
A Low-Cost Optimal Time SIC Pair Generator

I. Voyiatzis1, H. Antonopoulou2, C. Efstathiou1

1Department of Informatics, Technological Educational Institute of Athens, Greece
2 Technological Educational Institute of Patras, Computer Technology Institute, Patras, Greece

voyageri@otenet.gr

Abstract - The application of Single Input Change (SIC)
pairs of test patterns is very efficient for sequential, i.e. stuck-
open and delay fault testing. In this paper a novel
implementation for the application of SIC pairs is presented.
The presented generator is optimal in time, in the sense that it
generates the n-bit SIC pairs in time n 2n, i.e. equal to the
theoretical minimum. Comparisons with the schemes that have
been proposed in the open literature which generate SIC pairs
in optimal time reveal that the proposed scheme requires less
hardware overhead

Keywords - Built-In Self Test, Two-Pattern Testing, Delay
Fault Testing, Stuck-Open Testing

I. INTRODUCTION

HILE every VLSI design project has its own unique
set of goals, there is a fundamental need for
reliability in the finished product. Built-In Self Test

(BIST) [1] constitutes an attractive and practical solution.
Advantages of BIST include the possibility of performing
at-speed testing, very high fault coverage, elimination of
test generation effort and less reliance on expensive
external testing equipment for applying and monitoring test
patterns. Therefore BIST reduces the cost of testing. With
the increasing complexity of today's VLSI devices (with
millions of gates) BIST schemes for embedded modules are
increasingly becoming a necessity.

Despite of the fact that exhaustive single-pattern testing
provides for 100% fault coverage of detectable single and
multiple stuck-at faults without the need for fault simulation
or deterministic test pattern generation, it is widely known
that a large class of physical defects can not be modeled as
stuck-at faults. For example, a transistor stuck-open fault in
a CMOS circuit can convert a combinational Circuit Under
Test (CUT) into a sequential one [2] while a delay fault
(although it does not affect the steady-state operation) may
cause circuit malfunction at clock speed [3]. Detection of
such faults requires two-pattern tests.

In the literature, two largely known types of two-pattern
tests have been investigated, Multiple Input Change (MIC)
and Single Input Change (SIC) pairs. SIC pairs are pairs of
patterns in which the first pattern differs from the second
one in exactly one bit. The utilization of SIC pairs for the
detection of stuck-open and delay faults holds some very
interesting properties and has been studied by a number of

researchers both theoretically [11] and experimentally [29],
[31]-[38]. In the theoretical field, Smith [11] proved that
SIC tests are sufficient to detect all robustly detectable path
delay faults. In the experimental field, Wang and Gupta [6]
proved that SIC pairs provide higher pseudorandom robust
path delay fault coverage than MIC pairs. In other words, if
a certain number of pairs is applied to the inputs of a Circuit
Under Test (CUT), if the pairs are SIC, the achieved fault
coverage will be higher than the case in which the pairs are
MIC. Gizdarski [40] utilized SIC sequences in order to test
delay faults in the address decoders of RAM memories. The
above-referenced results, as well as a number of related
works [31-38] indicate that the utilization of SIC pairs for
testing delay and stuck-open faults compares favorably to
the utilization of MIC pairs, since it results in higher fault
coverage with fewer test vectors.

In this paper a novel technique is presented for the
generation of SIC pairs of patterns. The number of cycles
required to generate the SIC pairs is n 2n, i.e. equal to the
theoretical minimum. Comparisons with schemes proposed
previously for the application of SIC pairs in optimal time
indicate that the proposed scheme requires less hardware
overhead.

The paper is organized as follows. In Section 2 the
proposed scheme is introduced. In Section III the hardware
implementation is presented. In Section IV the techniques
presented in the literature for the generation of SIC pairs in
optimal time are compared. Finally, in Section V we
conclude the paper.

II. IMPLEMENTATION OF THE PROPOSED SCHEME

Definition 1. We define by Gn = (gn-1,gn-2 ,…,…,g1, g0)
the 2n-row by n column matrix that is the output of a
binary-reflected gray code.

For example, for n=3, G3 = (g2, g1, g0) is the 8-row 3
column matrix presented in the sequel.

