
  

  
Abstract — The set of macro operations POBS over 

Boolean 2n-component vectors is offered, which essentially 
facilitates programming calculations in many-dimensional 
Boolean space. The application of that set is illustrated by 
examples of the analysis of partial Boolean functions on a 
monotony and presence of functional regularities, solving 
problems of sequential composition and decomposition. An 
important role is played by operations of interaction between 
adjacent units of the space. 

 
Index Terms — Boolean space, programming combinatorial 

problems, efficient macro operations.  

I. INTRODUCTION 
 set composed of 2n Boolean n-component vectors is 

called the Boolean n-dimensional space. The relation 
of neighborhood is defined there − two vectors are called 
adjacent, if they differ by values exactly in one component. 
This relation can be represented by a graph, where nodes 
correspond to elements of the Boolean space, and edges 
join nodes corresponding to adjacent elements. Such graphs 
are widely used in the educational literature for the 
description of methods of Boolean functions minimization 
and solution of other logical design tasks. However, already 
at n>5 the graph image becomes too complicated and 
inconvenient for practical usage which is illustrated by Fig. 
1. 

More acceptable from the programming point of view  is 
the representation of n-dimensional Boolean space as a 
Boolean 2n-vector, i.e. a vector with 2n components 
corresponding to elements of the space. These components 
are numbered starting with zero: component with number k 
corresponds to an element of the considered Boolean space 
which represents n-component Boolean vector specifying 
the binary code of number k. Assigning to components of 
2n-vector the values from set {0, 1}, it is possible to set any  
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Boolean function of n variables. For example, the Boolean 
vector  

f  = 10000000 00000000 00001000 00000001 
10000000 00000000 00110000 00000001 

defines a Boolean function  f  of six variables x1, x2, x3, x4, 
x5, x6, receiving the value 1 on the following sets of their 
values: 000000, 010100, 011111, 100000, 110010, 
1100011, 111111.  

For convenience of visual perception the vector f is 
divided into eight fragments corresponding to intervals of 
the Boolean space with internal variables x4, x5, x6. These 
fragments represent coefficients of disjunctive Shannon 
decomposition of the function  f  by variables x1, x2, x3. 

Boolean 2n-vectors serve as main objects of conversions 
performed at solution of manifold logic combinatorial tasks, 
which arise at design of discrete devices and developing 
systems of artificial intelligence [1]. With the purpose of 
raising the efficiency of their programming a basic set of 
macro operations over such vectors is offered in this paper. 
It is called POBS (Parallel Operations in Boolean Space). 

As experience shows, the set POBS appears rather 
efficient, allowing fast operating on a modern PC with long 
Boolean vectors representing arbitrary Boolean functions of 
many variables, up to 27 including. A row presenting such a 
vector (containing 227 = 134 217 728 characters) would 
need a paper strip of length more than 250 kilometers. 

II. COMPONENT-WISE OPERATIONS OVER BOOLEAN 
VECTORS 

The elementary operations of the set POBS are 
component-wise operations: the operation of inverting over 
one vector and arbitrary two-place Boolean operations over 
two vectors of the same size. We illustrate them by the 
following examples.  

Designate as g and h the Boolean vectors representing 
Boolean functions g(x) and h(x), where x = (x1, x2, x3, x4, 
x5). Let 

g = 10001100 00100010 11100001 00101010, 
h = 00110010 10001111 01100011 01100011. 

Then  
⎯g = 01110011 11011101 00011110 11010101, 

g ∨ h = 10111110 10101111 11100011 01101011, 
g ∧ h = 00000000 00000010 01100001 00100010, 

     g ⊕ h = 10111110 10101101 10000010 01001001,   etc. 
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Fig. 1.  Six-dimensional cube 

 
More complicated is the operation of permutation of 

arguments of a Boolean function, which is presented by a 
Boolean 2n-vector. It is defined by a permutation on the set 
of variable numbers and results in the appropriate 
permutation of components of the vector.  

