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The new approach to the recognition mechanism of the time series generating process based
on the results of the entropy and the recurrent analysis is proposed. The comparative analysis of the
realizations properties of chaotic and stochastic processes with different correlation structure was
carried out. It is shown that the derived set of information characteristics allows to distinguish the
realizations of deterministic chaotic and fractal random processes. Depending on complexity
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financial time series study are presented.
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CPABHUTEJIbHBIA AHAJIN3 CJTOKHOCTH XAOTHYECKHX U
CTOXACTHYECKHMUX BPEMEHHBLIX PSI/I0OB

Kupuuenko JI. O., 0.m.n., odoyemm, mnpogheccop ragedpvl npukiaoHou mamemamuxu,
XapvKkoscKutll HAYUOHATbHBLLL YHUBEPCUMem paouodieKmpoHuKku, Xapvkos, Yxpauna.

Kobunkas 0. A., acnupauwm kagedpsr npuxiaonou mamemamuxy, XapbKOBCKUll
HaYUOHANbHbIU YHUGEpCUmMem paouod1eKmpoHuKu, Xapvkos, Ykpauua.

XabauéBa A. 0., macucmpanm xageopwvr npukiaonot mamemamuxy, XapbKo8cKuil
HAYUOHAIbHBLU YHUBEPCUMEN PAOUOITeKMPOHUKU, XapbKos, YKpauHa.

[MpemyioskeH HOBBIM TOAXOA K PAaclO3HABAHWIO MEXaHW3Ma IMpoIecca, MOPOIUBIIETO
BPEMEHHOW psiji, Oa3upyOUIUiicss Ha pe3yibTaTaX SHTPONUHHOIO W PEKYPPEHTHOTO aHaIM3a.
[IpoBeneH CpaBHUTENIBHBIM aHAdU3 CBOMCTB peaM3alUil XAaOTHUYECKUX U CTOXACTUYECKUX
MPOIIECCOB, MMEIOIIUX DPA3TUYHYIO KOPPEISLUOHHYI0 CTPYKTYypy. [lokazaHo, 4TO moOIydeHHOE

MHOKECTBO XapaKTEPUCTHUK HH(DOPMAILIMOHHOW CIIOKHOCTH TO3BOJIET pa3jnyaTh pealu3aliu
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JNETEPMUHUPOBAHHBIX XAOTHYECKMX M  (paKTadbHBIX CIydyalHBIX TporeccoB. llomyueHsl
3aBUCHMOCTH HMH(DOPMAIMOHHBIX XapaKTEPUCTUK OT TapaMeTpoB TporeccoB. llpuBeneHs
PE3yIbTAThI UCCIIEIOBAHUS OMONIEKTPUIECKIX CUTHAIIOB M (PMHAHCOBBIX PSJIOB.

KutoueBble cjioBa: BpeMEHHOU psifl, Mepa CII0KHOCTH, SHTPOIUS MOI00Us, peKyppeHTHas
auarpamma, rnceBao-($ha3oBoe IpOCTPaHCTBO, Pa3MEPHOCTh BIOKEHHUS.

MOPIBHSUIBHUI AHAJI3 CKJAJTHOCTI XAOTHYHHUX TA CTOXACTHYHIX

YACOBHUX PSAIIB

Kipiuenko JI. O., 0.m.n., Ooyenm, mnpogecop Kkaghedpu npukIAOHOi MameMamuxi,
Xapxkiscvkuul HayioHanvHull yHisepcumem paodioenekmponiku, Xapkis, Ykpaina.

Ko6unkas 0. O., acnipanm kageopu npuxnaonoi mamemamuxu, XapKiecoKui
HayioHanvHull yHigepcumem paodioeiekmpoHiku kageopa Ilpuxnaonoi mamemamuku, Xapkis,
Ykpaina.

XabauoBa A. 0., wmacicmanm kagedpu npukiaouwoi mamemamuxy, XaprigcoKutl
HayioHAaIbHULL YHigepcumem padioeieKmporiku, Xapkie, Ykpaiua.