000
001
011
010
110
111
101
100

W

R&I, 2010, N4 21

Definition 2: We define by Gi = Ti(G), 1 i<n the 2n-row
by n column matrix that is generated from G by cyclically
shifting the columns one position to the right and inverting
the high- and low-order columns.

For example, for G= (g2, g1, g0), G
1 = T1(G) = (g0

’, g2,

g1’), G
2 = T2(G) = T1(T1(G)) = (g1, g0’, g2’) and G3 = T3(G)

= T1(T2(G)) = T1(T1(T1(G))) = (g2 g1 g0) = G . In the
following table, we present the matrices G, G1 and G2 for
n=3.

G =
(g2 g1 g0)

G1 = T1 (G) =
(g0

’ g2 g1’)
G2 = T2(G) =
(g1 g0’ g2’)

000
001
011
010
110
111
101
100

101
001
000
100
110
010
011
111

011
001
101
111
110
100
000
010

It is trivial to show that for any value of n, Gn
n = Tn(Gn) =

Gn.
Hayes [41] proposed a procedure to construct all SIC

pairs within n 2n cycles by applying the n sequences Gn,
Gn

1, Gn
2, … Gn

n-1, and presented an intuitive proof for the
correctness of the construction. The proposed generator for
the generation of the SIC pairs in optimal time is presented
in Figure 1.

The module depicted in Figure 1 comprises an n-stage
gray counter (an n-stage counter and n-1 2-input XOR
gates), an n-stage barrel shifter, a k-stage counter, a k-input
OR gate, a k-to-n decoder with enable and a series of 2-
input XOR gates. It operates as follows. Initially, both
counters are reset to 0. The n-stage counter starts
increasing, hence the sequence Gn is generates at the A[n-
1:0] outputs of the generator. When the n-stage counter

reaches 2n-1, the k-stage counter increases to 1. Hence, the
outputs of the n-stage counter are shifted one position to the
right by the barrel shifter, the output of the OR gate is 1 and
the decoder output is 00…01. Therefore, the sequence G1 =
(g0

’ gn-1 gn-2 … g2 g1’) is generated. When this completes,
the k-stage counter is increased again, the shifter shifts the
outputs of the gray counter two positions to the right, the
output of the OR gate becomes 1 again and the decoder
output becomes 00…010; therefore, the sequence G2 = (g1

g0
’ gn-1 gn-2 … g2’) is generated and so on.

Fig. 1. The proposed generator

In order to exemplify the operation of the proposed
generator, in Figure 2 we present the operation for the case
n=3. During the first phase, Figure 2 (a), the G3 = (g2 g1 g0)
sequence is applied to the A[2:0] outputs. During the
second phase, Figure 2 (b), the sequence G3

1 = (g0’ g2 g1’)
is applied to the A[2:0] outputs; finally, during the third
phase, the sequence G3

2 = (g1, g0’ g2’) is applied.

a b c
Fig. 2. Operation of the proposed generator for n=3

counter

shifter

c
o

u
n

te
r

C[2] C[0]

G[2] G[0]

S[2] S[0]

A[2] A[0]

c’[1]

c’[0]

D[0]

D[2]

N

0

0
0

0

0

0

g2 g1 g0

g0’ g2 g1’

g1 g0’ g2’

C[1]

G[1]

S[1]

A[1]

counter

shifter

c
o

u
n

te
r

C[2] C[0]

G[2] G[0]

S[2] S[0]

A[2] A[0]

c’[1]

c’[0]

D[0]

D[2]

N

0

1
1

0

0

1

g2 g1 g0

g0’ g2 g1’

g1 g0’ g2’

G[1]

S[1]

A[1]

C[1]

counter

shifter

c
o

u
n

te
r

C[2] C[0]

G[2] G[0]

S[2] S[0]

A[2] A[0]

c’[1]

c’[0]

D[0]

D[2]

N

1

0
0

1

0

1

g2 g1 g0

g0’ g2 g1’

g1 g0’ g2’

G[1]

S[1]

A[1]

C[1]

Counter

Shifter

k
-s

ta
g
e
 c

o
u
n
te

r

Gray counter

D[n-1]

D[n-2]

A[n-1] A[n-2] A[n-3] A[1] A[0]

C[n-1] C[n-2] C[n-3] C[1] C[0]

D[0]

k= log2n

G[n-1] G[n-2] G[n-3] G[1] G[0]

