
 
 

  
Abstract—Lately, the linear paradigm with its idea of 

normal distribution of profits has been replaced with the non-
linear approach and Chaos Theory which gives the 
explanation of the complex behavior of financial markets. It 
has been discovered that time series of profits measured on 
long time frames on currency and stock markets (time series of 
monthly prices etc.) are chaotic. This paper is concentrated on 
investigation of time series of original values of currency rates 
measured on short time frames on FOREX (hourly, 4-hourly, 
daily prices) using methods of Chaos Theory (Time-delay 
reconstruction method, Grassberger-Procaccia method, 
estimation of the Lyapunov exponent) in order to define if 
such time series are chaotic as well.  
 

Index Terms—FOREX, Chaos Theory, memory in financial 
time series, predictability of financial time series, small (short) 
time frames. 

I. INTRODUCTION 
OREX is the market where currency is sold or bought 
freely for another currency according to a currency rate. 

FOREX is also the most liquid market. Many companies 
and private persons conduct conversion operations on the 
currency market with various purposes. It is known, that the 
currency rates on the FOREX market are affected by many 
factors which makes the currency price movement very 
complicated [1][2]. It is obvious that to conduct the 
conversion operations with success it is very important to 
have a model which would provide a deep understanding of 
the complicated behavior of the FOREX market. Lately, the 
linear approach to modeling of the financial markets and the 
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idea of normal distribution of profits (e.g. the portfolio 
theory, CAPM) [3-5] had been replaced with the non-linear 
approach and Chaos Theory [6-8]. Within the frame of the 
non-linear approach, the time series on stock and currency 
markets have been investigated using the methods of Chaos 
Theory and it has been shown that the investigated time 
series adhere to a law of deterministic chaos and are not 
stochastic as it was stated by the linear paradigm [6,7]. 
Chaos has been defined as a behavior of a deterministic 
dynamical system which has sensitive dependence on the 
initial conditions [9,10]. Since the chaotic data are produced 
with a deterministic system there are non-linear correlations 
between stages of the system. Thus, if it is discovered that 
some time series is chaotic, it means there is a memory of 
the time series about its values in the past and we can 
predict its values in the future. But still, in the 
investigations of time series on the FOREX market with the 
methods of Chaos Theory the time series were used which 
were constructed on long time frames, such as one day, one 
month and more. Also, original values of currency rates 
were transformed to profits which were used in all the 
calculations instead of original values [6].  

Most of conversion operations on FOREX are of 
speculative character and conducted with the aim to gain 
profit on the currency rates fluctuations. Such operations 
are normally conducted using original values of currency 
rates and short time frames, such as one hour (H1), four 
hours (H4), one day (D1), one week (1WEEK). Thus, it is 
useful to investigate time series of original values of 
currency rates on the FOREX market, which are measured 
on such small time frames, using methods of Chaos Theory 
and define if they are chaotic as well. 

The main methods which allow to test whether time 
series is chaotic are [11,12]: reconstruction of attractors 
with the delay-time reconstruction method, estimation of 
the correlation dimension in m-dimension space, estimation 
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of the Lyapunov exponent. In the following sections of the 
paper these methods will be used to test the time series of 
original values of currency rates constructed on short time 
frames on FOREX. Section 2 describes the reconstruction 
of attractors of dynamical system with the delay-time 
reconstruction method using one single component. This 
method allows to estimate visually if the reconstructed 
attractor is an attractor of a chaotic system. Section 3 
describes the test of the considered time series with the 
Grassberger-Procaccia method. It provides the quantitative 
estimation of the fractal dimension which saturates at some 
finite value for a deterministic process. In section 4 it is 
defined either the considered time series have a sensitive 
dependence on the initial conditions. The results of the 
investigation are provided and the paper is concluded in 
section 5. All estimations in the paper have been conducted 
using Mathematica 5.0. 

II. RECONSTRUCTION OF ATTRACTORS WITH THE DELAY- 
TIME RECONSTRUCTION METHOD 

Strange attractor [13] is a set of all the trajectories of a 
chaotic system, and whatever the initial conditions a 
trajectory of the chaotic system runs from, it falls on one of 
the trajectories of the strange attractor. Thus, if a dynamical 
system adheres to a law of a deterministic chaos, its 
trajectories run within a strict space, whereas trajectories of 
a stochastic system look like a cloud of points which tends 
to fill the entire phase space.  

