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Abstract – The routing tensor model with the QoS guaran-
tees by the packet rate and end-to-end delay for the multiflow 
case in the coordinate system of interpolar paths and internal 
node pairs is presented. The use of selected coordinate system of 
tensor representation as network model allowed to obtain the 
solution of routing problems with reduced computational com-
plexity, where the end-to-end delay in all paths converged with-
in the update timer to the values of QoS-requirements. 
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I. Introduction 
The presence of requirements for providing guaranteed 

Quality of Service (QoS) over the multiple parameters, on the 
one hand, and taking into account the dynamics of network 
state, on the other, determined the need of dynamic tensor com-
munications network models. In turn, it is important to choose 
an appropriate coordinate system in tensor representation with 
the network geometrization. At the same time in solving the 
routing problems the approach of the transition to the coordinate 
system of interpolar paths and internal node pairs is of interest. 

II. QoS Guarantees For The Multiflow Routing 
Tensor Model 

In the multiflow routing model the network is presented by 
the graph ),( VUS   with the sets  miuU i ,1,   of net-

work routers and  jimjinzjivV z  ;,1,;,1);,(  of 
edges. Here the zth link, which connects the ith and jth routers, 
is modeled by the edge Vjivz  ),( . Link capacity ),( ji  

assumed to be known and has dimension of the number of pack-
ets per second (1/s). Within the model the routing variables 

k
jix ),(  have to be calculated for determining the fraction of in-

tensity of each kth flow ( Kk , where K  is the set of flows in 
the network) from the ith node to the  jth node. 

Flow conservation condition with the view of network nodes 
overload prevention can be written for the source, transit, and 
destination nodes as follows [1]: 
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where ks  is the source node for the kth flow, and kd  is the 
corresponding destination node.  

Implementation of the multipath routing strategy in this 
model depends on the fulfillment of condition 10 ),(  k

jix , 

related to the control variables. At the same time, the capacity 
constraints on the network links utilization take place: 
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, Eji ),( ,   (2) 

where k
req  is the average intensity of the kth flow. 

Finally, the objective function should be minimized: 
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where x
jih ),(  is metric of routing for the link between the corre-

sponding  ith and the jth network nodes. 
Within the routing tensor model the network is introduced 

by the anisotropic space-structure constructed by the sets of the 
interpolar paths and internal node pairs, where the poles repre-
sented by the source and destination nodes, and the internal node 
pairs include all node pairs except of the source and destination. 
If S  is a connected network, then the number of interpolar 
paths is determined as 21)(  mnS , where n  is 
the total number of edges in the network, m  is the total number 
of nodes and 1 mn  is the cyclomatic number )(S . 
The number of internal node pairs can be found as 

21)(  mS , where 1 m  is the total number of 
node pairs. 

Finally, )()( SSn   in the n -dimensional space and 
the mixed divalent tensor can be introduced as TQ , 

where   is the operator of direct tensor multiplication; T  is 
the univalent covariant tensor of the average packet delay with 
coordinates j  of the packet delay along the jth coordinate path 

(s);   is the univalent contravariant tensor of the traffic inten-
sity with coordinates i  of the packet flow intensity along the 
ith coordinate path (1/s). 

There are two coordinate systems (CS) considering in the 
presented model: the CS of edges (type v), and the CS of inter-
polar paths and internal node pairs (type  ). In addition, 

)(S  of the linearly independent paths   ,1, ii  from all 
the possible interpolar paths (end-to-end paths from the source 
node to destination) selected, and the set of internal node pairs 
  ,1, jj  is defined. These two sets in the CS of  -type 

form the basis of the n -dimensional space-structure. 
According to the Kron’s second generalization postulate [2] 

the tensor Q  in the CS of edges defined in the form of vector 
equation as: 

)()()( tTtGt vvv  ,   (4) 

where )(tv  is the projection of tensor )(t , )(tTv  is the 

projections of the tensor )(tT , and )()( tgtG ij
vv   is the 

nn  diagonal matrix. Vectors )(tv  and )(tTv  have dimen-
sion n  and correspond to the flow intensities and packet delays 
in the edges. Using the approach proposed in [1] and the appli-
cation of PSFFA M/G/1 [3, 4] model for the description of the 
dynamics of the interface state, for the network edges 
 nivi ,1,   diagonal elements of )(tGv  can be calculated as:  




