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ABSTRACT 

The article describes using artificial neural net for speech recognition. This is 

necessary for the automation of construction work. We selected multi-layer perceptron 

for separate words recognition tasks. We researched different forms of hidden layer. 

And we made a conclusion that for voice commands analysis tasks solution it is 

expedient to use multi-layer perceptron with linearized functions (the best result was 

achieved using model with hidden layer with linearized hyperbolic tangent function). 

We use this experience to train robots in civil engineering. 
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1. INTRODUCTION 

Now modern building technologies actively use different robotic complexes. In [1] robots for 

welding are considered. Their using allows both to speed up different constructions welding 

and to protect humans against welding harmful effects. Robots using in building for safety 

provision, efficiency and quality improving is also considered in article [2]. Generally, robots 

using in building direction is connected with general concept of production and technology 

risks minimization [3]. 

At the same time in [4] the approach is represented that allows robotizing masonry 

processes using robots system connected between themselves by parallel connections. 

In [5] building works automation using autonomous mobile robots general concept is 

considered. Wherein such research authors notice it is necessary to use natural-language 

commands for robots control. 

Researchers [6] express similar ideas. They also focus their attention on natural-language 

command using for building robot control. 

Thus robot voice control for building tasks is a perspective field both for research and for 

practical implementation in building practice. Nevertheless, specified task solution involves 

robot voice control training stage. In its turn it involves a number specify tasks solution [7, 8]. 

2. MATERIALS AND METHODS 

2.1 Voice Information Analysis Base for Robotic Systems 

During natural language processing the procedure for splitting a phrase into recognizable 

keywords is used by grammatical analysis. Then obtained command structure is analyzed by 

syntax (grammar, time), vocabulary and context. Then [7, 9, 10]: 

if final result is incompatible with known for machine «rules» we can reduce model 

dimensions and either repeat all the process or perform command grammar analysis again; 

if the command is input correctly, i.e. it is recognized and it can be performed movement 

command sequence is generated, it is an input to robot controller; 

if commands are incompatible with current robot position (e.g. robot is in position 

unsuitable for necessary object taking), computer generates a feedback sound to the person 

(synthesizes speech) suggesting to operator to perform correcting actions. 

Difficulties during speech recognition are explained by voice changings inherent in 

different people or in one-person speech. Thus, sentences structure, phrases meanings and 

speech morphology must be programmed in particular in «rules» form in order to allow robot 

to self-learn during conversation. 

In modern robotic systems more attention is paid to interface with natural information 

input-output development (handwriting recognition, speech dialogue) [8, 11]. 

Now speech input systems are the most perspective. Most of them are based on CMU 

Sphinx, Google Speech API, Microsoft SpeechAPI, Siri and so on [12-15].  Speech 

information recognition task can be divided into two large subtasks: 

• Separate words direct recognition; 

• Commands meaning recognition. 

Separate words direct recognition is complicated by a number of factors: the difference in 

languages, the specifics of pronunciation, noises, accents, accentuations [7, 16]. 

Now we can distinguish two main directions during speech recognition systems 

development [7, 17, 18]: 
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Standard method is based on comparison some speech characteristics (energy, spectral). 

As the standards in most cases whole words are used. This method is convenient for using in 

systems with limited vocabulary (e.g. for small command set). Standards are formed by large 

number of templates statistic processing. Input signal comparison with the standard is 

possible by fuzzy pattern matching; 

Phonemes-oriented method is based on phonemes distinguishing from speech stream. 

Comparing speech stream recognition by whole words recognition method and phonemes 

recognition we can make a conclusion that with a small number of words used by the operator 

the higher reliability and speed can be expected from the whole words recognition method but 

when the vocabulary increases, the speed drops sharply. 

At the same time voice information analysis may be provided by different methods. 

Classical method is voice information processing using discrete Fourier transform [19, 20].  

Nevertheless, artificial neural nets using is a perspective method [21, 22]. Artificial neural 

nets by their structures are sets of interconnected adaptive nonlinear processing elements. So 

practically, any processing elements can be implemented by a simple sum of input signals, 

which is modulated by a nonlinear function. 

