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Properties of wavelet coefficients of self-similar 
time series 
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Abstract — The analysis and processing of sequence of the data presented in the form of time series, is one of the prevalent 
methodologies in studying of various processes and the phenomena which are concerned to different fields of activity and researches. As a 
practice shows, the most of investigated time series have a property of self-similarity. At the same time, among existing variety of different 
ways and methods for the data processing which are presented in the form of a time series, it is possible to allocate the ideology of a 
multiresolution wavelet-analysis. The essence of such ideology consists in carrying out of wavelet-expansion of investigated data and the 
subsequent analysis of corresponding coefficients of such expansion – wavelets coefficients. Thus, necessity in answer to a question about 
properties of such wavelet coefficients is objective. It makes a basis of the given research. Hence, the basic properties of wavelet 
coefficients of self-similar time series are formulated and proved on theoretical level in this work. Also, there are presented the results of 
experiments which have confirmed a theoretical substantiation of the basic properties of wavelet coefficients of self-similar time series. They 
have shown that the considered properties are characteristic for time series with different correlation structure. 

Index Terms — correlation structure, expansion, self-similarity, time series, wavelet coefficients, wavelet-analysis.   

——————————      —————————— 

1 INTRODUCTION                                                                     
For the solution of many practical problems representation 

of the initial given and received results in the form of some 
sequence, in particular in the form of time series is absolutely 
natural.  

An example of such problems can be:  
Research of change of dynamics of various indicators of 

banks functioning throughout some period of time [1];  
The analysis of the data which represent results of some 

experiments that were carried out in strict time succession [2];  
Studying of the Internet traffic bandwidth properties which 

are described by different characteristics of volumes of the 
transferred information by means of datacom speed [3];  

Per line or columnwise analysis of the two-dimensional im-
age which is presented in the form of a matrix of data about 
investigated object [4];  

Studying and revealing of regularity among the processes 
connected with the different natural phenomena: floods, ava-
lanching, spread of fires, change of volumes of water in the 
rivers depending on quantity of precipitations [5]; 

Such generalization of different data, in the form of inter-
connected sequence and time series allows to not only present 
and describe compactly of investigated data, but also to con-
sider the objective nature of communication between separate 
elements of the interconnected sequence, to open the data 
change regularity in their analyzed sequence. Finally, it also 
does proved and claimed the presentation of various analyzed 
data in the form of their some sequence. 

At the same time, data presentation in the form of some se-
quence assumes use of certain procedures of their processing 
that also depends on nature of considered sequence and a con-
text of a solved problem. In particular, some sequence of data 
could have a property of self-similarity that is quite typical for 
data series which describe both dynamics of various economic 
and technical processes, and the phenomena of natural charac-
ter [6], [7], [8]. At the same time results of processing of initial 
sequences of the data presented in the form of time series can 
also have some similar properties. Such similarity of proper-
ties is caused by both the unified procedures of processing of 
initial data, and the similar nature of data, for example, in the 
form of their self-similarity. Thus considered time series of 
various processes and the phenomenon can have quite diffi-
cult structure, contain local features of the various form and 
time extent. However it does not limit possibility of considera-
tion of the general properties of results of processing of vari-
ous time series, reasoning from a generality of such property 
as self-similarity of considered series. It also has formed a ba-
sis for a choice of subjects, the purpose and the primary goals 
of the given research. 

2 A MULTIRESOLUTION WAVELET-ANALYSIS AS A METHOD 
OF A SEQUENCE ANALYSIS OF INVESTIGATED DATA 

One of the methods of the sequence analysis of the data 
presented in the form of time series is so-called multiresolu-
tion analysis method, on the basis of the theory of wavelet-
transformations [6], [9], [10], [11], [12]. 

A multiresolution wavelet-analysis transforms time series 
to hierarchical structure by means of the wavelet-
transformations which results to the set of wavelet-
coefficients. On each new level of wavelet-expansion there is a 
division of an approximating signal of the previous level of 
detail (presented by some time series) on its high-frequency 
component and on more smoothed approximating signal [10, 
12]. The number of readout in investigated process, and, 
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hence, the number of coefficients decreases every time in 2 
times at increase of detail level on a unit. 