The delay-time reconstruction method is based on the 
idea of the reconstruction of an attractor of a dynamical 
system using a one-dimensional time series, which are 
generated by this dynamical system [14]. According to this 
method, the reconstructed attractor and the original one are 
topologically equivalent. Vectors of a reconstructed 
attractor can be formed using the formula:  

)))1m(t(x),...,2t(x),t(x),t(x()t(y τ−−τ−τ−=  (1
) 

where )t(xx =  is one-dimensional time series; τ  is time 
delay; m is the dimension of a reconstructed phase space 
(lag space). 

Let us first reconstruct the attractor for a Lorenz system 
which is described by equations [15]:  
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where parameters , , 0ρ β∂ >  and are constant. Let the 
parameters be defined as follows: 10, 28, 8 / 3σ ρ β= = = .  

Let us use the measurement of a single variable y to 
reconstruct the Lorenz attractor. Then the reconstructed 
Lorenz attractor looks as follows:  

 
Fig. 1. Reconstructed Lorenz attractor in 3-dimensional lag space and 

τ =10 
It is known, that the original Lorenz attractor looks as 

follows:  

 
Fig. 2.  Original Lorenz attractor. 

As we can see from Fig.1 and Fig.2, the reconstructed 
attractor of the chaotic Lorenz system  and the original one 
look very similar. For chaotic system they are topologically 
equivalent. Here the value of time delay τ  has been chosen 
experimentally in order to achieve the best result (the 
reconstructed attractor should not look too stretched or too 
spread in the lag space). 

Let us now reconstruct an attractor for a random system 
which is described by the autoregression equation 

)t()1t(X)t(X ε+−⋅φ= , where φ  is a constant and )t(ε  
is a random component which follows Gaussian 
distribution. 

 
Fig. 3. Realisation of autoregression process for φ =0.5 

The reconstructed attractor of a random system looks like 
a cloud of point which tends to fill the entire lag space. This 
happens for any value of time delay. We can see that in Fig. 
4.  
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Fig. 4. Reconstructed attractor for autoregression process in a 3-

dimensional space, τ =10 
Let us now reconstruct attractors for time series of 

original values of currency rates on the FOREX market, 
which are measured using small time frames, which are the 
most common used for conducting of speculative trade 
operations, i.e. H1, H4, D1, 1WEEK.  
Reconstruction of the strange attractor for EUR/USD, time 
frame H1 

 
Fig.  5. Realisation of currency rate time series of currency pair EUR/USD, 

time frame H1 
 

 
Fig.  6. Reconstructed attractor for EUR/USD in a 3-dimensional lag space, 

H1, optimal 10=τ  
 
 

Reconstruction of the strange attractor for NZD/CAD, time 
frame H4 

 
Fig. 7. Realisation of currency rate time series of currency pair NZD/CAD, 

time frame H4 
 

 
Fig. 8. Reconstructed attractor for NZD/CAD in a 3-dimensional lag space, 

H4, optimal 15=τ  
 

Reconstruction of the strange attractor for GBP/JPY, time 
frame D1 

 
 

Fig. 9. Realisation of currency rate time series of currency pair GBP/JPY, 
time frame D1 
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Fig. 10. Reconstructed attractor for GBP/JPY  in a 3-dimensional lag 

space, D1, optimal 30=τ  
Reconstruction of the strange attractor for CAD/JPY, 
time frame 1WEEK 

 
Fig. 11. Realisation of currency rate time series of currency pair CAD/JPY, 

time frame 1WEEK 
 
 

 
 

Fig. 12. Reconstructed attractor for CAD/JPY  in a 3-dimensional lag 
space, 1WEEK, optimal 20=τ  

As we can see from Fig. 5 – 12, the trajectories of the 
reconstructed attractors run within strict space and do not 
look like a cloud of point as it is shown for the random 
system (Fig. 4). Thus, we can make a preliminary 
conclusion that the reconstructed attractors are strange 
attractors and are produced by chaotic systems.  