For example, as a result of permutation of numbers 
(4, 2, 1, 3), the variables of the set x = (x1, x2, x3, x4) will 
rearrange in a new sequence (x4, x2, x1, x3). It leads to the 
appropriate permutation of components of vector f, 
representing the Boolean function f(x). The component fk is 
relocated in place with number i, if the binary code k of 
number k represents the result of multiplying the 
permutation matrix P by the binary code i of number i. In 
other words, the vector k is equal to the component-wise 
disjunction of columns of matrix P, marked with ones in 
vector i. It is illustrated below by the example of 
substitution of the component  f13 by  f14:  

            P       i     k 

     1  0 0 0 1    1     1 
     2  0 1 0 0    1     1 
     3  1 0 0 0  × 0  =  1 
     4  0 0 1 0    1     0 

        1 2 3 4    13    14 

Thus, permutation (4, 2, 1, 3) on the set of components of 
vector x results in the following permutation on the set of 
components of vector  f :   

(0, 8, 1, 9, 4, 12, 5, 13, 2, 10, 3, 11, 6, 14, 7, 15). 

Let f = 0111 1010 0100 1001. Then the 
considered permutation on the set of 
components of this vector results in its new 
value f * =0100 1110 1110 0001, 
corresponding to the new order (x4, x2, x1, x3) 
of arguments. 

III. OPERATIONS OVER ADJACENT ELEMENTS 
OF BOOLEAN SPACE 

The set POBS contains also operations of 
interaction between different components of 
one Boolean 2n-vector f, specifying a 
function f (x) = f (x1, x2, …, xn). Most 
important are the operations over adjacent 
elements of Boolean space. Boolean n-
vectors are adjacent if they differ by their 
values only in one component. For 
representation of Boolean space as a many-
dimensional Boolean cube such vectors are 
presented by nodes joint with edges.  

Usage of such structure allows to perform 
parallel logical calculations and by that to 
accelerate them considerably. This idea is not 
new. So, a special supplement to the 

universal computer, called L-machine, was developed in 
1961-1962 in the Siberian Physical-Technical Institute, 
which essentially accelerates the process of solving logical 
design problems [2]. The basic idea consists in executing of 
distributed in a Boolean space logic operations on a series 
of information fields playing the role of some registers. The 
fields are structurally similar to ten-dimensional Boolean 
cubes and allow to represent immediately Boolean 
functions of ten variables and complete component-wise 
operations over them. One of the fields is named main, and 
is used for conversions limited by one function. The circuit 
implementation of the main field provides simultaneous 
execution of any two-place Boolean operation within of 
each from 512 couples of elements adjacent by some 
selected variable. 

The same idea was put in the basis of the commutative 
computer offered by W.D. Hillis in 1978 and designed by 
Thinking Machine Corporation in 1985. This computer 
provides information exchange in a multiprocessor 
computer, which components are immediately connected 
with each other similarly to nodes of the n-dimensional 
Boolean cube.   Transfer of a portion of information 
between any two processors in such computer takes no 
more than n time clicks. Several commutative computers 
where created and used by the researches working in the 
field of artificial intelligence to solve the logic inference 
problems [3]. 

When the number of arguments n exceeds 5 it is 
convenient to set vector f by a Boolean matrix of size    
25 × 2n-5, representing its 32-element rows by words in the 
computer memory (what is adequate for the majority of 
modern computers). In this case any two units of the space 
M adjacent by the variable xk belong to the same word if k < 

20 R&I, 2008, No 1



  

6, and belong to different words otherwise, that should be 
taken into account at programming. Let's remark, that in 
presented below examples it is more convenient for visual 
perception to use matrices by the size 24 × 2n-4. 

We introduce the following elementary operations of 
conversion of a Boolean function f (x) = f (x1, x2, …, xn) 
presented with vector  f, by interaction of adjacent units: 

   f − k  − assignment of value 0 to argument xk,   
   f + k  − assignment of value 1 to argument xk. 
 

