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Abstract - The application of Single Input Change (SIC) 
pairs of test patterns is very efficient for sequential, i.e. stuck-
open and delay fault testing. In this paper a novel 
implementation for the application of SIC pairs is presented. 
The presented generator is optimal in time, in the sense that it 
generates the n-bit SIC pairs in time n 2n, i.e. equal to the 
theoretical minimum. Comparisons with the schemes that have 
been proposed in the open literature which generate SIC pairs 
in optimal time reveal that the proposed scheme requires less 
hardware overhead 
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I. INTRODUCTION

HILE every VLSI design project has its own unique 
set of goals, there is a fundamental need for 
reliability in the finished product. Built-In Self Test 

(BIST) [1] constitutes an attractive and practical solution. 
Advantages of BIST include the possibility of performing 
at-speed testing, very high fault coverage, elimination of 
test generation effort and less reliance on expensive 
external testing equipment for applying and monitoring test 
patterns. Therefore BIST reduces the cost of testing. With 
the increasing complexity of today's VLSI devices (with 
millions of gates) BIST schemes for embedded modules are 
increasingly becoming a necessity.  

Despite of the fact that exhaustive single-pattern testing 
provides for 100% fault coverage of detectable single and 
multiple stuck-at faults without the need for fault simulation 
or deterministic test pattern generation, it is widely known 
that a large class of physical defects can not be modeled as 
stuck-at faults. For example, a transistor stuck-open fault in 
a CMOS circuit can convert a combinational Circuit Under 
Test (CUT) into a sequential one [2] while a delay fault 
(although it does not affect the steady-state operation) may 
cause circuit malfunction at clock speed [3]. Detection of 
such faults requires two-pattern tests. 

In the literature, two largely known types of two-pattern 
tests have been investigated, Multiple Input Change (MIC) 
and Single Input Change (SIC) pairs. SIC pairs are pairs of 
patterns in which the first pattern differs from the second 
one in exactly one bit.  The utilization of SIC pairs for the 
detection of stuck-open and delay faults holds some very 
interesting properties and has been studied by a number of 

researchers both theoretically [11] and experimentally [29], 
[31]-[38]. In the theoretical field, Smith [11] proved that 
SIC tests are sufficient to detect all robustly detectable path 
delay faults. In the experimental field, Wang and Gupta [6] 
proved that SIC pairs provide higher pseudorandom robust 
path delay fault coverage than MIC pairs. In other words, if 
a certain number of pairs is applied to the inputs of a Circuit 
Under Test (CUT), if the pairs are SIC, the achieved fault 
coverage will be higher than the case in which the pairs are 
MIC. Gizdarski [40] utilized SIC sequences in order to test 
delay faults in the address decoders of RAM memories. The 
above-referenced results, as well as a number of related 
works [31-38] indicate that the utilization of SIC pairs for 
testing delay and stuck-open faults compares favorably to 
the utilization of MIC pairs, since it results in higher fault 
coverage with fewer test vectors.  

In this paper a novel technique is presented for the 
generation of SIC pairs of patterns. The number of cycles 
required to generate the SIC pairs is n 2n, i.e. equal to the 
theoretical minimum. Comparisons with schemes proposed 
previously for the application of SIC pairs in optimal time 
indicate that the proposed scheme requires less hardware 
overhead.  

The paper is organized as follows. In Section 2 the 
proposed scheme is introduced. In Section III the hardware 
implementation is presented. In Section IV the techniques 
presented in the literature for the generation of SIC pairs in 
optimal time are compared. Finally, in Section V we 
conclude the paper.  

II. IMPLEMENTATION OF THE PROPOSED SCHEME

Definition 1. We define by Gn = (gn-1,gn-2 ,…,…,g1, g0)
the 2n-row by n column matrix that is the output of a 
binary-reflected gray code.  

For example, for n=3, G3 = (g2, g1, g0) is the 8-row 3 
column matrix presented in the sequel.  
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Definition 2: We define by Gi = Ti(G), 1 i<n the 2n-row 
by n column matrix that is generated from G by cyclically 
shifting the columns one position to the right and inverting 
the high- and low-order columns.  

For example, for G=  (g2, g1, g0), G
1 = T1(G) = (g0

’, g2, 

g1’), G
2 = T2(G) = T1(T1(G)) = (g1, g0’, g2’) and G3 = T3(G) 

= T1(T2(G)) = T1(T1(T1(G))) = (g2 g1 g0) = G . In the 
following table, we present the matrices G, G1 and G2 for 
n=3. 

G =
(g2 g1 g0) 

G1 = T1 (G) =  
(g0

’ g2 g1’) 
G2 = T2(G) = 
(g1  g0’ g2’) 

000 
001 
011 
010 
110 
111 
101 
100 

101 
001 
000 
100 
110 
010 
011 
111 

011 
001 
101 
111 
110 
100 
000 
010 

It is trivial to show that for any value of n, Gn
n = Tn(Gn) = 

Gn.
Hayes [41] proposed a procedure to construct all SIC 

pairs within n 2n cycles by applying the n sequences Gn,
Gn

1, Gn
2, … Gn

n-1, and presented an intuitive proof for the 
correctness of the construction. The proposed generator for 
the generation of the SIC pairs in optimal time is presented 
in Figure 1.  

