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1. INTRODUCTION 

Many experiments and analyzing techniques require generating of number sequences 
of a purely random nature. Such sequences can be applied in the problems of 
cryptography, navigation, radio engineering, location of remote and fast-moving 
objects, in stochastic computations and in a great variety of other implementations. 
Recently, the Wi-Fi (Wireless Fidelity) technology became very wide spread, enabling 
a wireless data communication with a high accuracy. The specification of this 
technique is described in the  well-known standard IEEE 802.11x, regulating the data 
interchange procedures over the radio channels in the wireless local area networks 
(WLAN). 

Standard IEEE 802.11x specifies two transmission methods of the spread spectrum 
signal: the Frequency Hopping Spread Spectrum (FHSS) and Direct Sequence Spread 
Spectrum (DSSS). The FHSS technology uses the whole range (2.4 GHz), which is 
divided into 79 channels, 1 MHz each. The receiver and transmitter are switched to the 
carrier frequencies of the channels in-series according to the pseudorandom law. The 
carrier frequencies are modulated through the two-level Gaussian frequency selection. 
In case of wide-band (pseudo-noise) signals, the signal spectrum is extended by adding 
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pseudorandom bit chains, so-called chips, to every data bit of the transmitted signal. 
The frequency 2.4 GHz is used both by Bluetooth devices and those using standard 
Wi-Fi/IEEE 802.11b. In order to eliminate interference with Wi-Fi devices, Bluetooth 
uses a frequency hopping spread spectrum signaling method [1]. 

These circumstances leave no doubt in the necessity of development and hardware 
implementation of efficient algorithms of pseudorandom number generation. Among 
the variety of distribution, the most relevant is the even one, suitable for deriving any 
other distribution. Thus, pseudorandom process generation is virtually reduced to 
deriving a set of evenly distributed random numbers.   

There is a great variety of analytical methods of generating even pseudorandom 
numbers, e.g. computer-aided choosing the “mean product”, deductions, mixing, etc. 
All of them are some kind of a recurrent ratio, where every next value is derived from 
the previous one or several numbers [2]. The most popular recent trend is searching for 
alternative ways of pseudorandom number generation, e.g. the method of determined 
chaotic reflections [3].  

The goal set in this study is a practical generation of pseudorandom numbers 
obtained through various algorithms, by using the state-of-the-art 8-bit 
microcontrollers with the Harvard accumulator architecture, and property analysis of 
the obtained pseudorandom sequences. 

The applied value of such research is self-evident, since even the most efficient 
algorithm may turn unacceptable because of the huge data arrays requiring to much 
memory. The generation time of specified number of samplings is also relevant.  

 
2. ALGORITHMS OF PSEUDORANDOM SEQUENCE GENERATION AND THEIR 

PRACTICAL IMPLEMENTATION 

It is impossible to imagine the practical aspect of developing and implementing 
telecommunication devices requiring pseudorandom signaling without up-to-date 
microprocessors. This imposes additional restrictions on the random number 
generation algorithms to be considered efficient, since small size and processing speed 
are usually the demands of the first priority. It means limitation on the software 
memory and data size. Logically, the quantity of random numbers should be limited, 
and the existing algorithms are subject to a check to confirm their compliance with the 
above criteria.  

One of popular algorithms has been suggested by Lehmer and is known as the 
linear congruent method, as it fully satisfies the above conditions [4,5]. This algorithm 
has four parameters:  is the modulus (base of the system), ,  is a multiplier 
factor, ,  is an increment, 

m
c

0m a
ma 0 mc 0 ,  is the initial value, or kernel, 

. 
0X

m0X0

The random number sequence  nX  is derived from the following iteration 

equality: 
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  mcaXX nn mod1  . 
 

If values of m ,  and  are integers, the result will be a integer sequence within 
the range . This is the sequence we need to select the next frequency from 

the range in service. The iteration intervals can be set with the internal microcontroller 
timer.  

a
m

c
X0 n 

Assigning values to parameters m ,  and  is a critical point in developing a 
high-performance random number generator. 

a c

There are three criteria of checking the adequacy of a random number generator: 
- the function should create a full cycle, i.e., use all numbers between 0 and m  

before starting a new cycle, 
- the created sequence should be randomly appeared. The sequence is not 

random by nature, since its generation is a determined process, but statistical 
tests should be able to confirm its randomness, 

- the function should prove its practical efficiency, being run in processors or 
microcontrollers. 

