
14

I International Scientific and Practical Conference
Theoretical and Applied Aspects of Device Development on

Microcontrollers and FPGAs
MC&FPGA-2019

DOI: 10.35598/mcfpga.2019.004

Field Programmable Counter Arrays Integration

with Field Programmable Gates Arrays

Vladimir Karnaushenko

Dept. of Microelectronics, electronic devices and appliances

Kharkiv National University of Radio Electronics

Kharkiv, Ukraine
vladimir.karnaushenko@nure.ua

Alexander Borodin

Dept. of Microelectronics, electronic devices and appliances

Kharkiv National University of Radio Electronics

Kharkiv, Ukraine
alexander.borodin@nure.ua

Abstract–Field Programmable Counter Arrays (FPCAs)

have been recently introduced to close the gap between Field

Programmable Gates Arrays (FPGA) and Application Specified

Integrated Circuits (ASICs) for arithmetic dominated

applications. FPCAs are reconfigurable lattices that can be

embedded into FPGAs to efficiently compute the result of multi-

operand additions.

Keywords–Field Programmable Counter Arrays, arithmetic

applications, integration, shadow cluster.

I. FPCA INTEGRATION WITH FPGAS

This thesis presents a study of the issues related to
integration of hard blocks (and/or coarse-grained blocks)
into FPGAs. It then proposes some integration scenarios for
FPCAs and describes a generic platform for
implementation and evaluation of some of these scenarios
based on Stratix II devices and the FPCA architecture.

The Problem

The introduction of hard logic blocks and coarse-
grained blocks for FPGAs creates a new problem: their
seamless integration. In simple words, the problem asks
how should these blocks be floor planned and placed in the
homogeneous array of soft logic, and how should they be
connected to the routing fabric efficiently? The floor plan
should result in shorter critical paths and reduced
congestion and an interface must be designed for the block
that meets the following requirements:

 it should provide the required level of connectivity
(i.e. all typical circuits using the block should be
routable);

 it should be fast and consume minimum chip area;

 it should minimize the negative impact on the rout
ability of other blocks.

II. RELATED WORKS

Field Programmable Counter Arrays (FPCAs) are one-
dimensional array of basic computational elements called
Compressor Slices (CSlices). FPCAs are configurable
lattices that perform Multi-Operand Additions (MOA)
efficiently. MOAs – either explicitly or implicitly in the
heart of other blocks – occur frequently in arithmetic
circuits used in video applications, cryptography, wireless
communication, etc. In multipliers, the partial product bits
generated by a level of AND gates, represent MOA as well.

Dadda and Wallace trees reduce the partial products to
a two input addition. They are also referred to reduction
trees. Verma and Ienne have proposed a set of

transformations which expose large multi-operand
additions from arithmetic circuits. In this way, datapath
circuits can be be implemented more effectively by specific
digital circuits like FPCAs (also called here compressor
trees) rather than general logic produced by using
commercial synthesis tools.

Although there has been significant study on new
architectures for hard and coarse-grained blocks for
FPGAs, few of them have studied their detailed interface.
In [1], formal optimization methods are used to design
mixed-granularity FPGA architectures. Integer Linear
Programming (ILP) is incorporated to determine the best
floor plan to optimize the architecture for a set of DSP
applications, including the choice of the best mix of hard
18*18-bit multipliers.

A similar problem is studied for block RAMs in [2]. In
this work, without any investigation and inspired by
commercial FPGAs, it is assumed that a row of block
RAMs is located in the middle of the chip (like Figure 1).
The authors have tried to determine the ideal flexibility of
the memory/logic interconnect block (illustrated in
Figure 2). The flexibility of a memory/logic block is
defined as the number of (or portion of) available routing
wires to which each memory pin is connected. This study
shows that if the flexibility is too low, many circuits
become unroutable, while excessive large flexibility values
increase the memory access time and also waste chip area.

Fig. 1. An example of integrating RAMs as hard blocks [1].

15

I International Scientific and Practical Conference
Theoretical and Applied Aspects of Device Development on

Microcontrollers and FPGAs
MC&FPGA-2019

Alternatively, the authors have made several
enhancements to the routing architecture based on the
characteristics of memory-to-memory connections, such as
busses, in their benchmark circuits. Since nets connecting
to multiple memory blocks are common in many circuits’
blocks, the authors have proposed to add additional
programmable switches between adjacent memories to
support these nets. This significantly improved the results
on architectures with lower interconnect block flexibility.

