions
Let's consider the following task. The set of arguments

x=(x1, x2, …, xn) is divided by the Boolean n-vectors u, w
and v into three not intersected subsets u, w and v :
x = u ∪ w ∪ v. Two Boolean functions h(u, w) and
g(x, w, v), presented with corresponding Boolean vectors h
and g are given also. It is required to calculate their
composition under condition x = h(u, w) and to present the
obtained Boolean function f(x) by a 2n-vector f.

Such composition called non-disjoint sequential two-
block, is illustrated by an example on fig. 2, where n = 6
and the sets u = (x1, x2), w = (x3, x4) and v = (x5, x6) are
presented by six-dimensional Boolean vectors u = 110000,
w = 001100 and v = 000011.

 h

 x

 g f

Fig. 2. An example of non-disjoint sequential
two-block composition

x1
x2

x3
x4
z5
x6

R&I, 2008, No 1 23

Let's assume, that the functions h(u, w) and g(x, w, v)
are preset by corresponding vectors:

 h = 1101001001101100
 g = 0011010011001001 1010010110101011
 g0 g1

For convenience, the vector g is broken in two halves,
specifying values of the function g(x, w, v) at values 0 and 1
of binary variable x.

We present the Boolean space of variables x = (u, w, v)
as follows:

 ---- ---- w1 ---- ---- w2 -- -- -- -- v1 - - - - - - - - v2

 0000 0000 0000 0000
 | 0000 0000 0000 0000
 | 0000 0000 0000 0000
 || 0000 0000 0000 0000
 u2 u1

Then we sequentially map onto this space functions g,
h0 and h1, introducing thus additional fictitious variables
from the sets v and u and representing results by 2n-vectors
a, b and c:

 h × (u, w) − v = a
1000 1000 0000 1000 1111 1111 0000 1111
0000 0000 1000 0000 0000 0000 1111 0000
0000 1000 1000 0000 0000 1111 1111 0000
1000 1000 0000 0000 1111 1111 0000 0000

 g0 × (w, v) − u = b
0011 0100 1100 1001 0011 0100 1100 1001
0000 0000 0000 0000 0011 0100 1100 1001
0000 0000 0000 0000 0011 0100 1100 1001
0000 0000 0000 0000 0011 0100 1100 1001

 g1 × (w, v) − u = c
1010 0101 1010 1011 1010 0101 1010 1011
0000 0000 0000 0000 1010 0101 1010 1011
0000 0000 0000 0000 1010 0101 1010 1011
0000 0000 0000 0000 1010 0101 1010 1011

In summary we discover the vector f, representing the
required composition of functions h(u, w) and g(x, w, v):

0011 0100 0000 1001
0000 0000 1100 0000 a b
0000 0100 1100 0000
0011 0100 0000 0000

0000 0000 1010 0000
1010 0101 0000 1011 ⎯a c
1010 0000 0000 1011
0000 0000 1010 1011

0011 0100 1010 1001
1010 0101 1100 1011 f = a b ∨⎯a c
1010 0100 1100 1011
0011 0100 1010 1011

D. Testing a partial Boolean function on decomposability
at a given partition on the set of arguments

Suppose that a partial Boolean function f(x) of n
variables, represented by a ternary vector f − is known. It is
required to test it on decomposability at a given partition
u/v of the set x, i.e. to find out, whether there exist such
functions h(u, w) and g(x, w, v) of smaller number of
variables, that f (x) = g(h(u, w), w, v), where w = x \ (u ∪
v).

At the positive answer to this question the logic circuit
implementing function f(x) can be simplified (for example,
at logical synthesis in the basis of units LUT (look up
tables), implementing functions of restricted number of
variables).

The necessary and sufficient condition of
decomposability of a completely defined Boolean function
f(x) at a partition u/v, which should be fulfilled for each
coefficient fi (u, v) of disjunctive Shannon decomposition of
the function f(x) by variables of the set w is the following.
Each of the coefficients of alike decomposition of these
coefficients by variables of the set u should receive no more
than two different values.

The coefficients fi (u, v) of disjunctive Shannon
decomposition of a partial Boolean function f(x) by
variables of set w are represented by fragments Ti - ternary
matrices, which rows correspond to different values of
vector u, and columns correspond to different values of
vector v. The corresponding components of the ternary
vector f − serve as elements of fragments. The condition of
decomposability of the function f(x) at the partition u/v can
be formulated now as follows: for each coefficient fi (u, v)
such predetermination of the appropriate matrix Ti is
possible (replacement of values "−" by 0 or 1), at which its
rows will receive no more than two different values.

It was shown in [6], that the check of this condition is
reduced to finding out if the graph of orthogonality of rows
of each matrix Ti is bichromatic. A heuristic algorithm was
suggested there, which guarantees obtaining exact solutions
under condition of connectivity of the considered graphs
(this condition is usually fulfilled). The ternary vector f − is
represented in it by an appropriate couple of Boolean
vectors f 1 and f 0, and the operations over the neighbors are
effectively used providing simultaneous testing of all 2|w|
fragments Ti.

The algorithm tries to divide the set of rows in each
fragment into two classes A and B of mutually compatible
rows. A sequence of conversions is implemented over the
initial vectors f 1 and f 0, which results are represented by
Boolean 2n-vectors a 1 and a 0.

The algorithm is iterated. The first iteration starts with
build-up of the class A by inclosing in it the first row of the
fragment. This operation is reduced to a sequence of
substitutions of value 0 for the variables from set u.

 a 0 := f 0 − u
 a 1 := f 1 − u

24 R&I, 2008, No 1

Then in each fragment the rows orthogonal to the first
one are found and marked with 1 in the Boolean vector b.

 b := S (h 0f 1 ∨ h 1f 0) ∨ v.

The obtained sets constitute classes B and are checked
for compatibility:

a 0 := S (f 0b) ∨ u

a 1 := S (f 1b) ∨ u

If by that a 0 a 1 ≠ 0, some of the considered sets appear
incompatible, whence follows, that the graph of
orthogonality of rows of the corresponding fragment is not
bichromatic and, therefore, the function f(x) is not
decomposable at the partition u/v.

On the other hand, if a 0 a 1 = 0, the following iteration is
implemented. The classes A are supplemented by rows,
orthogonal by some of rows of classes B and are checked
for compatibility. Then the classes B can be similarly
extended, etc. The algorithm terminates after execution of a
sufficient number of iterations.

REFERENCES
[1] Zakrevskij A.D Computation in Boolean spaces. In “Logical structure

of scientific knowledge”. Moscow: Nauka, 1965, pp. 292-310 (in
Russian).

[2] Zakrevskiy A.D. Machine for the solution of logical problems of the
type of the synthesis of relay circuits. − Relay systems and finite
automata. Transl. proceedings., Burrough Corp., 1964. pp. 544-557.

[3] W. Daniel Hillis. Connection machine. − Scientific American, June
1987, Vol. 256, No 6.

[4] Data mining and knowledge discovery approaches based on rule
induction techniques (E. Triantaphyllou and G. Felici, Eds.). –
Massive Computing Series, Springer, Heidelberg, Germany, 2006.

[5] Zakrevskij A.D. About solvability of Boolean equations. -
Proceedings of NAS of Belarus, 2007, Vol. 51, No 5, pp. 44-46 (in
Russian).

[6] Arkadij Zakrevskij. A new heuristic algorithm for sequential two-
block decomposition of Boolean functions. – Proceedings of 3rd
IFAC Workshop on Discrete Event System Design DESDes’06.
September 26-28, 2006, Rydzyna, Poland. University of Zielona
Gora, pp. 13-17.

R&I, 2008, No 1 25