Here the optimal value of time delay τ  has been chosen 
experimentally in order to achieve the best result (the 
reconstructed attractor should not look too stretched or too 
spread in the lag space) 

III. ESTIMATION OF THE CORRELATION DIMENSION IN M-
DIMENSION SPACE  

A strange attractor of a chaotic system is a fractal and has 
fractal dimension [13][16]. For a true chaotic system its 
reconstructed attractor saves its dimensionality even if it is 
embedded into a lag space with a higher dimensionality.  

According to the Grassberger-Procaccia method, a good 
approximation of the fractal dimension of a strange attractor 
is the correlation dimension [17]. Thus, if we reconstruct an 
attractor using the time-delay reconstruction method for 
various values of m (here m is called embedding 
dimension) and estimate the correlation dimension of the 
reconstructed attractor for various values of embedding 
dimension, then for a true chaotic system the value of 
correlation dimension will saturate at its true value which is 
a finite number. And the correlation dimension for the 
reconstructed attractor of a random system never stops 
growing.  

If there is time series M21 x,...,x,x  and an attractor is 
reconstructed in m-dimensional lag space, then the 
correlation sum is the probability of that a pair of points on 
the reconstructed attractor lie within a distance ε . The 
correlation sum can be estimated using the formula 

∑
=
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where )x(θ  is the Heaviside step function:  
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If )(C ε  is estimated for various ε , then )m(D~)(C εε , 
where D(m) is the correlation dimension. D(m) can be 
estimated as a slope of a line fitted to a small ε -tail of the 
curve on a log-log plot of  )(C ε  against ε . 

Let us first estimate the correlation dimension for the 
Lorenz system:  

 

 
Fig. 13. Lorenz system. Estimation of the correlation dimension 

 
We can see that for a true chaotic system the correlation 

dimension saturates at a finite value (D(m) = 2.03 for the 
Lorenz system). The true value of D(m) has been reached at 
the value of embedding dimension m=3.  
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Let us now estimated the correlation dimension for the 
random time series generated by the autoregression 
equation:  

 
Fig. 14. Autoregression process. Estimation of the correlation dimension 

 
As we can see in Fig. 14, the correlation dimension for a 

random system never stops growing.  
Let us now estimate the correlation dimension for the 

currency rates time series for which the attractors have 
already been reconstructed.  
Estimation of the correlation dimension for EUR/USD, time 
frame H1 

 
Fig. 15. Currency rates time series for currency pair EUR/USD, time 

frame H1. Estimation of the correlation dimension 
 
For the considered time series the correlation dimension 

saturates at the value D(m)=2.5 starting from the 
embedding dimension m=5.  

 
Estimation of the correlation dimension for NZD/CAD, time 
frame H4 

 

 
Fig. 16. Currency rates time series for currency pair NZD/CAD, time 

frame H4. Estimation of the correlation dimension 
For the considered time series the correlation dimension 

saturates at the value D(m)=2.4 starting from the 
embedding dimension m=3. 
 

Estimation of the correlation dimension for GBP/JPY, time 
frame D1 

 

 
Fig. 17. Currency rates time series for currency pair GBP/JPY, time 

frame D1.Estimation of the correlation dimension 
 

For the considered time series the correlation dimension 
saturates at the value D(m)=3.4 starting from the 
embedding dimension m=5. 

 
Estimation of the correlation dimension for CAD/JPY, time 
frame 1WEEK 

 

 
Fig. 17. Currency rates time series for currency pair CAD/JPY, time frame 

1WEEK. Estimation of the correlation dimension 
 
For the considered time series the correlation dimension 

saturates at the value D(m)=3.7 starting from the 
embedding dimension m=4. 

Summary of the results of the estimation of the 
correlation dimension of the considered data can be found 
in Table I. 

 
TABLE I 

SUMMARY OF THE ESTIMATION OF THE CORRELATION DIMENSION 
 D(m) 
m Lorenz 

system 
Random 
system 

EUR/USD 
H1 

NZD/CAD 
H4 

GBP/JPY 
D1 

CAD/JPY 
W1 

1 0.7352 0.9812 0.8913 0.9427 1.0266 1.0174 
2 1.7111 1.9102 1.5353 1.6627 2.1257 1.8776 
3 2.0212 2.8898 2.0287 2.3553 2.7628 2.9508 
4 2.0246 3.8084 2.3383 2.4235 2.9858 3.7092 
5 2.038 4.4817 2.4801  3.3863 3.4996 
6  4.8971 2.2998  3.4693 3.5864 
7  6.3489 2.4148  3.3494  
8     3.3198  