Fig. 2. Example of memory/logic interconnect block [1].

The large M-RAM blocks in Stratix II device resemble
this style of integration. This solution enhances the ability
to tile island-style architecture, and requires a completely
new design for interfacing with the rest of routing fabric.
Greater integrity and speed are achieved with larger
hardwired blocks, but the layout design and interface
design becomes a more complicated.

It doesn't seem that the results obtained for memory
block integration could be used for arithmetic blocks such
as FPCAs. The functionality of the pins and their
contribution to total routing resource demand are different
for blocks with different functionalities.

A very recent work [3], has studied the integration of
coarse grained Floating Point Units (FPUs) in a fine-
grained soft logic array. Different floor planning strategies
for placement of the FPUs, different aspect ratios and
possible pin placement methods are evaluated to find the
optimum architecture. The approach taken is again an
empirical one based on the delay and minimum channel
width requirement of a set of benchmarks. Unlike the
previous approach, they have assumed that the gridded
routing fabric extends over their Embedded Blocks (EBs).
Figure 3 shows a scenario where a 3*3 super-tile is
replaced by an embedded block.

The M512 RAMs, M4K RAMs, and the DSP blocks in
Stratix II devices are examples of this approach, but with a
small difference. Tiles in the same column are all of the
same kind. These tiles are all the same height (or multiples
of same height) but their widths may slightly differ. In this
way, the general routing fabric could be designed as easily
as the general island-style routing fabric consisting of
horizontal and vertical channels of routing wires with
switch blocks in their intersections points. The problem of
interconnect interface block design in this approach; will be

to minimize the re-design of the intra-cluster connections in
such a way that matches the actual pin-demand of the new
hard blocks.

Fig. 3. Expansion of the gridded routing fabric over the embedded

block [3].

As an example, the DSP blocks in the Stratix II
architecture span 4 blocks vertically. The blocks are
designed in such a way that they can be decomposed into
four tiles. Each tile has the same height as other logic tiles
and has a switch box, intra-cluster connections and the DSP
core itself. The intra-cluster connection design for DSP
blocks is interesting. LAB tiles in Stratix II devices have 45
local interconnect lines that are selected by a level of
switches from the general routing network. These lines
drive all the ALM inputs which are around 65 input pins.
For the DSP tiles (¼ each DSP block), there are 60 local
lines that drive approximately 40 input pins. This
information is summarized in table 1. The reason for this
local interconnect-input pin difference is that it is the actual
pin-demand of the tiles which is important, not just the
number of input pins. Many of the 65 input pins of the
ALMs in each LAB could be shared or driven by the local
feedback lines. This lowers the actual pin demand to 44. On
the other hand, DSP block input pins are arithmetic bits,
which are all distinct, and needed to be routed separately.
Thus, more connections than the total number of input pins
are provided by the local lines to ensure the required
routing flexibility. FPCAs, from this point of view, are
more similar to DSP blocks than to block RAMs.

TABLE I. INTRA-CLUSTER DESIGN OF LAB AND DSP TILES

Tile Type Local Interconnect Lines Input Pins

LAB Tile 44 =65

DSP Tile 60 =40

Hard blocks improve the area and speed of the designs
mapped to FPGAs, but only if they are used. Otherwise, the
silicon area devoted to them and, the expensive routing
resources around them are wasted. This also suggests that
the integration of hard blocks is only feasible if they are
used often. Shadow clusters are introduced in [4,5] to take

16

I International Scientific and Practical Conference
Theoretical and Applied Aspects of Device Development on

Microcontrollers and FPGAs
MC&FPGA-2019

better advantage of the routing resources around hard
blocks, when they are not used. A shadow cluster is a soft
logic block, placed “behind” the hard block so that if the
design doesn't use the hard block, then some general FPGA
logic within the shadow cluster can be used to implement a
portion of the real circuit. Shadow clusters come at the
expense of additional area, but, if properly used, the
advantage obtained by making better usage of the routing
network dominates this extra area overhead. Figure 4
depicts this idea. The inputs, which come from the routing
network, are shared between the shadow cluster and the
hard block. Depending on the mode of operation, either the
output of hard block or the shadow cluster is selected.

Design Space Exploration (DSE) is a method to tackle
problems where an analytical approach is difficult to take
or there is no analytical solution based on the available
theories and models. FPCA architecture design – according
to our investigations – falls into this group of problems. By
twisting every single knob in FPCA architecture, two
trends affecting the performance in opposing directions
could be identified that suggest the existence of an
optimum point for each parameter. Alternatively, this
optimum point depends on the value of other parameters,
the technology used for VLSI implementation and, most
importantly, the application (benchmarks) being mapped on
the FPCA.