S[n-1] S[n-2] S[n-3] S[1] S[0]

c’[0]

c’[k-1]

c’[k-2]

En

22 R&I, 2010, N4

III. CALCULATION OF THE HARDWARE OVERHEAD OF THE

PROPOSED SCHEME

In the application of the proposed scheme,
implementing the Gray generator requires an n-bit counter
accompanying (n-1) XOR gates; also, the n-bit barrel
shifter is required (n log2n flip flops) the k-stage counter
(k=log2n), the k-to-n decoder with enable, a k-input OR
gate, and (n+1) additional XOR gates are required. To
calculate the hardware overhead of the k-to-n decoder, we
follow a reasoning similar to that used in [27].

A k-to-K decoder can be implemented as follows. Let

k1=
k
2 and k2=

k
2 . Then k1+k2=k. A k-to-K decoder

(K=2k) with enable input can be implemented using two
subdecoders with enable (k1-to-K1) and (k2-to-K2) and K 2-
input NOR gates. The first k1-to-K1 subdecoder is denoted
by Da; its inputs are denoted by da0 to dak1-1 and its outputs
are denoted by Da0 to DaK1-1; the second subdecoder is
denoted by Db; its inputs are denoted by db0 to dbK2-1; its
outputs are denoted by Db0 to DbK2-1. All outputs of the two
subdecoders are inverted using K1+K2 inverters. Each one
of the K gates takes two inputs: the first is an output of the
first decoder; the second is an output of the second
decoder as follows. D0= D Da b0 0

; D1= D Da b0 1
, ...,

DK-1= D DaK bK1 1 2 1
. For example, in Figure 3 we present

a 3-to-8 decoder using the above-mentioned procedure.
For the proposed scheme, only n out of 2k outputs are

implemented (n 2k). In Table I the Hardware Overhead (in
transistors) for various values of n, the inputs of the CUT
is presented.

TABLE I
 Patterns generated by the module in Figure 1

c’[1:0] C[2:0] G[2:0] S[2:0] N D[0:2] A[2:0]
00 000 000 000 0 000 000

 001 001 001 001
 010 011 011 011
 011 010 010 010
 100 110 110 110
 101 111 111 111
 110 101 101 101
 111 100 100 100

01 000 000 000 1 100 101
 001 001 100 001
 010 011 101 000
 011 010 001 100
 100 110 011 110
 101 111 111 010
 110 101 110 011
 111 100 010 111

10 000 000 000 1 010 011
 001 001 010 001
 010 011 110 101
 011 010 100 111
 100 110 101 110
 101 111 111 100
 110 101 011 000
 111 100 001 010

00 000 000 000 0 000 000

In Table I, in the first column we present the value of n
and in the second column the value of k=log2n; in the

third and fourth columns we present the k1 and k2 values
such that k1+k2=k; in the seventh and eighth columns the
hardware overhead of the two sub-decoders is presented;
in the ninth column the overhead of the n 2-input gates is
presented. In the tenth column, the hardware overhead of
the decoder for each value of n is presented. This value
will be considered for the calculation of the hardware
overhead of the proposed scheme. For the calculations, an
m-input NAND/NOR gate is considered to have 2m

transistors and an m-input AND 2m+2 transistors [23]. The
hardware overheads of the 2x4, 3x8 and 4x16 decoders are
26, 66, and 116 transistors respectively.

db0

db1

D7D6D5D4D3D2D1D0

enable

da0

Da0

Da1

Db0

Db1

Db2

Db3

Fig. 3. Implementation of 3-to-8 decoder utilizing smaller decoders and 2-
input gates

TABLE II
Calculation of k-to-n decoder (n 2k) with enable hardware overhead (in

transistors)

n k Dec1 Dec2
Dec1

H/W
Dec2

H/W

n
2-

input
gates

Dec
H/W

12 4 2x4 2x4 48 100
16 26 64 116
20 5 3x8 80 172
24 96 188
28 112 204
32 26 128 220
36 6 3x8 144 276
40 160 292
44 176 308
48 192 324
52 208 340
56 224 356
60 240 372
64 66 256 388
68 7 4x16 272 404
72 288 470
76 304 486
80 320 502
84 336 518
88 352 534
92 368 550
96 384 566
100 400 582
104 416 598
108 432 614
112 448 630
116 464 646
120 480 662
124 496 678
128 66 116 512 694

R&I, 2010, N4 23

IV. COMPARISONS

In this section, the proposed scheme will be compared
with the techniques proposed hitherto for the generation of
SIC pairs in optimal time, i.e. in exactly n 2n clock cycles
[5], [37], [40] in terms of the required hardware overhead.