)/))1((ln(exp((
((exp((,0(/[()()(

00
tWtg i

v
ii
v  

],1/))/))/))())/()))1( 22
00  (5) 



Vth International Scientific Practical Conference 
“Physical and technological problems of transmission, processing and storage of information in infocommunication systems” 

3–5 November 2016, Chernivtsi, Ukraine 
145 

where i
v  is the kth flow intensity in the link modeled by the ith 

edge; )(W  is the Lambert W function; )exp(  is the exponen-
tial function; 0  is the average delay at the interface at the 

initial moment of time; ni ,1  shows the number of link in the 
network; the index v  shows the type of CS. 

As before [1] the coordinate transformation rules are linear: 
)()( tCtv   ,   (6) 

where )(t  are n -dimensional vectors (projection of tensor 

)(t  in CS of type  ) with components:  
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where )(t  is the  -dimensional subvector of flow intensi-

ties in the end-to-end (interpolar) paths; )(t  is the  -
dimensional subvector of flow intensities in the internal node 
pairs; )(ti

  is the flow intensity in the end-to-end path i ; 

)(tj
  is the flow intensity in the internal node pair j . 

The tensor of average delays )(tT  projection in the CS of 
type   is represented with the structure: 
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where )(ti
  is the average packet delay in the path i ; )(tj

  

is the average packet delay in the internal node pair j .  

The covariant character of delay tensor )(tТ  induces the 
law of coordinate transformation: 

)()( tТAtТ v    ,   (9) 

where A  is the nn  matrix of covariant coordinate transfor-
mation in transition from CS of interpolar paths and internal 
node pairs to CS of edges. The matrix A  is connected to the 
matrix of contravariant coordinate transformation C  by orthog-

onality condition IСA t  , where I  is the nn  unit matrix, 
and  t  is the transposition operator. The expression (4) in the 
CS of type  is determined: 

)()()( tTtGt    ,   (10) 

where )(tG  is the projection of the tensor )(tG  in the CS of 

interpolar paths and internal node pairs. Then )(tG  is the diva-
lent contravariant metric tensor: 

AtGAtG v
t  )()(  .   (11) 

In vector-matrix form the expression (10) is rewritten: 





















































)(

)(

)(|)(

)(|)(

)(

)(

43

21

tT

tT

tGtG

tGtG

t

t

,  (12) 

where 
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)(1 tG  is the square   submatrix; )(4 tG  is the square 

  submatrix; )(2 tG  is the   submatrix; )(3 tG  is 

the   submatrix; supposed that 0)(  t . 
Let us formulate the conditions for the QoS guarantees in 

communications network according to the routing tensor model 
in coordinate system of interpolar paths and internal node pairs 
(4)-(12). Suppose, that the following numerical requirements are 
known: the average packet end-to-end delay k

req  and average 

packet rate k
req  for the kth flow. Then the conditions for the 

QoS guarantees can be stated as follows: 

),()()()()()( 31421 tTtGtGtGtGt 
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where k
req

i

i t 





1
)( , k

reqi   (  ,1i ), )(1 tG  and 

)(4 tG  are the square   and   submatrices, 

)(2 tG  is the   submatrix, )(3 tG  is the   subma-

trix. Besides, all components of the presented model are the 
functions of time. Thus, the inequality (16) is a condition for the 
QoS guarantees over the set of metrics: the average packet rate 

k
req  and average packet end-to-end delay k

req  concurrently. 

III. Conclusion 
Thus, within the presented routing tensor model in the basis of in-

terpolar paths and internal node pairs the QoS guarantees are provided 
for all paths, and the average delays along different paths will not ex-
ceed the acceptable value according to the use of defined coordinate 
system in compliance with the requirements for the packet end-to-end 
delay.  

During the research it was found, that the use of selected coordinate 
system of tensor representation as network model allowed to obtain the 
solution of routing problems, where the end-to-end delay in all paths 
converged within the update timer to the values corresponding to QoS-
requirements. Moreover, in contrast to the use of CS of circuits and node 
pairs [1], the end-to-end delay of the paths may not be equal, reducing 
the computational complexity in obtaining the desired solutions. 
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