

УДК 621.398

В. А. Власова

АСПЕКТЫ ПОЗИЦИОНИРОВАНИЯ В СЕНСОРНЫХ СЕТЯХ

Работа содержит результаты исследования проблем позиционирования в беспроводных сенсорных сетях и вариантов их решения. Предложен энергоэффективный способ повышения точности определения местоположения с совмещенным экспериментально-аналитическим циклом на этапе инициализации сети.

Ключевые слова: мот, функциональная устойчивость, избыточность, инициализация, энергоцикл.

1. Введение

Беспроводная сенсорная сеть (БСС) — это распределенная, самоорганизующаяся сеть множества датчиков (мотов — от англ. «mote» — пылинка) и исполнительных устройств, объединенных между собой посредством радиоканала. В состав мотов обычно входят автономные микрокомпьютеры (контроллеры) с питанием от батарей и приемопередатчики, что позволяет мотам самоорганизовываться в специализированные сети, связываясь друг с другом и обмениваясь данными посредством радиосвязи.

Существует большое количество работ, где предметом исследования являются характеристики телекоммуникационного взаимодействия объектов БСС. Это и вопросы, связанные с организацией работы сети (протоколы различных уровней модели OSI), созданием энергоэффективных алгоритмов, разработкой ПО, определением местоположения объектов относительно друг друга, привязкой к географическим координатам и т. п.

2. Постановка задачи

На сегодняшний день опубликован ряд работ по позиционированию в сенсорных сетях на основе информации о взаимном расположении объектов, которая доступна в процессе работы (определения расстояния, направления, азимута и др.). Задача определения местоположения узлов БСС при отсутствии информации о топологии сети (на начальном этапе — инициализации сети), без использования дополнительных модулей и сложных оптимизационных задач, с максимально возможной точностью и минимальными затратами по энергопотреблению на данный момент не решена, а, значит, данная область актуальна для проведения дальнейших исследований.

3. Основная часть

3.1. Анализ существующих алгоритмов взаимодействия объектов БСС. Основной преградой на пути развития сенсорных сетей является сложность проектирования за счет того, что каждая отдельная сенсорная сеть нуждается в индивидуальном подходе с большим количеством промежуточных этапов [1].

Выбор алгоритмов и протоколов взаимодействия объектов сети затруднен тем, что все протоколы призваны эффективно решать только одну или несколько задач. Поэтому уже на этапе проектирования разработчик сталкивается с тем, что каждая сеть — индивидуальная система. Например, организация сети для автоматизации в сфере ЖКХ [2] будет кардинально отличаться от организации сети мониторинга живых организмов, хотя по сути обе системы являются сенсорными сетями.

Использование протоколов взаимодействия элементов классических сетей зачастую не дает положительного результата в силу специфики децентрализованной сети, не имеющей постоянной структуры, и состоящей из большого количества узлов (до десятков тысяч) с автономным питанием. Но, как и любая телекоммуникационная система, БСС строится по принципам организации информационных сетей. Например, задача высокой отказоустойчивости сети (или «функциональной устойчивости») концептуально решается методами прикладной теории информации путем введения неупорядоченной структуры [3], а задачи самоорганизации, продолжительности жизни сети и т. п. — путем введения избыточности (это может быть избыточность по числу мотов, по количеству возможных маршрутов, подпрограмм и т. д.) [4].

3.2. Основные требования к БСС. Эффективность использования энергии имеет первостепенное значение для беспроводной сенсорной сети, т. к. ее срок службы должен быть достаточно большой. Все сходятся во мнениях — каждый алгоритм, протокол, каждая процедура (маршрутизация, позиционирование и т. п.), каждый сетевой аспект (например, топология) должны быть оптимизированы по энергопотреблению, наряду с оптимизацией выполнения основной функции, на основе энергоциклов [5]. Существует множество подходов и системных решений для повышения

энергоэффективности БСС, но большинство авторов пренебрегают вопросами экономии энергии при разных этапах работы на протяжении ее жизненного цикла, таких, например, как этап инициализации (разворачивание сети) [6]. Также актуальна оптимизация аппаратной платформы, как, например, датчиковая аппаратура, у которой при значениях контролируемого параметра «норма» передача информации не ведется, а при значениях «меньше нормы» и «больше нормы» — ведется передача соответствующего сигнала [7]. Протоколы ТЕЕN и АРТЕЕN [1] эффективно работают с подобного рода аппаратурой.

3.3. Способ позиционирования в БСС. Определение месторасположения узлов БСС внутренними ресурсами узла делают эти сети привлекательными для использования в труднодоступных местах. Отсутствие необходимости использования дополнительных модулей делают узел БСС более дешевым, и уменьшает энергопотребление, а, следовательно, развертывание таких сетей значительно упрощается.