These operations are illustrated  by the following 
matrices, splitting the set of elements of vector f into two 
parts corresponding to different values of the selected 
variable xk and called below conditionally left (marked bold 
font for x4) and right:   

 
f                   f − 4 

           --------           -------- 3        ----    ----       ----    ---- 4      --  --  --  --     --  --  --  -- 5     - - - - - - - -    - - - - - - - - 6 
   0110110101011110   0110011001010101  
 | 0010010000010110   0010001000010001  
|  1100101001110001   1100110001110111  
|| 0100010111010011   0100010011011101  

   1101110111101110   0110110101011110 
 | 0100010001100110   0010010000010110 
|  1010101000010001   0110110101011110 
|| 0101010100110011   0010010000010110 

1 2                  f + 4                                      f − 1 

At execution of the operation  f − k  both elements in 
each couple adjacent by the variable xk accept value from 
the left part, at execution of the operation  f + k − from the 
right part. If n < 6 (in the given example if n < 5) this 
operation is implemented by means of appropriate shift of 
columns in the matrix, otherwise – of rows.   

By way of generalization we shall enter the following 
operations, in which instead of the scalar  k the n-
component Boolean vector u is used: 

f − u − assignment of value 0 to all arguments xk, which 
correspond to 1-components (having value 1) uk of vector  
u, 
f + u − assignment of value 1 to all arguments xk, which 
correspond to 1-components uk of vector  u. 

The first of these operations can be interpreted as 
obtaining the initial coefficient f0 of disjunctive Shannon 
decomposition of function f by all variables of the set u (in 
this case all variables receive value 0), the second − as 
obtaining the finite coefficient f1 (when all variables receive 
value 1).  

For example, if n = 8 and u = 01100010, the operation  
f − u  is equivalent to the composition ((f − 2) − 3) − 7, and 
the operation f + u is equivalent to the composition 
((f + 2) + 3) + 7. Thus the same value is assigned to 
variables x2, x3 and x7. 

Let's introduce also the operation of symmetrization 
S f * k, at which execution the both adjacent by variable xk 
elements in each couple gain an identical value, as a result 
of application of the operator *, selected from the set {∨, ∧, 
→, ⊕, …}, to the initial values of the elements of a couple. 
This operation also is reduced to the surveyed above, as 

S f * k  = (f – k) * (f + k). 

For example, 

          f                                     S f ⊕ 1        
           --------          --------  3        ----    ----      ----    ---- 4      --  --  --  --    --  --  --  --  5     - - - - - - - -   - - - - - - - - 6 
   0110110101011110  1010011100101111 
 | 0010010000010110  0110000111000101 
|  1100101001110001  1010011100101111 
|| 0100010111010011  0110000111000101 

   0111111101111111  0000110000001100  
 | 0011011000110110  0000000000000000  
|  1111101111111011  1100000000110000  
|| 1101011111010111  0000000011000011  

1 2      S f ∨ 3         S f ∧ 6 

In particular, operation S f ⊕ k represents the well known 
operation of derivation of a Boolean function by the 
variable xk.  

The operation of symmetrizing S f * k also is generalized 
by usage of a vector u instead of a scalar k. It is represented 
by expression S f * u and is equivalent to the sequence of 
operations S f * ki, in which scalars ki represent the numbers 
of 1-components of vector u. In this case operator * is 
selected from the set {∨, ∧, ⊕}.  

For example, if u = 010011, the operation S f ∧ u is 
equivalent to the expression  

S(S(S f ∧ 2) ∧ 5) ∧ 6. 

It can be interpreted in such a way:  all elements of the 
fragment of vector f, corresponding to conjunction 
⎯x1⎯x3⎯x4, gain value 0, if even one of them was equal to 0. 

IV. OPERATIONS OF CONVERSION OF DIMENSION OF 
BOOLEAN VECTORS 

Such operations allow to implement interaction between 
Boolean vectors of different dimension. 

Consider two Boolean vectors:  
n-vector u with k ones marking some k variables from the 

set x =  (x1, x2, …, xn), 
2k-vector h, specifying the Boolean function h of the 

marked variables. 
We introduce into set POBS the operation h × u of 

transfer of the function h into a fragment of the Boolean 
space of n variables, which corresponds to the conjunction 
of inversions of not marked in u variables. By that all 
elements of remaining fragments gain value 0. 