Thus, a multiresolution analysis consists in splitting of an 
investigated number into two components – approximating 
and detailing, with their subsequent crushing for the purpose 
of change of level of expansion of a signal to the set level of 
expansion. The number of practically used wavelets on j  scale 
coefficient sets level of expansion of a signal [10]. In practice, it 
is quite spread the use of discrete wavelet transformation 
(DWT) [4]. It is connected with that application DWT becomes 
especially effective when the signal has high-frequency com-
ponents of short duration and extensive low-frequency com-
ponents. Such signals are also met more often in practice [10], 
[12]. 

Discrete wavelets are used, as a rule, in steam with the dis-
crete scaling-functions )t(k,jj  [10], [12], [13], [14]. Scaling-
functions have the general area of the value assignment with 
wavelets and define ratio between such values (form). Accord-
ing to discrete wavelet-transformation time series )t(X , (

,...t,tt 21= ) consists of a set of coefficients – detailing and 
approximating [13], [14]: 
 

∑ ∑∑
= ==
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N
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)t()k,ϕdet()t()k,N(apr)t(X ,  (1) 

 

where : 
)k,N(apr  – Approximating wavelet-coefficients of level N ; 

)k,jdet( – Detailing wavelet-coefficients of level j ; 
N – Chosen maximum level of expansion; 

jN  – Quantity of detailing coefficients at j  level of 
expansion; 

aN  – Quantity of approximating coefficients at level N ; 
)t(ψ  – Mother wavelet-function; 
)t(ϕ  – Corresponding scaling-function. 

At set the mother wavelet and )t(ψ  corresponding scaling-
function approximating )t(ϕ  coefficients and )k,j(aX detailing 
coefficients of )k,j(dX DWT for the process )t(X can be defined 
as follows [13], [14]: 

 

                   ∫
+∞

∞−
ϕ= dt)t()t(X)k,ϕ(a k.ϕX ,                (2) 

                   ∫
+∞

∞−
ψ= dt)t()t(X)k,j(d k.jX ,                    (3) 

 
In particular, on each level of discrete wavelet transformation 
(DWT) detailing coefficients represent features, detail of the 
investigated signal, arising at transition from one scale to an-
other and are equal [9], [15]: 
 
                         k,jX ,X)k,j(d ψ= ,           (4) 
 
where:  

)k,j(dX  – Detailing wavelet-coefficients jN,1k =  on level 
j , 

k,j,X ψ  – Scalar product of investigated sequence of data 
in the form of time series )t(X and a mother wavelet ψ  on 
corresponding level of expansion j . 

Thus, the main tool for the research of studied processes is 
processing of the wavelet- coefficients which have been re-
ceived on different scales. Besides, allocated factors allow to 
localize places of heterogeneity and differences of analyzed 
signals, that is to carry out its spatial division on areas with 
prominent features. As a result of DWT received series of coef-
ficients has the define properties which allow to investigate 
behaviour of the stochastic processes that have the properties 
of self-similarity. These properties are the direct subject of the 
given research. However before we consider them, let’s make 
some additional remarks which will be useful during the sub-
sequent statement of a material. 

The characteristic of a measure of self-similarity of stochas-
tic process at the multiresolution wavelet-analysis are the val-
ues of Hurst’s indicator which is an indicator of complexity of 
dynamics and correlation structure of time series [9], [15]. 

At the same time stochastic process )t(X  with a continuous 
variable of time is called as self-similar in a narrow sense with 
parameter H , 1H0 <<  if for any material value 0a >  fi-
nite-dimensional distribution for )at(X are identical for finite-
dimensional distributions of )at(Xa H− [9], [16].  

In other words, if for any 1k ≥ , k21 t,...,t,t  and any 0a >  
[9, 16, 17]: 
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or 
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H

k21 t,...,t,tt),at(Xat,...,t,tt),t(X ∈≅∈ − ,  (6) 
 

where:  
≅  – Means equality of finite-dimensional principles of dis-

tribution.  
H  – Hurst's indicator which represents a measure of self-

similarity of stochastic process. 
In particular the formula (6) shows, that change of time 

scale is equivalent to change of spatial scale of statuses. There-
fore, typical realizations of self-similar process are visually 
similar irrespective of a time scale on which they are consid-
ered. However it doesn’t mean, that the process is repeated in 
accuracy, it is more likely observed a similarity of statistical 
properties, because of statistical characteristics do not vary at 
scaling [9], [16]. 