The module depicted in Figure 1 comprises an n-stage 
gray counter (an n-stage counter and n-1 2-input XOR 
gates), an n-stage barrel shifter, a k-stage counter, a k-input 
OR gate, a k-to-n decoder with enable and a series of 2-
input XOR gates. It operates as follows. Initially, both 
counters are reset to 0. The n-stage counter starts 
increasing, hence the sequence Gn is generates at the A[n-
1:0] outputs of the generator.  When the n-stage counter 

reaches 2n-1, the k-stage counter increases to 1. Hence, the 
outputs of the n-stage counter are shifted one position to the 
right by the barrel shifter, the output of the OR gate is 1 and 
the decoder output is 00…01. Therefore, the sequence G1 = 
(g0

’ gn-1 gn-2 … g2 g1’) is generated. When this completes, 
the k-stage counter is increased again, the shifter shifts the 
outputs of the gray counter two positions to the right, the 
output of the OR gate becomes 1 again and the decoder 
output becomes 00…010; therefore, the sequence G2 = (g1

g0
’ gn-1 gn-2 … g2’) is generated and so on. 

Fig. 1. The proposed generator 

In order to exemplify the operation of the proposed 
generator, in Figure 2 we present the operation for the case 
n=3. During the first phase, Figure 2 (a), the G3 = (g2 g1 g0)
sequence is applied to the A[2:0] outputs. During the 
second phase, Figure 2 (b), the sequence G3

1 = (g0’ g2 g1’) 
is applied to the A[2:0] outputs; finally, during the third 
phase, the sequence G3

2 = (g1, g0’ g2’) is applied.  

a b c 
Fig. 2. Operation of the proposed generator for n=3 
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III. CALCULATION OF THE HARDWARE OVERHEAD OF THE 

PROPOSED SCHEME

In the application of the proposed scheme, 
implementing the Gray generator requires an n-bit counter 
accompanying (n-1) XOR gates; also, the n-bit barrel 
shifter is required (n log2n flip flops) the k-stage counter 
(k=log2n), the k-to-n decoder with enable, a k-input OR 
gate, and (n+1) additional XOR gates are required. To 
calculate the hardware overhead of the k-to-n decoder, we 
follow a reasoning similar to that used in [27].  

A k-to-K decoder can be implemented as follows. Let 

k1=
k
2  and k2=

k
2 . Then k1+k2=k. A k-to-K decoder 

(K=2k) with enable input can be implemented using two 
subdecoders with enable (k1-to-K1) and (k2-to-K2) and K 2-
input NOR gates. The first k1-to-K1 subdecoder is denoted 
by Da; its inputs are denoted by da0 to dak1-1 and its outputs 
are denoted by Da0 to DaK1-1; the second subdecoder is 
denoted by Db; its inputs are denoted by db0 to dbK2-1; its 
outputs are denoted by Db0 to DbK2-1. All outputs of the two 
subdecoders are inverted using K1+K2 inverters. Each one 
of the K gates takes two inputs: the first is an output of the 
first decoder; the second is an output of the second 
decoder as follows. D0= D Da b0 0

; D1= D Da b0 1
, ...,  

DK-1= D DaK bK1 1 2 1
. For example, in Figure 3 we present 

a 3-to-8 decoder using the above-mentioned procedure. 
For the proposed scheme, only n out of 2k outputs are 

implemented (n 2k). In Table I the Hardware Overhead (in 
transistors) for various values of n, the inputs of the CUT 
is presented.  

TABLE I 
 Patterns generated by the module in Figure 1 

c’[1:0] C[2:0] G[2:0] S[2:0] N D[0:2] A[2:0] 
00 000 000 000 0 000 000 

 001 001 001   001 
 010 011 011   011 
 011 010 010   010 
 100 110 110   110 
 101 111 111   111 
 110 101 101   101 
 111 100 100   100 

01 000 000 000 1 100 101 
 001 001 100   001 
 010 011 101   000 
 011 010 001   100 
 100 110 011   110 
 101 111 111   010 
 110 101 110   011 
 111 100 010   111 

10 000 000 000 1 010 011 
 001 001 010   001 
 010 011 110   101 
 011 010 100   111 
 100 110 101   110 
 101 111 111   100 
 110 101 011   000 
 111 100 001   010 

00 000 000 000 0 000 000 

In Table I, in the first column we present the value of n 
and in the second column the value of k=log2n; in the 

third and fourth columns we present the k1 and k2 values 
such that k1+k2=k; in the seventh and eighth columns the 
hardware overhead of the two sub-decoders is presented; 
in the ninth column the overhead of the n 2-input gates is 
presented. In the tenth column, the hardware overhead of 
the decoder for each value of n is presented. This value 
will be considered for the calculation of the hardware 
overhead of the proposed scheme. For the calculations, an 
m-input NAND/NOR gate is considered to have 2m

transistors and an m-input AND 2m+2 transistors [23]. The 
hardware overheads of the 2x4, 3x8 and 4x16 decoders are 
26, 66, and 116 transistors respectively. 