2.2 Trained Artificial Neural Networks in Speech Recognition Systems 

Neural nets using, as one of the means for intelligent data analysis implementation, allows to 

solve following tasks [21, 22]: 

• To simulate complex nonlinear dependencies between data and target indicators; 

• To identify trends in data (in the presence of time series) for forecasting; 

• To work with noisy and incomplete data; 

• To obtain meaningful results with a relatively small amount of the initial information 

with the ability to improve the model as new data become; 

• To identify abnormal data that deviates significantly from «open» stable laws. 

One of the neural nets types are trained nets. This nets type is used for non-formalizable 

tasks to the category of which speech recognition belongs. During net training such 

parameters as synaptic coefficients are changed automatically. In some case topology also can 

be changed automatically [23]. 

Neural nets also have the property of classifying objects by their numerical parameters. 

When teaching a net with a teacher, net can be taught to recognize objects belonging to a 

predetermined classes set. If net is taught without teacher it can group objects by classes 

according to their digital parameters. Thus, on the basis of neural nets it is possible to create 

learning and self-learning systems. 

In particular, for voice control system realization multi-layer perceptron can be used. It is 

one of the simplest artificial neural nets models. It is realized as a net containing one input, 

one or more hidden and output layers. Perceptrons ability to solve recognition problems in 

combination with the implementation simplicity allows them to be used in many industries 

[24, 25]. 

Multi-layer perceptron has several processing elements arranged in layers. Layers that 

don’t have direct access to the outside world, for example, connected to the input or output 

layer, are called hidden. Layers that receive input signal from the outside are called input 

layers. Layers that are in contact with outside world are called output layers. Layers are 

connected between themselves by synapses. Then for multi-layer perceptron implementation 

in robot voice control system it is expedient to use perceptron with hidden layer [26, 27].  



Building Robot Voice Control Training Methodology Using Artificial Neural Net 

 http://www.iaeme.com/IJCIET/index.asp 526 editor@iaeme.com 

At the same time for such realization usually describing functions of hyperbolic tangent or 

sigmoid function are used. 

Sigmoid function has next form [28]: 

)))xW(exp(1/(1y
i

ii∑ Θ−−+= ,     (1) 

Where, wi – weights (synapse coefficients), to which the input values are multiplied, 

xi – Input values to i-th layer, 

Θ – Some input threshold. 

Hyperbolic tangent function has next form [28, 29]: 

)xtanh(y = ,       (2) 

Modifying net parameters process, aimed at improving output signals, is called learning. 

In artificial neural net learning process net output signal error relatively to the desired signal 

result is calculated. The error signal is sent to the back propagation net and provides 

modification of synaptic (weight) coefficients matrix connecting net layers. 

Generally, for signs static recognition a multilayered perceptron with two hidden layers is 

considered a universal means [26]. 

For learning errors correction error back propagation algorithm is used. According to it: 

1. Start weights values of all layers’ neurons V(t=0) and W(t=0) are put random values. 

2. Input pattern αX  is put to net, as a result, an output pattern is generated α
≠ Yy . In this 

case, neurons consistently from layer to layer function according to the following formulas 

[27]: 

Hidden layer: 

∑
α

=
i
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Output layer: 

∑=
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Where, f(x) – layer transition function. 

3. Net quadratic error functional for a given input pattern has next form [27-29]: 
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k

k
k

α
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Where, ky  - real net output, 

α

kY  - desired value. 

This functional must be minimized. The classical gradient optimization method consists in 

iterative refinement of the argument according to formula [28]: 
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Where, h – learning speed. 

4. In this step, the weights of the hidden layer are adjusted (W) [27-29]: 

ij

ijij
W

E
*h)t(W)1t(W

∂

∂
−=+ ,      (9) 

If there are several hidden layers in neural net, back propagation procedure is applied 

sequentially for each of them beginning with the layer preceding the output, and then the 

previous one and so on up to the layer following the input. 

5. Steps 2-4 are repeated for all training vectors. Training ends when a small total error or the 

maximum number of iterations is reached. 