Stochastic process )t(X is statistically self-similar or strictly 
self-similar in a broad sense, if the process )at(Xa H− has the 
same statistical characteristics of the second order (expectation 
value, dispersion and autocorrelation function), as )t(X [9], 
[16]: 
 

                       [ ] [ ])at(XMa)t(XM H ⋅= − ,                    (7) 

      [ ] [ ])at(XDa)t(XD H2 ⋅= − ,                    (8) 

                   )as,at(ra)s,t(r x
H2

x ⋅= − ,              (9) 
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where:  
[ ])t(XM  – expectation value of the process )t(X , 
[ ])t(XD  –dispersion of the process )t(X , 

)s,t(rx  – autocorrelation function (correlation function), 
s,t  – time moments. 

One of qualitative and quantitative characteristics of inves-
tigated sequence of data in the form of time series is the spec-
trum of its wavelet-energy [17].  

The wavelet-energy characterizes energy of a signal on each 
of expansion levels that corresponds to a certain range of fre-
quencies. Value of wavelet-energy of corresponding level 
shows the powerful of range of frequencies in a signal. At the 
same time the wavelet-energy spectrum visually displays fre-
quency structure of a signal. 

The energy value jE on the set level of wavelet-expansion j  

with quantity of detailing wavelet-coefficients jN  makes [16], 
[17]: 
 

∑
=

=
jN
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2
X
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N
1E .         (10) 

 

The above listed explanations and designations allow to 
formulate the basic properties of wavelet-coefficients of self-
similar time series. 

3 Properties of wavelet-coefficients of self-similar 
time series 
Property 1.  

If casual process )t(X is self-similar process with stationary 
increments (SPSI), then detailing coefficients )k,j(dX , 

jN,1k =  on each level of expansion j  are self-similar. It 
means equality of principles of distribution for series of wave-
let-coefficients on each level of expansion with some scale: 
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This property of detailing coefficients follows from self-
similitude of the process defined by property of scaling (com-
pression/stretching) of mother wavelets. So if some SPSI is 
self-similar – )u(X2)u2(X jHj ≅  then [16, 17]: 
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Property 2.  
 The wavelet-coefficients received as a result of expansion of 
process with stationary increments are stationary on each scale

j2 . 
 This property follows from property of wavelet-functions 

0dt)t( =ψ∫  [16], [17] and it guarantees stationarity of coeffi-
cients for SPSI. 

For stationary detailing coefficients DWS for the process 
with stationary p -increments, it is necessary to have zero 
moments of wavelet-functions of p  order.  

At the same time the wavelet-function which has p -zero 
moments allows to analyze more thin high-frequency struc-
ture of a signal by suppressing of slowly changing compo-
nents of a signal (polynomial trend of 1p −  order) [9], [17]. 
Considering, that in practice there are processes with station-
ary increments of p  order, it is necessary to choose the mother 
wavelet )t(ψ which have pn >ψ zero moments then the de-

tailing coefficients )k,j(dX received at expansion, will be sta-
tionary on each level of expansion. 
 

Property 3.  
If there are moments of p  order then for the wavelet-

coefficients which were received as a result of expansion of 
process )t(X , the following equality is carried out: 
 

)
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The conclusion of the formula (13) is based on the formula 

(12) and properties of expectation value: 
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As consequence, for the processes with a final dispersion 

the expression (13) will be transformed into the following 
form: 
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(a)                                                  (b) 

(c) 

(c) 

(a)                                               (b) 

Fig. 1: A modelling time series – signal-independent noise 

Fig. 2: A modelling time series – autoregress process 
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Property 4.  

If )t(X is SPSI, the correlation function of wavelet-
coefficients of j  level decreases according with a ratio: 
 

[ ] )nH(2
XX n)nk,j(d)k,j(dM ψ−≅+ , ∞→n , (16) 

 
then the higher number of zero moments ψn of a mother 
wavelet ψ , the faster aspires to zero the correlation function 

xr . 
 