In PEAT [5], an n-stage NFSR, an n-stage shift register

and an n-stage shift register with flip capability are utilized
to generate the SIC pairs within (n+1) 2n clock cycles. To
implement the technique, the NFSR and n scan flip-flops

with flip capability are implemented. Furthermore, the n

flip-flops of the existing register are substituted by scan

flip-flops.
In [37], Das et al presented an optimal solution to the

problem of generating SIC pairs, in the sense that the pairs
are generated within time equal to the theoretical
minimum, i.e. n 2n+1. However, the hardware overhead of
[37] is rather high, thus the value of the scheme lies mainly
on its high theoretical significance. The hardware
overhead of the scheme is, according to [37], 3n+2 flip
flops, n XOR gates (2-input), (2n-1) OR gates (2-input),
n+1 AND gates (2-input) and 1 NOT gate.

Gizdarksi [40] utilized the algorithm proposed by Hayes
in order to generate the SIC pairs to the inputs of the
address decoder of a RAM. Gizdarski utilized two
sequences, called TS1 and TS2 in [40]; TS2 is utilized in
order to detect additional faults in the address decoder (and
its generation is more complicated and hardware
intensive). Hence the generator for the TS1 sequence is
considered for our comparisons. The required hardware
includes control logic, an n-bit binary counter, an n-bit
register, n 2-input gates, and n log2n 2-to-1 multiplexers
in a barrel shifter. Since no information is provided in [40]

for the control logic, we shall not take it into account in
our comparisons.

For the comparisons, the following are taken into
account [23]. A 2-input NAND/NOR gate requires 4
transistors; a 2-input AND requires 6 transistors and a 2-
input XOR gate can be implemented by 4 CMOS
transistors [42]. The memory elements used are considered
to have set/reset capability. Thereby, the flip-flop requires
26 transistors, the scan flip-flop requires 34 transistors and
the scan flip-flop with flip capability [5] requires 46
transistors.

In Table III we present, for each one of the optimal SIC
pair generation techniques (first column) the formulas used
for the calculation of the hardware overhead (second
column) and the hardware overhead (in transistors, third
column). In Figure 4 we present, for various values of n,
the ratio of the hardware overhead (in transistors) over n,
the number of CUT inputs. From Figure 4 it can be
concluded that the proposed scheme presents the least
hardware overhead of the schemes that have been
proposed in the open literature.

V. CONCLUSION

In this paper a novel generator for Single Input Change
two-pattern tests has been presented. The number of cycles
required to generate the SIC pairs is n 2n, i.e. equal to the
optimal (minimum) time required. Comparisons with the
techniques that have been proposed in the literature for the
generation of SIC pairs in optimal time revealed that the
proposed scheme requires less hardware overhead.

TABLE III
Optimal-time SIC pair generation techniques: Comparison

Hardware Overhead

Technique Modules Transistors

Peat [5] n (DFF+NOR)+n DFFscanwithflip+ n DFFscan 110 n

Gizdarski [40] Control + n DFF + n DFF + n AND2 + n log2n MUX21 n (58+log2n)

DAS [37] (2n+2) DFF + n XOR + (2n-1) OR2 + (n+1) AND2 + NOT 84 n+40

Proposed n DFF + (n-1) XOR + log2n DFF + n log2n MUX21 + log2n-to-n
Dec + (n+1) XOR + log2n-input OR

n (38+6 log2n)+20 log2n

24 R&I, 2010, N4

Fig. 4. Optimal time SIC pair generation schemes: Comparison

REFERENCES

[1] Abramovici M., Breuer M., Freidman A., “Digital Systems Testing and

Testable Design”, Computer Science Press, 1990.
[2] Wadsack R. L., “Fault Modeling and logic simulation of CMOS and