3. RESULTS AND DISCUSSION 

In the case of voice information recognition voice commands samples in the form of discrete 

signal values sequences (2304) are put to perceptron input. Such signals examples are 

represented on Figure 1. 
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Figure 1 Input signals fragments graphics 

Counters number determines net input layer dimension. Proportional to the signal length, 

perceptron hidden layer dimension is set (24, 48, 256). Output layer dimension is determined 

by desired result. If we use net transmission function layers in the form of a hyperbolic 

tangent at the net output we can use values range [-1, 1]. If as a hidden layer sigmoid function 

values range [0, 1] is set. Training is considered to be completed when error is low than 0.05. 

During experiments net was trained for separate phonemes, words and syllables that form 

voice commands. In particular, we researched training for next words «Forward» (Signal 1), 

«Left» (Signal 2) and «Stop» (Signal 3). Training steps number is 30. Using hidden layer with 

hyperbolic tangent function training curve for Signal 1 should converge to -1, for Signal 2 – 

to 0, Signal 3 – to 1. 

Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, Figure 7 and Figure 8 represent training 

results. 
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Figure 2 Perceptron training with hidden layer with hyperbolic tangent function (hidden layer 

dimension – 48x1) 

 

Figure 3 Perceptron training with hidden layer with hyperbolic tangent function (hidden layer 

dimension – 24x1) 

According to net properties research we have to note using hidden layer with hyperbolic 

tangent function with the capacity 256х1, training is not performed. When reducing hidden 

layer dimension training becomes faster and better. The best results are achieved with its 

dimensions 24х1. 

Using hidden layer with sigmoid function and linearized sigmoid function training curve 

for Signal 1 should converge to 0, for Signal 2 – to 0.5, Signal 3 – to 1. 

 

Figure 4 Perceptron training with hidden layer with sigmoid function (hidden layer dimension – 48x1) 
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Figure 5 Perceptron training with hidden layer with sigmoid function (hidden layer dimension – 

256x1) 

Using hidden layer with sigmoid function with capacity 24х1 training process runs very 

slowly, increasing hidden layer dimension increases training speed and quality. The best 

results are achieved with dimensions 256х1. 

 

Figure 6 Perceptron training with hidden layer with linearized hyperbolic tangent function (hidden 

layer dimension – 48x1) 

 

Figure 7 Perceptron Training with Hidden Layer with Linearized Hyperbolic Tangent Function 

(hidden layer dimension – 24x1) 
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Using hidden layer with hyperbolic linearized tangent function with the capacity 256х1, 

training is not performed. The best results are achieved with its dimensions 48х1. When the 

distance from this value increases training quality decreases. And with an increase of up to 

256x1 the results get worse. 

 

Figure 8 Perceptron Training with Hidden Layer with Linearized Sigmoid Function (hidden layer 

dimension – 48x1) 

Using hidden layer with linearized sigmoid function the best results are achieved with its 

dimensions 48х1, which is equal to the square root of input layer dimension. When changing 

the size there is next tendency the greater the deviation from the value of 48x1, the worse is 

the learning process. 

4. CONCLUSION 

There are three robot programming methods: programming in training mode, programming in 

a robot programming language and analytical programming. The use of a voice command for 

robot control commands will greatly simplify the control process and simplify its 

programming. 

Robot voice control using allows to achieve next advantages: 

• worker fatigue decreases,  

• commands input speed and flexibility are increased,  

• hands are free to perform other functions,  

• more saturated, rich content in response to the emerging situation is transmitted, 

• the monotony of work decreases, since the operator can use his own auditory organ to 

check the correctness of the given teams, thereby more actively engaging in the work 

process [1], 

• it becomes possible to implement non-contact management of various systems, 

• it is possible to control complex complexes in hazardous conditions for man [2]. 

In the article software for voice information analyzing using an artificial neural net 

development is considered. As a base neural net multi-layer perceptron was selected. It was 

realized by C++ language tools in order to integrate it to robot control system. 

Testing results showed the basic possibility of training the neural net for separate words-

commands and their recognition. 
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The scientific value of the paper is to study the use of artificial neural nets to solve the 

problems of robot’s voice control. The practical value of the work is to apply its results when 

developing an intellectual robot control system. 

According to research results we can make next conclusion: for voice commands analysis 

tasks solution it is expedient to use multi-layer perceptron with linearized functions (the best 

result was achieved using model with hidden layer with linearized hyperbolic tangent 

function). 
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