Property 5.  

For the different levels of expansion 21 jj ≠ and for all n
correlation of detailing coefficients of these levels )k,j(d 1X  
and )nk,j(d 2X +  is equal to 0. 
 
Property 6.  

Detailing coefficients of DWS on each level of expansion j  
have normal distribution with a zero average ),0(N σ . 

4 RESULTS OF EXPERIMENTAL RESEARCHES 
 The above listed properties of wavelet-expansion can be 
used for the analysis of various real time series in practice. 

In particular there was carried out the comparative analysis 
of wavelet-expansion of series where stochastic components 
have a different correlation structure: signal-independent 
noise, processes of autoregress with short-term dependence, 
fractal processes with long-term memory and non-stationary 
fractal processes with a trend component. Researches were 
spent for various modelling signals with small length of sam-
ple of an investigated series ( =L 128, 256, 512). 

The process with short-term dependence was modeled by 
the process of autoregress of the first order [9]: 

)t()1t(X)t(X 1 ε+−φ= ,     (17) 
where : 

11 1 <φ<−   – Some constant; 
t  – Discrete time; 

)t(ε  – Independent from )t(X values of a normal random 
variable ),0(N σ . 

Gaussian fractal noise with Hurst's indicator H=0.8 has 
been used as a model of fractal noise.  

Non-stationary fractal process was modeled by a signal 
which represents the sum of fractal noise and a polynom of a 
different degree.  

Signal-independent noise is presented by classical Brown 
movement with Hurst's indicator H= 0.5. 

The wavelet Dobeshi of 4th order – db4 was used for the re-
search of processes with a different correlation structure. 

In figures 1-4 modelling time series (a), corresponding func-
tions of correlation (b) and a wavelet-energy spectrum (c) are 
presented.  

 
 
 
 

 
 
 
 
 
 
 
 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 6, Issue 1, January-2015                                                                                                   1496 
ISSN 2229-5518 

IJSER © 2015 
http://www.ijser.org  

(a)                                                    (b) 

(c) 

Fig. 3: A modelling time series – fractal noise 

(a)                                               (b) 

(c) 

Fig. 4: A modelling time series – the non-stationary process which is 
presented by a polynomial trend with noise 

(a)                                               (b) 

Fig. 5: Functions of autocorrelation for approximating and detailing 
coefficients of wavelet-expansion of modeling time series – signal-
independent noise 

 
 
 
 

 
 
 
 
 

The confidential intervals of a significance value in 95 % are 
shown with horizontal lines on the schedules of Figure 1 to Fig-
ure 4 of the correlation functions (b). For all modelling signals, 
except a signal with a trend, autocorrelation coefficients lay in 
corresponding limits. The number of readout 128 and 256 has 
been chosen for modeling signals with Hurst's theoretically set 
indicator, H =0.75. 

Polynoms with different degree have been also generated 
as a trend in the investigated series.  

For the casual process of autoregress correlation function 
exponentially quickly decreases to zero. Such dependence is 
characteristic for many casual processes with short-term 
memory.  

For the fractal noise, with Hurst's indicator equal 0.75 the 
correlation loss goes under the hyperbolic law that allows to 
do a conclusion about presence of “long memory” in its dy-
namics. 

As it specified above in Figure1 to Figure 4 the corre-
sponding spectra of wavelet-energy which were received 
with expansion of modelling signals by a mother wavelet db4 
at 8 levels of expansion are also displayed. From presented 
above it is possible to see, that wavelet-spectrum of fractal 
and signal-independent noise have frequencies of all range 
equally (Fig. 1 and Fig. 3). For the processes of autoregress 

where the slow fluctuations which are defined with the large 
coefficient of autoregress prevail, the spectrum shows the big 
splash on low frequencies and absolutely insignificant on high 
frequencies (Fig. 2).  

If there is a trend in investigated signal (Fig. 4) then on low 
frequencies the trend gives the big splash in coefficients. Thus, 
influence of low-frequency components is appreciable. 