Let, for example, n = 5, u = 01101 and h = 10010011.  
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Then a Boolean 25-vector is created, in which the 
fragment corresponding to the conjunction  ⎯x1⎯x4  is 
selected (marked with bold):  

00000000 00000000 00000000 00000000, 

and the vector h is inscribed in it. As a  result, the following 
vector is obtained: 

h×u= 10000100 00001100 00000000 00000000 

The operation  f : u is introduced by analogy:  it realizes 
a return carry of the information from the selected fragment 
of 2n-vector to the vector h, specifying obtained by that 
Boolean function h of k variables. So, if u = 01010 and   

f = 00110010 11100000 11100110 00011101 

then the fragment is found, which corresponds to 
conjunction  ⎯x1⎯x3⎯x5   

00110010 11100000 11100110 00011101 

and the information contained in it is used for build-up of 
the required vector: 

h =  f : u = 0111. 

If it is known, that function f represented by vector f 
depends only on variables of the set u (the rest variables 
appear fictitious), then by means of the operation  f : u  the 
latter are deleted from the function and the result is 
represented by vector h.  

V. OPERATIONS OVER PARTIAL BOOLEAN FUNCTIONS 
Let's pass to reviewing partial (not completely defined) 

Boolean functions widely used when solving problems of 
logical design.  

Any arbitrary partial Boolean function f of  n variables 
can be represented by a corresponding 2n-component 
ternary vector f −. For programming it is more convenient to 
set it by a couple of Boolean vectors f 1 and f 0, also 2n-
component. By that ones in the vector f 1 mark components, 
on which the function f receives value 1, and in the vector f 
0 they mark components, where the function is equal to 
zero. In other words, the vectors f 1 and f 0 represent 
accordingly characteristic sets M 1 and M 0 of the function f.  

Let, for example, 

f − = 1-001010 011--01-1. 
Then  

f 1 = 10001010 011000101, 
f 0 = 00110101 100001000. 

In this case the operation of assignment of value 0 to 
argument xk will be represented by the couple of operations  
f 1– k ,  f 0– k, and that of value 1 – by the couple  f 1 + k,  
f 0 + k. 

Similarly to f, the Boolean vector u also can appear 
ternary, for example when representing some elementary 
conjunction Then it also should be replaced by a pair of 
Boolean vectors u1 and u0, in this case n-component. For 

example, in the operation of disjunctive decomposition of a 
partial Boolean function f by all variables of the united set 
u1 ∪ u0 the obtaining of the coefficient at that conjunction is 
carried out by the series of operations   

f 1– u0 ,  f 0– u0,  f 1+ u1 ,  f 0+ u1. 

VI. PROGRAMMING IN BASIS POBS 
Let's show some examples of using a software 

technology in basis POBS to solve tasks of the theory of 
Boolean functions. 

A.. Testing a partial Boolean function on monotony  
Consider a partial Boolean function  f(x) = (x1, x2, …, xn), 

given by two sets of argument values collections:  by the set 
M 1, on which it receives value 1, and the set M 0, where it 
receives value 0. Let's term it as monotone or, in particular, 
a positive function, if for any couple of collections  p ∈ M 1 
and q ∈ M 0 condition  p > q  (vector p is greater than 
vector q) is satisfied, i.e. for any couple (pi, qi)  of vector 
components  pi ≥ qi  and at least for one couple pi > qi . 

A simple method of checking the function for monotony 
could be applied, which is based on exhaustive search of all 
couples (p, q) and testing each of them on satisfying the 
condition p > q . However, with increase of the number of 
variables  n  and corresponding growth of power of sets M 1 
and M 0 such method appears too labour-consuming. The 
offered below method using operations from the set POBS 
is more efficient.  