MOS integrated circuits”, Bell Syst. Tech. J., vol. 57, no. 5, pp. 1449-
1474, May-June 1987.
[3] Woods M.H., “MOS VSI Reliability and Yield Trends”, Proceedings of
the IEEE, vol. 74, no. 12, Dec. 1986, pp. 1715-1729.
[4] C. Dufaza, Y. Zorian, On the Generation of Pseudo-Deterministic Two-
Pattern Test Sequences with LFSRs, Proceedings of the European Design
and Test Conference, Paris, France, March 17-20 1997, pp. 69-76.
[5] Craig G., Kime Ch., “Pseudo-Exhaustive Adjacency Testing: A BIST

Approach for Stuck-open Faults”, IEEE International Conference, pp. 126-
137, 1985.
[6] Wang W., Gupta S., “Weighted Random Robust Path Delay Testing of

Synthesized Multilevel Circuits”, IEEE VLSI Test Symposium, pp. 291-
297, 1994.
[7] Girard P., Landrault C., Moreda V., Pravossoudovitch S., “An Optimized

BIST Test Pattern Generator for Delay Testing”, in. Proc. VLSI Test
Symposium, 1997, pp. 94-100.
[8] Voyiatzis I., Kranitis N., Gizopoulos D., Paschalis A., Halatsis C., “An
Accumulator-based Built-In Self-Test Generator for Robustly Detectable
Sequential Fault Testing”, IEE Proceedings, Computers and Digital
Techniques, vol. 151, no. 6, pp. 466-472, November 2004.
[9] S. Nandi, B. Vamsi, S. Chakraborty, P.Pal Chaudhuri, Cellular

Automata as a BIST structure for testing CMOS circuits, IEE Proc.-Com.
Digit. Tech., Vol. 141, No. 1, pp. 41-47, January 1994.
[10] Voyiatzis I., Paschalis A., Nikolos D., Halatsis C., “An Efficient Built-

In Self Test Method for Robust Path Delay Fault Testing”, Journal of
Electronic Testing: Theory and Applications, pp. 219-222, June 1996.
[11] Smith G. L., “Model for Delay Faults based Upon Paths”, IEEE
International Test Conference, pp.309-314, 1984.
[12] E. Blokken, H. de Keulenaer, F. Catthoor, H. J. de Man, A flexible

module library for custom DSP applications in a Multiprocessor

Environment, IEEE J. Solid-State Circuits, vol. 25, no. 3, pp. 720-729, June
1990.
[13] R.J. Higgins, Digital Signal Processing in VLSI, Englewood Cliffs,
NJ: Prentice Hall, 1990.
[14] Rajski J., Tyszer J., “Accumulator-Based Compaction of Test

Responses”, IEEE Transactions on Computers, vol. 42, no. 6, pp.643-650,
June 1993.
[15] Rajski J., Tyszer J., “Test Responses Compaction in Accumulators

with Rotate Carry adders”, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 12, no. 4, pp. 531-539, April 1993.
[16] A.P. Stroele, “Test Response Compaction Using Arithmetic

Functions”, Proceedings of the 14th VLSI Test Symposium, pp. 380-386,
1996.

[17] J. Rasksi and J. Tyszer, Arithmetic Built-In Self Test for Embedded

Systems, Prentice Hall PTR, Upper Saddle River, New Jersey, 1998.
[18] Gupta S., Rajski J., Tyszer J., “Arithmetic Additive Generators of

Pseudo-Exhaustive Test Patterns”, IEEE Transactions on Computers, vol
45, no.8, pp.939-949, August, 1996.
[19] A.P. Stroele, “BIST Pattern Generators Using Addition and

Subtraction Operations”, Jetta, 11, pp. 69-80, 1997.
[20] K. Radecka, J. Rajski, J. Tyszer, “Arithmetic Built-In Self Test for DSP

Cores”, IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems”, vol. 16, no. 11, pp. 1358-1369, November 1997.
[21] I. Voyiatzis, A. Paschalis, D. Nikolos, and C. Halatsis. "Accumulator-

Based BIST Approach for Stuck-Open and Delay Testing", Proc. of the
European Design and Test Conference 1995, March 1995, pp. 431-435.
[22] Mano M., “Digital Design”, Prentice Hall Int., 3rd ed., 2002.
[23] Weste N., Eshraghian K., “Principles of CMOS VLSI Design: A