db0

db1

D7D6D5D4D3D2D1D0

enable

da0

Da0

Da1

Db0

Db1

Db2

Db3

Fig. 3. Implementation of 3-to-8 decoder utilizing smaller decoders and 2-
input gates 

TABLE II 
Calculation of k-to-n decoder (n 2k) with enable hardware overhead (in 

transistors) 

n k Dec1 Dec2
Dec1

H/W 
Dec2

H/W 

n
2-

input
gates 

Dec  
H/W 

12 4 2x4 2x4 48 100 
16    26 64 116 
20 5  3x8 80 172 
24    96 188 
28    112 204 
32    26 128 220 
36 6 3x8  144 276 
40    160 292 
44    176 308 
48    192 324 
52    208 340 
56    224 356 
60    240 372 
64    66 256 388 
68 7  4x16 272 404 
72    288 470 
76    304 486 
80    320 502 
84    336 518 
88    352 534 
92    368 550 
96    384 566 
100    400 582 
104    416 598 
108    432 614 
112    448 630 
116    464 646 
120    480 662 
124    496 678 
128    66 116 512 694 

R&I, 2010, N4 23



IV. COMPARISONS

In this section, the proposed scheme will be compared 
with the techniques proposed hitherto for the generation of 
SIC pairs in optimal time, i.e. in exactly n 2n clock cycles 
[5], [37], [40] in terms of the required hardware overhead.  

In PEAT [5], an n-stage NFSR, an n-stage shift register 

and an n-stage shift register with flip capability are utilized 
to generate the SIC pairs within (n+1) 2n clock cycles. To 
implement the technique, the NFSR and n scan flip-flops 

with flip capability are implemented. Furthermore, the n

flip-flops of the existing register are substituted by scan 

flip-flops.
In [37], Das et al presented an optimal solution to the 

problem of generating SIC pairs, in the sense that the pairs 
are generated within time equal to the theoretical 
minimum, i.e. n 2n+1. However, the hardware overhead of 
[37] is rather high, thus the value of the scheme lies mainly 
on its high theoretical significance. The hardware 
overhead of the scheme is, according to [37], 3n+2 flip 
flops, n XOR gates (2-input), (2n-1) OR gates (2-input), 
n+1 AND gates (2-input) and 1 NOT gate. 

Gizdarksi [40] utilized the algorithm proposed by Hayes 
in order to generate the SIC pairs to the inputs of the 
address decoder of a RAM. Gizdarski utilized two 
sequences, called TS1 and TS2 in [40]; TS2 is utilized in 
order to detect additional faults in the address decoder (and 
its generation is more complicated and hardware 
intensive). Hence the generator for the TS1 sequence is 
considered for our comparisons. The required hardware 
includes control logic, an n-bit binary counter, an n-bit 
register, n 2-input gates, and n log2n 2-to-1 multiplexers 
in a barrel shifter. Since no information is provided in [40] 

for the control logic, we shall not take it into account in 
our comparisons. 

For the comparisons, the following are taken into 
account [23]. A 2-input NAND/NOR gate requires 4 
transistors; a 2-input AND requires 6 transistors and a 2-
input XOR gate can be implemented by 4 CMOS 
transistors [42]. The memory elements used are considered 
to have set/reset capability. Thereby, the flip-flop requires 
26 transistors, the scan flip-flop requires 34 transistors and 
the scan flip-flop with flip capability [5] requires 46 
transistors.  

In Table III we present, for each one of the optimal SIC 
pair generation techniques (first column) the formulas used 
for the calculation of the hardware overhead (second 
column) and the hardware overhead (in transistors, third 
column). In Figure 4 we present, for various values of n, 
the ratio of the hardware overhead (in transistors) over n, 
the number of CUT inputs. From Figure 4 it can be 
concluded that the proposed scheme presents the least 
hardware overhead of the schemes that have been 
proposed in the open literature. 

V. CONCLUSION

In this paper a novel generator for Single Input Change 
two-pattern tests has been presented. The number of cycles 
required to generate the SIC pairs is n 2n, i.e. equal to the 
optimal (minimum) time required. Comparisons with the 
techniques that have been proposed in the literature for the 
generation of SIC pairs in optimal time revealed that the 
proposed scheme requires less hardware overhead. 

TABLE III 
Optimal-time SIC pair generation techniques: Comparison 

Hardware Overhead  

Technique Modules Transistors 

Peat [5] n (DFF+NOR)+n DFFscanwithflip+ n DFFscan 110 n

Gizdarski [40] Control + n DFF + n DFF + n AND2 + n log2n MUX21  n (58+log2n)

DAS [37] (2n+2) DFF + n XOR + (2n-1) OR2 + (n+1) AND2  + NOT 84 n+40

Proposed  n DFF + (n-1) XOR + log2n DFF + n log2n MUX21 + log2n-to-n 
Dec + (n+1) XOR + log2n-input OR 

n (38+6 log2n)+20 log2n
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Fig. 4. Optimal time SIC pair generation schemes: Comparison 
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