The values of parameters m ,  and  should be chosen to satisfy these three 
criteria. According to the first criterion, if m  is a prime number and , there exist 
some value of a , by which the cycle, created by the function, will be . For  

32-bit arithmetic the respective prime number is . 

a c
0c

1m
1231 m

Evidently,  should be very large to be suitable for creating a great number of 
random numbers. It is assumed that m  should be approximately equal to the 
maximum positive integer for the processor or microcontroller in question. Thus, 
usually  is close or equal to 231 for 32-bit processors, or 215 for 16-bit 
microcontrollers. 

m

m

There are just a few values of parameter a  that satisfy all three criteria. One of 

them is , the one used in the computer family IBM 360. This is a 
widely applied generator, having stood thousands of tests, like none of other 
pseudorandom number generators. 

1680775 a

The distinction of the linear congruent algorithm is that, by a appropriately chosen 
combination of multiplier factor and the modulus (base), the resulting number 
sequence does not statistically differs from a true random sequence derived from the 
set . However, an algorithm-based sequence cannot contain any 

randomness, and the initial value  does not matter. If the value is selected, all the 

rest numbers in the sequence are predetermined. This fact is always taken into account 
in cryptanalysis. This is a relevant aspect in our study, since for creating an adequate 
pseudorandom number generator we need a strictly defined cryptoalgorithm. In 
microprocessors, the analysis of the efficiency of pseudorandom sequence generation 
algorithms can rely on the estimation of the generation time (processing speed), the 
program and data storage required for a reliable performance of a certain algorithm.  

1,...,2,1 m

0X

In our study we used the microcontroller AVR-ATmega 128 (product by ATMEL) 
with the following characteristics: 
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- 128 kb of FLASH memory for programs  
- 4 kb of static RAM 
- 4 kb of EEPROM memory for data 
The keyboard and the LCD Toshiba T6963C, our laboratory specimen is equipped 

rbitrary and fixed quantity of numbers for 
vari
with, enabled us to observe sampling of an a

ous generation algorithms. The 8-bit and 16-bit counter-timer and LCD allow to 
estimate the generation time of a fixed number of random numbers for certain 
algorithms, while using interruption for registering and displaying the generation time 
of a sequence cycle. The device implementing the linear congruent method in practice 
is shown in Fig. 1. 

 

 

F1 F2 F3 

FIG. 1: Microcontroller-based (AVR-ATmega 128) laboratory breadband constr ion 

 
 

of the initial parameters  and ). It displays the result, random signal 

ea a  uct

dim

uct

This specimen allows to track efficiency of the method depending on the variations
( m , a , c 0

generation time, total value of the random numbers in bytes on the liquid-crystal panel.  
The above laboratory br db nd constr ion was used to implement an alternative 

method of random number generation. The generator utilizes the principle of the one-

X

ensional iterative representation, often called the triangular representation, which is 
described with the formula 

 

 nn XrX  5.0211 , 

 
where r  is the representation parameter, while the sequence  nX  varies within the 

range of (0,1). If 
2

1
r , the initially close points are moving a from each other as 

iteration proceeds (Fig. 2(a)), and the triangular representation initiates a chaotic 

way 

 (Fig. 2(b)). sequence of numbers , which can be considered random nX

R4

R3

R2

R1

C3 C2 C1 
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FIG. 2: umbers 

 
The inv

 Triangular representation and chaotic sequence of n

ariant measure  x  defines the iteration density of representation 

. The invariant measure  nn Xf1 ,  1,0nX  x  X can be considered to be an 

anal
1
ogue of a random value distribution density. For a triangular representation by 

r , obtain   1x  [3]. It means that 

    000 ,, XffXfX ,... covers the range (0,1) uniformly. Thus, we can state that the 

ar representa enerator of uniformly distributed random numbers. 

the sequence of iterations 

 
 INDEPENDENCE AND UNIFORMITY TEST OF PSEUDORANDOM NUMBERS 

 
nd 

that

triangul tion is a g

3.