During research properties of detailing and approximating 
coefficients have been also analyzed at various levels of the 
wavelet expansion and depicted in the figures such as (Figure 
5 to Figure 8), where; (a) is for the function of autocorrelation 
of approximating coefficients of expansion and  (b) is for the 
function of autocorrelation of detailing coefficients of expan-
sion). Investigated modeling time series correspond to time 
series which were presented on Figure 1 to Figure 4 found in 
good agreement. 

 

 
 
 
 
 
Further the correlation dependence of wavelet coefficients 
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               (a)                                           (b) 

               (a)                                           (b) 

               (a)                                           (b) 

               (a)                                            (b) 

Fig. 6: Functions of autocorrelation for approximating and detailing 
coefficients of wavelet-expansion of a modeling time series – auto-
regress process 

Fig. 7: Functions of autocorrelation for approximating and detailing 
coefficients of wavelet-expansion of a modeling time series – fractal 
noise 

               (a)                                             (b) 

Fig. 8: Functions of autocorrelation for approximating and detailing 
coefficients of wavelet-expansion of modeling time series – the non-
stationary process which is presented by a polynomial trend with a noise 

Fig. 9: Histograms of distribution of approximating and detailing 
coefficients for investigated time series – signal-independent noise 

Fig. 10: Histograms of distribution of approximating and detailing 
coefficients for investigated time series – autoregress process 

have been calculated mathematically and it shows that non-
stationary properties are traced in a set of approximating coef-
ficients. It is clearly mentioned in Figure 5 to Figure 8.  

 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
The autocorrelation function of approximating coefficients 

becomes a slowly decreasing curve (as it is in Fig. 8) for a pol-

ynomial trend with a noise.  
Autocorrelation function of fractal noise shows slow fading 

under the hyperbolic law (Fig. 7), for the processes with short-
term memory autocorrelation function quickly decreases to 0 
and shows a decrease according to exponential law (Figure 5 
and Figure 6). 

Both laws of distribution for detailing, and approximating 
coefficients at different levels of expansion have been numeri-
cally investigated. It has been found out, that, detailing coeffi-
cients of DWS on each level of expansion j  have normal distri-
bution with a zero average. 

At the same time researches have shown that only detailing 
coefficients are normally distributed. Practically for all selec-
tive data the hypothesis has been accepted with a significance 
value, α = 0.05. 

Finally, in we have drawn some histograms of distribution 
of approximating and detailing coefficients for 8 level expan-
sions for a mother wavelet – db4. And we have depiceted in Fig-
ures 9 to12, in which (a) is the histograms of distribution approx-
imating and (b) is the histograms of distribution of detailing 
expansion) in all Figures 9-12. 

 
 
 
 

 
 
 
 
 
 
 
Apparently from presented above, results of experiments 

completely confirm theoretical calculations concerning proper-
ties of wavelet- coefficients of self-similar time series. At the same 
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               (a)                                                   (b) 

               (a)                                                   (b) 

Fig. 11: Histograms of distribution of approximating and detailing 
coefficients for investigated time series – fractal noise 

Fig. 12: Histograms of distribution of approximating and detailing 
coefficients for investigated time series – the non-stationary process 
which is presented by a polynom with a noise 

time it is possible to see that such properties are characteristic 
for time series with a different correlation structure. 

 

 
 
 
 

 
 
 

5 CONCLUSIONS 
First of all, the basic moments, concerning use of a multi-

resolution wavelet-analysis as a method of the sequence anal-
ysis of the investigated data presented in the form of self-
similar time series are considered in work. Such consideration 
has caused necessity of carrying out of research of properties 
of wavelet-coefficients of self-similar time series.  

At theoretical level the basic properties of wavelet-
coefficients of self-similar time series are formulated and 
proved. 

These experiments have allowed to confirm a theoretical 
substantiation of the basic properties of wavelet-coefficients of 
self-similar time series. In particular, properties of approxi-
mating and detailing wavelet-coefficients, which had been 
derived on different scales of discrete wavelet-expansion, have 
been investigated. At that, it has been shown that theoretically 
proved properties of wavelet-coefficients of self-similar time 
series are characteristic for time series with a different correla-
tion structure. It allows to use the considered properties of 
wavelet-coefficients of self-similar time series in researches for 
defferent applied problems. 
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