Let's set the function f (x) by two Boolean 2n-vectors:  f 1 
and  f 0. The elements of set M 1 are represented by ones in 
vector f 1, the elements of set M o - by ones in vector f 0. 
Designate as M* the set of such elements of Boolean space, 
each of which is greater than some element from set M 1 or 
equals it, and present this set by vector f*. 

The affirmation 1. The function  f(x) is monotone, if 
and only if  f * f 0 = 0. 

The vector f * can be found with the help of introduced 
above operations of the set POBS, by a sequence of n steps. 
At first we receive the vector f 2 = (f 1 – 1) ∨ f 1, presenting 
set M1, supplemented with elements of Boolean space, 
adjacent "from above" to some elements from M1 by 
variable x1. Then the obtained set is expanded similarly by 
the next variable x2:  f 3=(f 2 – 1) ∨ f 2. After iterating this 
operation by all remaining variables we receive the required 
vector f n+1 =   f *.  

Let, for example, n = 5, 

f 1  =  00010000 00100000 00000001 00001010, 
f 0  =  11000010 00000100 10100000 10000000. 

In this case the process of the sequential extension of set 
M1, resulting in obtaining vector f * representing set M*, 
can be demonstrated by the following sequence of vectors 
obtained on the next steps:  

f 2  =  00010000 00100000 00010001 00101010 , 
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f 3  =  00010000 00110000 00010001 00111011 , 
f 4  =  00010001 00110011 00010001 00111011 , 
f 5  =  00010001 00110011 00010001 00111011 , 
f 6  =  00010001 00110011 00010001 00111111= f* 

Component-wise conjunction of the obtained vector 
with vector    

11000010 00000100 10100000 10000000  = f 0 

is equal to zero (f *∧f 0=0), therefore, the considered 
Boolean function is monotone.  

B. Search for functional regularities 
An important role in modern information technologies is 

played by procedures of data mining, i.e. extraction of 
knowledge from the dataflow, search of regularities 
allowing discovering right decisions at solution of the 
intellectual tasks [4]. A special but important case of 
regularities is considered below, namely functional 
regularities, often encountered in natural sciences.  

The following formal task was considered in [5]. We 
assume that a set of objects is preset, each of which is 
characterized by some combination of n binary values 
(indicating if the corresponding signs are present or not 
present). The question is, whether it is possible always to 
define uniquely the value of some selected sign, if the 
values of remaining ones are known? And if possible, how 
to define it?  

The initial information in this task can be presented by a 
collection R of some elements in n-dimensional Boolean 
space M = {0, 1}n of signs. These elements set known 
objects and can be considered as the roots of some Boolean 
equation  F = 1, where x = (x1, x2, …, xn).  

This equation is called solvable in regard to some 
variable, if this variable can be presented by a Boolean 
function of the remaining variables, which is defined on the 
set R [5]. We consider the task of detection of such 
variables in the equation F = 1 and finding the appropriate 
functions.  

The affirmation 2. The necessary and sufficient 
condition of solvability of the equation F = 1 in regard to 
the variable xi  is the absence in the set R of couples of 
collections, adjacent by xi. 

Proof by contradiction (by the rule modus tollens):  if 
there exists such a couple, the variable xi receives in it 
different values on identical sets of values of remaining 
variables, which contradicts the definition of the functional 
relation. 

Let's designate through f(x) the characteristic Boolean 
function of set R, where f (qj) = 1 if qj ∈ R and f (qj) = 0 if 
¬ (qj ∈ R). Through  f (xi = 0)  and  f (xi  = 1) we denote the 
result of replacement in the function  f (x) the variable xi 
with constant 0 or 1, accordingly.   

The affirmation 3. The equation F = 1 is solvable in 
regard to variable xi, if and only if  f (xi = 0) ∧ f (xi = 1) = 0.    

This affirmation allows to apply introduced above vector 
operations f – i and  f + i for checking the equation for 
solvability in regard to variable xi. Affirmation 3 can be 

reformulated in terms of these operations in the following 
way: the necessary and sufficient condition of solvability of 
the equation F = 1 in regard to variable xi is the satisfaction 
of the relation  

(f – i) ∧ (f + i) = 0. 