Evidently, the properties of a poorly random sequence should be as follows: no
correlation between numbers (independence and randomness of selective datum) a
compliance with the specified distribution law, in this particular case the uniform one.  

The independence (randomness) tests for the sampling data have been performed 
in terms of series, inversions and turning points. In every case we hypothesize ( 0H ) 

 independent outcomes of one and the same value, and set the significance level 
 . The brief overview of the applied factors is given below [2,6]. 

Criterion of  series . Let us consider a sequence of N  observed values of a 
random quantity, while every observation case is assigned to one of two mutually 

clex

the same random 

usive classes. A series is a sequence of similar observations, which is preceded 
with and followed by observation of the opposite class. The number of series in the 
observation sequence allows to define whether individual results can be considered as 
independent observations. Division into classes is always possible, so that 

2/21 NNN  , e.g. by comparing the observations with the sampling median.  
If the sequence of N  observations consists of independent outcomes of one and 

value, the number of series in the sequence is a random value   with 

the expectancy of 12/  Nm  and dispersion 
 
 14

22





N

NN
 . The probability 

distribution of the series number   is tabulated. 

Volume 70, Number 4, 2011 



330  Kirichenko et al. 

As a null hypothesis we e that the observations are independent. To validate 
the hypothesis with ignificance value 

 assum
the required s  , the recorded

ber of series is 
is ify. Otherwise the hypothesis can be 

acc

 number of series 
should be compared with the acceptance region boundaries. If the num
beyond this region, the hypothes  does not qual

epted with the significance value  . 
Criterion of  inversions . Let us consider the inequalities ji xx   by yi  , 

i.e., inversions, in a sequence of N  observations. We calculate the total number of 
inversions. If a sequence of N  obser ations consists of independent outcomes of one v
and the same random value, the number of inversions is a random value   w  

expectancy 
 

ith the

4

1


NN
m  and a dispersion 

2

23
2

7

532 NNN 
 . The number 

of inversions occurred in the recorded sequence will be characterized by a tabulated 

with the required significance value 

 
sampling distribution. To validate the hypothesis about the in  dependence of the data

 , the rec ompared with 

hypothesis should be declined. Otherwise the hypothesis can be accepted with the 
significance value 

orded value shoul
the acceptance region boundaries. If the number of series is bey  

d be c
ond this region, the

 . 
Criterion of  turning points . n a sequence of N  observations we count the 

peaks and concaves, i.e., the number of inequalities 21  
I

 iii xxx  or 

21   iii xxx . Each of such inequalities means a turning point. Let us find the total 

number of turning points.  
If a sequence of N  observations consists of independent outco  of 

is a random value 

mes, the number

turning points   with the expectancy  2
2

 nm  and a 
3

dispersion 
90

 29162 
n

 . The number of turning points occurring in the recorded 

sequence tends to the normal distribution   ,mN . TO validate the hypothesis 

about the ind  the required significance value of e data withpendence of  , the recorded 
number of hould be compared with the acceptance region boundaries turning po s sint
   ** tmtm  , where    12 t , and   is the Laplace integral. If the 

number of series is beyond this region, decline the hypothesis. therwise the 
hypothesis can be accepted with the significance value 

O
 . To check the uniformity of 

the data, the fitting criterion has been used to verify the statistic hypothesis about the 
iteria hav the Pea on criterion, the Kolmogorov 

criterion and the Mises criterion. In each case we put forward a hypothesis 0H  about 

the evenness of the distribution law in the obtained sampling, and defined the 
significance value 

 
beedistribution law. Th rree c e n used: rs

 . Below we give a brief overview of the applied criteria. 

