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Abstract: An attempt is made to complete logically the 
potential formalism in the electromagnetic theory basing 
on treatment of the Minkowski space-time as an electro-
magnetic oscillating system with distributed parameters. 
The Lagrange function and the energy-momentum spatial 
densities for the system are written using no the electro-
magnetic field tensor. Some physical consequences of the 
offered mathematical tool implementation are considered. 
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Introduction 
Advance in the electromagnetic theory may be caused by 
development of new computational methods in electrody-
namics of UWB electromagnetic pulses in passive and ac-
tive microwave devices. One of lines of the development is 
so-called matrix electrodynamics based on decomposition 
of the electromagnetic potentials in new spatially localized 
basis functions – partial functions (oscillets) [1]. The spatial 
localization of the oscillets makes those very suitable for 
simulation of short electromagnetic pulses. 

However, a matrix theory of electromagnetic oscillating 
systems [2] is not completed yet, because one does not de-
scribe energetic characteristics of electromagnetic phenom-
ena. A cause of the problem is incompleteness of contem-
porary electromagnetic theory stating electromagnetic en-
ergy and momentum densities only in the terms of the field 
formalism (electric field strength E  and magnetic induc-
tion B ). On the contrary, founded on the second-order 
(D’Alembert) operator the matrix electrodynamics is for-
mulated in the terms of the potential formalism (scalar-
vector AΦ−  or four-vector fA , in the Lorentz gauge). 

Thus, the completion of the matrix electrodynamics de-
pends on the creation of a self-consistent potential formal-
ism, which does not use the field terms. One of ways is 
treatment of the electromagnetic energy and the energy flux 
(momentum) as energy and momentum of a distributed 
electromagnetic oscillating system, not as properties of the 
electric and the magnetic fields. The Minkowski 4D space-
time [3] might be such system. However, the Lagrange 
function and the energy-momentum densities for this oscil-
lating system must be formulated in some different manner 
than in the field formalism [3]. Namely, these items cannot 
contain the electromagnetic field tensor. 

Lagrange Function of an Electromagnetic System 
The Lagrange function ( )tΛ  for a distributed electromag-
netic oscillating system can be constructed by analogy with 
a mechanical oscillating system. For N charged particles 
with rest masses 0nm  and charges nq  moving in the four-

vector potential f ( , , , ) { , , , }t x y zA t x y z A A A A=  this function 

consists from three components: “mechanical” part ( )P tΛ  
for the particles; “interaction” part ( )I tΛ  between the par-
ticles and the potential; “own” Lagrange function ( )S tΛ  
for the oscillating system: 
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where f f( ) [ , ( ), ( ), ( )]n n n nA t A t x t y t z t≡  is the potential for 
n-th particle location { , , }n n nx y z ; V is the system volume; 

0ε  is the electric constant; 0μ  is the magnetic constant; t is 
the time coordinate measured in the length units, which are 
defined as product of the time by the light velocity in the 
vacuum. Note that the scalar product of four-vectors fa  
and fb  is defined as f f

t t x x y y z za b a b a b a b a b⋅ = − − − . 

Determining a four-vector of the current density as 
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where ( , , , )n t x y zρ  is n-th particle charge density in the 
fixed system of coordinates, the spatial density of the La-
grange function “electromagnetic” part can be written as 
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In spite of the negative sign in f 2( / )A t∂ ∂  term, the La-
grange function does not increase infinitely while the fre-
quency grows (due to the Lorentz gauge of the potential 
four-vector). 

Electromagnetic Energy and Momentum Densities 
Expressions for the electromagnetic energy and momentum 
spatial densities in the self-consistent potential formalism 
can be derived from the density of the “electromagnetic” 
part of the Lagrange function in the usual manner [3]. The 
energy density is 
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where ( , , , )t x y zρ  is the temporal component of fj . A ξ -
th component of the momentum density is 

f f0
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where ξ  means any spatial coordinate (x, y or z). 

The expressions for pξ  (known as the Umov vector com-
ponents) are equivalents of the Poynting vector components 
in the self-consistent potential formalism. The electromag-
netic momentum is the energy flux of a distributed oscillat-
ing system. Possible carriers of this may be both free vibra-
tions of the system (i.e., electromagnetic waves) and mov-
ing spatial gradient of the potential around relocating 
charged particles together with the flux of the interaction 
energy between the particles and the system. 

Some Physical Consequences 
The above definition of the Lagrange function for an elec-
tromagnetic oscillating system results in slightly different 
treatment of some physical objects and phenomena com-
paring with the field formalism. Those are: 

1). In the field formalism, energy of a closed system 
formed by charged particles and electromagnetic fields 
consists from positive “mechanical” energy of the particles 
(including their rest energy) and positive energies of the 
electric and the magnetic fields. In the potential formalism, 
energy of the similar system consists from the same posi-
tive “mechanical” energy of the particles, positive or nega-
tive interaction energy between the charged particles and 

tA  component of the potential, negative energy of varying 
in the space-time tA  component and positive energy of 
varying in the space-time , ,x y zA A A  components. 

2). In the field formalism, oscillating solutions of the wave 
equation for tA  and divergent parts of , ,x y zA A A  compo-

nents do not exist in the free space. In the potential formal-
ism, such solutions exist (so-called zero magnetic ZM or 
potential P waves [4]). Wave of tA  component carries 
negative energy and momentum; waves of , ,x y zA A A  com-
ponents carry positive ones. However, due to the current 
continuity law, these solutions do not exert influence on 
charged particles at far distance from their sources (at least, 
in the classical electrodynamics). 

3). In the field formalism, the electromagnetic field quanta 
(photons) are considered as ordinary particles. In the poten-
tial formalism, the energy of a distributed oscillating sys-
tem is quantized instead. Thus, photons are quasi-particles 
here, like the phonons in a crystal. The full analogy is 
achieved, if the oscillating system is treated as a lattice of 
the partial oscillators [2]. 

Negative densities of the energy and the momentum pro-
duced by gradient of tA  component in the space-time may 
be explained from the viewpoint of the quantum electrody-
namics [5], as reducing of the zero-point energies of the 
electromagnetic quantum oscillators around a charged par-
ticle. This may be considered as appearance of “negative” 
energy of the physical vacuum. 

Conclusion 
The offered variant of a self-consistent potential formalism 
does not conflict with the classical electrodynamics, as it 
seems. However, the ultimate conclusion can be made only 
after examination of various electromagnetic systems be-
havior basing on the above assumptions. A practical value 
of the self-consistent potential formalism consists in simpli-
fication and clarification of the electromagnetic theory and 
prospective completion of the matrix electrodynamics. 
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