In case if this condition is satisfied there arises a task of 
finding an appropriate Boolean function, which generally 
appears to be partial, and its optimal determination. The 
optimization can consist both in minimization of the 
number of arguments of the function, and in simplification 
of its algebraic representation, for example in DNF. 

Let's consider the first of these tasks. It is similar to the 
task of minimization of unconditional diagnostic test and 
can be solved by the same method. Some argument xk can 
be defined as fictitious, if after its deleting the equation 
remains solvable in regard to the variable xi. The operation 
of deleting the argument xk can be presented as the 
extension of set R by this variable, i.e. as the following 
conversion of its characteristic function f 

f :=  f(xk = 0) ∨ f(xk = 1). 

In terms of introduced above vector operations it is 
defined as  S f ∨ k, whence follows 

The affirmation 4. The argument xk can be deleted from 
the set of arguments of the variable xi defined as a function 
of remaining variables, if and only if 

((S f ∨ k) – i) ∧ ((S f ∨ k) + i) = 0. 

C. Sequential composition of Boolean functions  
Let's consider the following task. The set of arguments 

x=(x1, x2, …, xn) is divided by the Boolean n-vectors u, w 
and v into three not intersected subsets u, w and v :  
x = u ∪ w ∪ v. Two Boolean functions h(u, w) and 
g(x, w, v), presented with corresponding Boolean vectors h 
and g are given also. It is required to calculate their 
composition under condition x = h(u, w) and to present the 
obtained Boolean function f(x) by a 2n-vector f. 

Such composition called non-disjoint sequential two-
block, is illustrated by an example on fig. 2, where n = 6 
and the sets u = (x1, x2), w = (x3, x4) and v = (x5, x6) are 
presented by six-dimensional Boolean vectors u = 110000, 
w = 001100 and v = 000011. 

 
 
                                    h 
                                                 
                                                   x 
 
                                                                 g                       f     
 
 

Fig. 2. An example of non-disjoint sequential 
two-block composition 

x1 
x2 
 
 
 
x3 
x4 
z5 
x6 
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Let's assume, that the functions  h(u, w)  and  g(x, w, v)  
are preset by corresponding vectors: 

 h = 1101001001101100 
 g = 0011010011001001 1010010110101011 
             g0                g1 

For convenience, the vector g is broken in two halves, 
specifying values of the function g(x, w, v) at values 0 and 1 
of binary variable x. 

We present the Boolean space of variables  x = (u, w, v) 
as follows: 

                ---- ----    w1            ----      ----   w2         --   --   --   --  v1        - -  - -  - -  - - v2 

      0000 0000 0000 0000  
    | 0000 0000 0000 0000  
   |  0000 0000 0000 0000  
   || 0000 0000 0000 0000   
    u2    u1 

Then we sequentially map onto this space functions g, 
h0 and h1, introducing thus additional fictitious variables 
from the sets v and u and representing results by 2n-vectors 
a, b and c: 

     h × (u, w) − v  = a                   
1000 1000 0000 1000  1111 1111 0000 1111 
0000 0000 1000 0000  0000 0000 1111 0000 
0000 1000 1000 0000  0000 1111 1111 0000 
1000 1000 0000 0000  1111 1111 0000 0000 

             g0 × (w, v) − u = b     
0011 0100 1100 1001  0011 0100 1100 1001 
0000 0000 0000 0000  0011 0100 1100 1001 
0000 0000 0000 0000  0011 0100 1100 1001 
0000 0000 0000 0000  0011 0100 1100 1001 

           g1 × (w, v) − u = c 
1010 0101 1010 1011  1010 0101 1010 1011 
0000 0000 0000 0000  1010 0101 1010 1011 
0000 0000 0000 0000  1010 0101 1010 1011 
0000 0000 0000 0000  1010 0101 1010 1011 

In summary we discover the vector f, representing the 
required composition of functions  h(u, w) and  g(x, w, v):   