После анализа и сравнения всех аспектов и особенностей работы беспроводных сенсорных сетей был сделан вывод, что наиболее эффективным методом позиционирования является способ уточнения местоположения на основе метода RSSI (Received Signal Strength Indication — Индикация уровня принимаемого сигнала) с совмещенным экспериментально-аналитическим циклом. Суть данного метода заключается во взаимном позиционировании $(N_{BS}+1)$ базовой станции (где N_{BS} минимально необходимое количество БС) по методу RSSI посредством подключения 4 дополнительных (избыточных) мотов и определении величины неточности (дополнительного затухания) в сравнении с более точным методом. Для сравнения может быть использован метод ToF (Time of Forwarding — время распространения сигнала), который имеет высокую точность для открытого пространства, но требует большого количества энергоресурса для многочисленных итераций, поэтому его применение нецелесообразно для позиционирования мотов.

Определив величину дополнительного затухания в базе данных сервера проводится корректировка расстояния от каждого мота до базовых станций по формуле:

$$d_k = d_l^{\frac{k-\Delta}{k}} \cdot \left(\frac{4\pi f}{c}\right)^{\frac{-\Delta}{k}},$$

где d_k — корректированное расстояния по методу RSSI, d_l — локальное расстояния, k — коэффициент ослабления, Δ — дополнительное затухание, f — частота сигнала, c — скорость света.

Таким образом, оценочное местоположение мотов со сравнительно высокой точностью можно

получить уже на этапе инициализации сети, что существенно снижает количество служебной информации во время разворачивания сети, а, следовательно, и повышается энергоэффективность способа.

Литература

- Иваненко В. А. Анализ протоколов передачи данных от узлов в беспроводных сенсорных сетях [Текст] / В. А. Иваненко // Восточно-Европейский журнал передовых технологий. — 2011. — 2/10(50). — С. 9—12.
- 2. Власова В. А. Проблемы ЖКХ и информационные технологии [Текст] / В. А. Власова, **А. Н. Зеленин** // Восточно-Европейский журнал передовых технологий. 2012. 2/2(56). С. 48—53.
- Иваненко В. А. Информационные аспекты при разработке сенсорных сетей (Часть 1) [Текст] / В. А. Иваненко, А. Н. Зеленин // Восточно-Европейский журнал передовых технологий. — 2011. — 3/4(51). — С. 46—49.
- Иваненко В. А. Информационные аспекты при разработке сенсорных сетей (Часть 2) [Текст] / В. А. Иваненко, А. Н. Зеленин // Восточно-Европейский журнал передовых технологий. — 2011. — 4/2(52). — С. 11—13.
- Зеленин А. Н. Анализ энергоциклов узлов беспроводных сенсорных сетей [Текст] / А. Н. Зеленин, В. А. Власова // Восточно-Европейский журнал передовых технологий. 2012. 3/9(57). С. 13—17.
- 6. Зеленин А. Н. Фаза инициализации в беспроводных сенсорных сетях [Текст] / А. Н. Зеленин, В. А. Власова // Вісник Національного технічного університету «ХПІ». Збірник наукових праць. Тематичний випуск: Нові рішення в сучасних технологіях. 2012. № 26. С. 55—61.
- Иваненко В. А. Исследование типовых режимов автогенераторных преобразователей информационных сигналов [Текст] / В. А. Иваненко, А. Н. Зеленин // Восточно-Европейский журнал передовых технологий. — 2010. — 2/7(44). — С. 58—65.

АСПЕКТИ ПОЗИЦІОНУВАННЯ У СЕНСОРНИХ МЕРЕЖАХ

В. О. Власова

Робота містить результати дослідження проблем позиціонування в бездротових сенсорних мережах і варіантів їх вирішення. Запропоновано енергоефективний спосіб підвищення точності визначення місцеположення з поєднаним експериментально-аналітичним циклом на етапі ініціалізації мережі.

Ключові слова: мот, функціональна стійкість, надмірність, ініціалізація, енергоцикл.

Вікторія Олександрівна Власова, аспірант кафедри «Мережі зв'язку» Харківського національного університету радіоелектроніки, e-mail: zlata_ne@bk.ru.

THE ASPECTS OF POSITIONING IN SENSOR NETWORKS

V. Vlasova

The work contains results got by research of positioning problems in wireless sensor networks and options to resolve them. Proposed energy-efficient method to improve the positioning accuracy of integral experimental and analytical cycle during network initialization.

Keywords: mote, functional stability, redundancy, initialization, energy cycle.

Victoria Vlasova, postgraduate student of Department «Communication Networks», Kharkov National University of Radio Electronics, e-mail: zlata_ne@bk.ru.