The Pearson cri terion (cri terion 2 ) .  The basic operational principle of 
this criterion consists in finding such a measure of deviation between the theoretical 
 xF  and empirical  xFn  distribution, which would approximately obey the 
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distribution law 2 . We divide the interval  ba,  into l  nonintersecting intervals 

(units). To find the common measure of deviation between  xF  and  xFn  one has 

to compute the statistics 
 




1

1i i

ii

pn

pnn
 , where in  is the observed rate of hit in 

the thi   unit, n  is the sample size, ip  is the theoretical probability tting the 

thi   units. If the statistic

2

s value is 

 of hi

 ,2 k , where  2    ,2 k  is the tabulated 

value of  2  with the degree of freedom 31k  and the significance value  , the 

hypothesis 0H  is acceptable, otherwise not. 

e Kolmogorov criterion  this technique, the sample is 
expanded o variational series, instead o vided into units. The modulus of 

the maximu ifference 
 

 

Th . le 
f 

 Whi using
being di

 
int

m d max
n x xn

F x Fd n
 x  serves as the measure of deviation 

between the theoretical  xF  and empirical  xFn  distribution functions of a 

continuous random value X .  
By an unlimited number of observations , the distribut m n ion function of the rando

value ndn  asympto  approaches to the distribution function 

 

tically

  K   



k

n kndP 22exp1  . Hence, the hypothesis 0H  can be 

accepte atistics value is 


k

if th

2

d, e st nd . With the specified significance value n

 , the value of    Kis chosen from the ratio   1 . Otherwise the pothesis 

The Mises criterion (crite .  According to the Mises criterion, the 

n squared dev


2

hy

  xF

0  is declined. 

a

d

H

me

use

rion 2w )

er all argument values x :iation ov  is  xFn   


 xdFwn
2

 as a measure of deviation between the theoretical  xF  and empirical  xFn  

distribution functions. The criterion stati sstic  is the value of 

 





n

i
in n

xF
n

nw
1

2

12
. If n  increases without limitations, the li

statistics distribution will be 2
nnw . By choosing the significance value 

i 5.02 1
miting 

 , one can 

  . If the actual value of 2
nnw  is equal or higher 2

nnwdetermine the critical values of 

than the critical one, then according to the Mises criterion with the significance value 
  the hypothesis 0H  should b clined, otherwise accepted. e de
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4. RESULTS OF TESTING 

The applied laboratory device allowed us to implement the above described, as well as 
her algorithms of random number generation and analyze the fot ollowing aspects: 

- generation time estimation for random number sequences of similar length, 
torage being equal, 

- estimation of the amount of storage taken by the generated numbers, with their 

m’s 

 number sequences by a 

om number generation has been 

ents sampling has been generated, the 

nness hypothesis has been verified using 

with the amount of s

number in every algorithm being the same, 
- analysis of initial parameters and their influence on each algorith

performance, 
- estimation of sample instant characteristics of random

fixed and variable generation times. 
The numerical simulation of the pseudorand

performed using a test model, after the technique of chaotic reflection and the Lehmer 
algorithm. In every case, a 100 elem
independence hypothesis has been verified for every sampling, using the criteria of 
series, inversions and turning points; the eve
the Pearson, Kolmogorov and Mises criteria with the significance value of 05.0 . 

The time of generating 100 symbols, according to the Lehmer algorithm , by the 
clock rate of 11.059 MHz, neglecting the time of displaying symbols on the liquid 
crystal monitor, was about 160 μs; with the chaotic reflection and all the rest 
parameters being equal, the generation time was 105 μs. However, the estimation of 
the generation time and the amount of storage taken by the generated numbers is 
stro

TAB

ngly influenced by the algorithm parameters. These relations are the object of 
future research. 

The independence tests have revealed that the data obtained by the triangular 
representation, as well as the pseudorandom numbers of embedded generators, satisfy 
the requirements of independence; no correlation between the numbers is revealed.  
The results of evenness tests are listed in Table 1. 
 

LE 1: Acceptance rate of the evenness hypothesis 

 The Pearson criterion The Kolmogorov 
criterion 

The Mises criterion 

The Lehmer algorithm 89.9 96.9 93.8 
Chaotic reflection 87.3 97.2 94.5 

 

 

he hardware implementation of the pseudorandom number generators by various 
chniques has been suggested in this paper. The tests proved the obtained numbers to 

Testing of the algorithms at a microprocessor mock-up was 

5. CONCLUSIONS 

T
te
be uncorrelated and even. 
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ogram of academic activity as a practical training in algorithm’s 
implementation.  
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