0011 0100 0000 1001 
0000 0000 1100 0000    a b 
0000 0100 1100 0000 
0011 0100 0000 0000 
 

0000 0000 1010 0000 
1010 0101 0000 1011   ⎯a c 
1010 0000 0000 1011 
0000 0000 1010 1011 
 

0011 0100 1010 1001 
1010 0101 1100 1011      f  =  a b ∨⎯a c  
1010 0100 1100 1011 
0011 0100 1010 1011 

D. Testing a partial Boolean function on decomposability 
at a given partition on the set of arguments  

Suppose that a partial Boolean function f(x) of n 
variables, represented by a ternary vector f − is known. It is 
required to test it on decomposability at a given partition 
u/v of the set x, i.e. to find out, whether there exist such 
functions h(u, w) and g(x, w, v) of smaller number of 
variables, that f (x) = g(h(u, w), w, v), where w = x \ (u ∪ 
v). 

At the positive answer to this question the logic circuit 
implementing function f(x) can be simplified (for example, 
at logical synthesis in the basis of units LUT (look up 
tables), implementing functions of restricted number of 
variables). 

The necessary and sufficient condition of 
decomposability of a completely defined Boolean function 
f(x) at a partition u/v, which should be fulfilled for each 
coefficient fi (u, v) of disjunctive Shannon decomposition of 
the function f(x) by variables of the set w is the following. 
Each of the coefficients of alike decomposition of these 
coefficients by variables of the set u should receive no more 
than two different values.  

The coefficients fi (u, v) of disjunctive Shannon 
decomposition of a partial Boolean function f(x) by 
variables of set w are represented by fragments Ti - ternary 
matrices, which rows correspond to different values of 
vector u, and columns correspond to different values of 
vector v. The corresponding components of the ternary 
vector f − serve as elements of fragments. The condition of 
decomposability of the function f(x) at the partition u/v can 
be formulated now as follows: for each coefficient fi (u, v) 
such predetermination of the appropriate matrix Ti is 
possible (replacement of values "−" by 0 or 1), at which its 
rows will receive no more than two different values. 

It was shown in [6], that the check of this condition is 
reduced to finding out if the graph of orthogonality of rows 
of each matrix Ti is bichromatic. A heuristic algorithm was 
suggested there, which guarantees obtaining exact solutions 
under condition of connectivity of the considered graphs 
(this condition is usually fulfilled). The ternary vector f − is 
represented in it by an appropriate couple of Boolean 
vectors f 1 and  f 0, and the operations over the neighbors are 
effectively used providing simultaneous testing of all 2|w| 
fragments Ti. 

The algorithm tries to divide the set of rows in each 
fragment into two classes A and B of mutually compatible 
rows. A sequence of conversions is implemented over the 
initial vectors f 1 and f 0, which results are represented by 
Boolean 2n-vectors a 1 and a 0.  

The algorithm is iterated. The first iteration starts with 
build-up of the class A by inclosing in it the first row of the 
fragment. This operation is reduced to a sequence of 
substitutions of value 0 for the variables from set u.  

 a 0 := f 0 − u      
 a 1 := f 1 − u                        
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Then in each fragment the rows orthogonal to the first 
one are found and marked with 1 in the Boolean vector b.   

 b := S (h 0f 1 ∨ h 1f 0) ∨ v.    

The obtained sets constitute classes B and are checked 
for compatibility: 

a 0 := S (f 0b) ∨ u 

a 1 := S (f 1b) ∨ u 

If by that a 0 a 1 ≠ 0, some of the considered sets appear 
incompatible, whence follows, that the graph of 
orthogonality of rows of the corresponding fragment is not 
bichromatic and, therefore, the function f(x) is not 
decomposable at the partition u/v.    

On the other hand, if a 0 a 1 = 0, the following iteration is 
implemented. The classes A are supplemented by rows, 
orthogonal by some of rows of classes B and are checked 
for compatibility. Then the classes B can be similarly 
extended, etc. The algorithm terminates after execution of a 
sufficient number of iterations. 
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