Systems Perspective”, Addison Wesley Company 1985.
[24] C.W. Starke, Built-In Test for CMOS Circuits, Proceedings of the
IEEE Int. Test Conf., pp. 309-314, Oct. 1984.
[25] A. Vuksic, K. Fuchs, A New BIST Approach For Delay Fault Testing,
Proceedings of the European Design and Test Conference, pp. 284-288,
March 1994.
[26] Ch. Chen, S. K. Gupta, “BIST Test Pattern Generators for Stuck-open

and Delay Testing”, Proceedings of the European Design and Test
Conference, pp. 289-296, March 1994.
[27] Voyiatzis I., Th. Haniotakis, C. Halatsis, “A Novel Algorithm for the
Generation of SIC Pairs and its Implementation in a BIST environment”,
IEE Proc. Circuits, Devices & Systems, vol. 153, Issue 5, October 2006,
pp. 427-432.
[28] J. Rajski, J. Tyszer, “Recursive Pseudoexhaustive Test Pattern

Generation”, IEEE Transactions on Computers, vol. 42, no. 12, December
1993, pp.1517-1521.
[29] Girard P., Landrault C., Pravossoudovitch S., Virazel A.,
“Comparison between random and pseudorandom generation for BIST of

delay, stuck-at and bridging faults”, IEEE On-Line Testing workshop, pp.
121-126, 2000.
[30] Voyiatzis I., Paschalis A., Nikolos D., Halatsis C., “Exhaustive and

Pseudoexhaustive Built-In Two-Pattern Generation for Datapaths”, IEEE
International On-Line Test Workshop, 1998.
[31] David R., Girard P., Landrault C., Pravossoudovitch S., Virazel A.,
“On using Efficient Test sequences for BIST”, VLSI Test Symposium 2002.
[32] Virazel A., David R., Girard P., Landrault C., Pravossoudovitch S.,
“Delay Fault Testing: Choosing between Random SIC and Random MIC

sequences”, 2000, IEEE European Test Workshop, pp. 9-14.
[33] Rahaman H, Das D., Bhattacharya B., “Transition count based BIST

for Detecting Multiple Stuck-open Faults in CMOS circuits”, The Second
IEEE Asia Pacific Conference on ASICs, Aug. 28-30, 2000.

R&I, 2010, N4 25

[34] Crepaux-Motte, Jacomino M., David R., “An algebraic Method for

Delay Testing”, 14th VLSI Test Symposium, 1996, pp. 308-315.
[35] Gharaybeh M., Bushnell M., Agrawal V., “Parallel Concurrent Path

Delay Fault Simulation Using Single-Input Change Patterns”, 9th IEEE
International Conference on VLSI Design, pp.426-431, Jan. 1996.
[36] Gharaybeh M., Bushnell M., Agrawal V., “A parallel-vector

Concurrent fault Simulator and Generation of Single-Input-Change Tests

for Path-delay Faults”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 17, no. 9, September 1998.
[37] Das D., Chaudhuri I., Bhattacharya B., “Design of an Optimal Test

pattern Generator for Built-In Self Testing of Path Delay Faults”, Proc.
VLSI-97, pp. 205-210, 1997.
[38] S. Lu, M. Lu, “Testing Iterative Logic Arrays for Delay Faults with a

constant number of patterns”, 2002 Int’l Symposium on Electronic
Materials and Packaging, pp.492-498.

[39] Brglez F., Bryan D., Kozminski K., “Combinational Profiles of

Sequential Benchmark Circuits”, in Proceedings of the International
Symposium on Circuits and Systems (ISCAS), pp. 1229-1234, IEEE, 1989.
[40] Gizdarski E., “Detection of Delay Faults in Memory Address

Decoders”, Journal of Electronic Testing, Volume 16, Number 4, August
2000, pp. 381 – 387.
[41] J. P. Hayes, “Testing Memories for Single-Cell Pattern Sensitive

Faults”, IEEE Trans. on Computers, vol. C-29, no. 3, March 1980.
[42] H. T. Bui, A. K. Al-Sheraidah, Y. Wang, “New 4-transistor XOR and
XNOR designs”, in Proceedings of the Second IEEE Asia Pacific
Conference on ASICs, 2000, pp. 25-28.

26 R&I, 2010, N4