 
For the estimation of the correlation dimension for all the 

considered samples of time series we have used the optimal 
values of time delay τ  which have been obtained during 
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the procedure of the attractor reconstruction. Also, the 
values of ε  should not bee too small in order to obtain 
enough point for the statistical estimation of the correlation 
sum [17]. On other hand, ε  should not be too big, 
otherwise it becomes comparable to the size of the attractor. 
For the estimation of the correlation dimension for 
EUR/USD we have used M=1000 points. And for all other 
currency pairs M=1500 points have been used. According 
to the Eckmann and Ruelle estimation [18] the maximum 
value of correlation dimension which is allowed to estimate 
using number of point M is defined by the formula:  

 Mlg2Dmax ≅  (4) 

Thus, for M=1000 it is allowed to estimate the 
correlation dimension D(m) ≤ 6. For all the considered 
samples of time series the estimated correlation dimension 
does not exceed D(m) = 3.5. Thus, the estimation of the 
correlation dimension is reliable for the given samples.  

We have estimated the correlation dimension for 
currency rates time series of various currency pairs 
considered on small time frames, such as H1, H4, D1, 
1WEEK. For all them the correlation dimension saturates at 
some finite value. It shows that on small time frames the 
currency rates time series are produced with deterministic 
system. 

IV. ESTIMATION OF THE LYAPUNOV EXPONENT 
Deterministic chaos can appear in a dynamical system 

only if there is a sensitive dependence on its initial 
conditions. Such sensitivity is measured by the largest 
Lyapunov exponent (it is often called just the Lyapunov 
exponent). The Lyapunov exponent measures the 
divergence of initially close trajectories. For chaotic 
systems the Lyapunov  exponent is always Λ >0 [19]. 

The Lyapunov exponent has been estimated for the 
currency rates times series for which the attractors have 
been reconstructed and the correlation dimension has been 
estimated above in this paper. To estimate the Lyapunov 
exponent the Wolf algorithm has been used [18], which 
allows to estimate the exponent just using a one-
dimensional time series. Also, to prove the efficiency of the 
estimation method the Lyapunov exponent has been 
estimated for the Lorenz system. The results of the 
estimation can be found in Table II: 

 
TABLE II 

THE RESULTS OF ESTIMATION OF THE LYAPUNOV EXPONENT FOR THE 
CURRENCY RATES TIME SERIES 

EUR/USD 
H1 

NZD/CAD 
H4 

GBP/JPY 
D1 

CAD/JPY 
W1 

Lorenz 
system 

Λ 0.37 0.39 0.42 0.4 1.37 
  
 As it can be seen in Table II, all the investigated time 

series have the Lyapunov exponent greater than zero and 
thus, they are chaotic.  

Since the Lyapunov exponent measures the divergence of 
initially close trajectories, then the less is the value of Λ, 

the less the initially trajectories diverge. Thus, the rate 1/ Λ  
defines the predictability of a system. 

V. CONCLUSION 
In this paper we investigate the time series of original 

values of currency rates on the FOREX market which have 
been measured on small times frames such as 1 hour (H1), 
4 hours (H4), 1 day (D1), 1 week (1WEEK). Such time 
frames are the most common used by traders during 
speculative trade operations. As a result of the investigation 
of the considered time series with the methods of Chaos 
Theory, it has been found that the time series of original 
values of currency rates on the FOREX market are chaotic 
on small time frames. Thus, such time series have a 
memory about its values in the past and we can predict its 
values in the future. This can be used in development of 
more efficient technical indicators for predicting price 
movement on FOREX which will help to traders to conduct 
the conversion operations with better success. Also, this 
allows to consider use of time series measured on small 
time frames in other prediction methods where only long 
time frames have been used before.  

The fact, that the time series of original values of 
currency rates are chaotic, gives the opportunity to develop 
new prediction methods based on using original values of 
currency rates without pre-processing of initial data 
(transformation it to profits etc.). This can save time and 
resources while using such prediction methods. This is even 
more essential when the forecast needs to be done in the 
real-time mode (e.g. while conducting trade operations on 
FOREX)  
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