For example, increasing the MORC of the CSlices re-
duces the number of CSlices required to synthesize an
application on the FPCA, improves the performance by
making the critical path pass through fewer output
multiplexers, and saves area by using fewer first-level
counters. But, if the configuration of the GPCCC or the
characteristics of the benchmarks does not allow
exploitation of output ranks, thicker output multiplexing
layers decrease the performance, and the area dedicated to
extra parallel counters columns in the CSlices are wasted.
An empirical approach could help overcoming such
problems by examining all possible points in the design
space, which can not be identified just by analysis. Since
the intention is to have a real hardware model on which the
benchmarks could be mapped and the area/delay values be
extracted, the model is developed using synthesizable
subset of VHDL.

Each FPCA sub-block was modeled in a generic fashion
and sub-blocks were connected together in higher level
blocks (also generic). In VHDL, generic statements are
used to model generic blocks. Some of these generic values
are calculated using a Perl script and written to a VHDL
package which is included by other modules. The rest of
the model is developed in pure VHDL.

Developing a generic HDL model of FPCAs was a non-
trivial task.

Two of the most significant challenges were (1)
Modeling parallel counters in an efficient way and (2)
Modeling the interconnection of components inside a
CSlice.

The first approach taken for modeling parallel counters
was using behavioral VHDL as a loop in a process
statement which counts the input bits and produces outputs.
These models were synthesized using Synopsys Design
Compiler v2006.06 and the compile_ultra optimization

capability of the tool. The result for a 31:5 counter was
poor. The synthesis tool could not find an efficient way to
restructure the counter to produce acceptable results. One
of the well known ways for efficient implementation of
parallel counters is using a tree of Full-Adders and Half-
Adders [6]. In this work, based on the ability of VHDL to
model recursive circuits [7] a generic adder tree is modeled
to mimic a tree of full adders and half adders. The results
obtained by this approach were more acceptable and
comparable to manual description of fixed size counters.
More advanced methods for synthesis of parallel counters
are also suggested [8].

Fig. 4. Illustration of shadow cluster concept [3, 4].

III. СONCLUSIONS

A design space exploration tool for FPCAs consisting
of a generic model of FPCAs, a mapping heuristic with
synthesis and report automation facilities were developed.
An analysis of the design space was performed and a new
metric called utilization was suggested to prune the DSE.

A set of benchmarks were chosen and the DSE were
performed, and some of the best performing architectures
in terms of speed and area were highlighted.

The problem of integrating FPCAs with FPGAs was
also studied.

REFERENCES

[1] A.M. Smith, G.A. Constantinides, and P.Y.K. Cheung, “Integrated
Floorplanning, Module-Selection, and Architecture Generation for
Reconfigurable Devices,” Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, vol. 16, 2008, pp. 733-744.

[2] S. Wilton, J. Rose, and Z. Vranesic, “The memory/logic interface in
FPGAs with large embedded memory arrays,” Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, vol. 7, 1999, pp.
80-91.

[3] C.W. Yu et al., “The Coarse-Grained / Fine-Grained Logic Interface in
FPGAs with Embedded Floating-Point Arithmetic Units,”
Programmable Logic, 2008 4th Southern Conference on, 2008,
pp. 63-68.

[4] Peter Jamieson and Jonathan Rose, “Enhancing the area-efficiency of
FPGAs with hard circuits using shadow clusters,” Field Programmable
Technology, 2006. FPT 2006. IEEE International Conference on,
2006, pp. 1-8.

[5] P. Jamieson and J. Rose, “Architecting Hard Crossbars on FPGAs and
Increasing their Area Efficiency with Shadow Clusters,” Field-
Programmable Technology, 2007. ICFPT 2007. International
Conference on, 2007, pp. 57-64.

[6] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs,
Oxford University Press, USA, 1999.

[7] P. Ashenden, “A comparison of recursive and repetitive models of
recursive hardware structures, VHDL International Users Forum.
Spring Conference, 1994. Proceedings of, 1994, pp. 80-89.

[8] A. Verma and P. Ienne, “Automatic Synthesis of Compressor Trees:
Reevaluating Large Counters,” Design, Automation & Test in Europe
Conference & Exhibition, 2007. DATE '07, 2007, pp. 1-6.