3arponoHOBaHO HOBUHM MiAXiJ 10 PO3Mi3HABAHHS MEXaHi3MYy MPOLECY, 110 TeHEPY€e YaCOBUI
psn, sKui 0a3yeTbCs Ha pe3yJbTaTax EHTPOMIWHOTO 1 pPEKypeHTHOro anamizy. I[IpoBemeHo
MOPIBHSJILHUN aHaITI3 BIACTUBOCTEN peaizaiiil XaOTUYHUX Ta CTOXAaCTHYHMUX IMPOIIECIB, 10 MAIOTh
pi3HY KOpeJsiiiHy cTpykTypy. [lokazaHo, 110 oTpuMaHa MHOXKHHA XapaKTePUCTUK 1H(OpMaITiitHOT
CKJIATHOCTI JIO3BOJISIE PO3PI3HATH peaiizalii JeTepMiHOBaHUX XAaOTHMYHHX 1 (pakTaqpHUX
BUMNAJAKOBUX MporeciB. OTpUMaHO 3aleXHOCTI 1H(GOPMAIIHUX XapaKTEpUCTUK BiJ MapaMeTpiB
nporieciB. HaBeneHo pe3yabTaTu JOCHTIHKEHHS 010€IeKTPUYHUX CUTHATIB 1 (DIHAHCOBUX PSJIIB.

Kuro4yoBi cjioBa: 4vacoBuil psn, Mipa CKIAIHOCTI, €HTPOIIisSl TMOAIOHOCTI, pEeKypeHTHa

niarpama, rceBno-Gha3oBuil IPOCTIP, PO3MIPHICTh BKIAACHHS.

Nomenclature
A is a control parameter, 4 €(0,4] and x, €[0,1];
ApEn 1s aproximate entropy;
C, () is correlation integral;
Det is measure of determinism;
F() is a m -dimensional pseudo-phase space;
A is a length of the 7 -th diagonal line;
K is a set of characteristics of recurrence and entropy analysis
N is a total number of points in the pseudo-phase space;
N, is a number of diagonal lines;
n,, (&) is a number of vectors, that similar vector P, (i) ;
P () is a frequency distribution of the diagonal lines lengths;

RP, is recurrence plot;



RR 1s measure of recurrence;
x(1) is a point of time series;
X, is a point in the reconstructed pseudo-phase space;
H X, — X_,-H is a distance between points.
€ is a neighborhood size;
¢ is a autoregressive coefficient, ¢| <1;
&) is a uncorrelated white noise;
o, is a diffusion coefficient;
T is a delay period;
O>) is a Heaviside function.
Introduction

Most dynamical systems are "complex systems", which implies the ladder structure with
nonlinear feedback. These include the processes inherent in the human body and nature,
informational, physical, technical and social processes. In practice, they are represented by time
series, which are a projection of the internal and external relations of the dynamical system. One
of the objectives of time series analysis is to extract information from the series and infer the
properties and mechanism of the process that generates the series.

Mathematical models of complex systems exhibiting irregular dynamics are both random
and deterministic chaotic processes. Identification of the mechanism generating process based on
characteristics obtained by time series is a daunting task. There are many approaches to the study of
time series based on traditional statistical analysis, and the methods of nonlinear chaotic dynamics.

The object of study is the deterministic chaotic and stochastic fractal processes in the
technical, economic and biological systems. The subject of study is the time series of a random type
and the estimation methods of their characteristics. The purpose of the work is the following: based
on the results recurrence and entropy analysis of fractal time series to identify the mechanism of

generating process (deterministic or stochastic).

1. Problem statement

Suppose given a time series of an irregular type X = {x(¢)}, t=1,..., N . Let this time series
have fractal properties. Let we have obtained the set of qualitative and quantitative characteristics
K ={K.},i=1,...m of the resulting recurrence and entropy analysis. Need to find out whether the

process of generating this series is chaotic deterministic or random. For this is necessary to conduct
a comparative analysis of modelling time series of various types and determine the set of

characteristics K' < K for which the differences are significant

2. Review of the literature
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Most methods of chaotic dynamics used for time series analysis, based on the reconstruction
space of single realization using the procedure Packard-Takens [1-4]. The reconstruction of the
pseudo-phase space allows us to compute the embedding dimension, which is the main means of
distinguishing chaotic and random processes [3, 5]. This approach allows us to well distinguish
between chaotic dynamics and uncorrelated random noise, however, because this method is based
on the estimation of the fractal dimension and detection autocorrelation relations, it has no effect for
the fractal random processes having long dependence [6, 7].

In [8] proposed a method that extends the capabilities of nonlinear time series analysis,
based on the fundamental property of dissipative dynamical systems - recurrence states. This
method of analysis, based on the representation of process properties in the form of geometric
structures, is a means for detection the hidden dependencies in the observed processes [9-12]. The
method of recurrence plots is widely used for the analysis of stochastic time series of different
nature [6, 13-16]. One of the characteristics of the complexity of the system behavior is entropy.
Entropy methods of time series analysis are also used a reconstruction phase space [3, 7, 17, 18].
One of the characteristics that demonstrate the complexity of the time series dynamics is the
approximate entropy of similarity introduced in [7].

3. Materials and methods

Consider the basic features of the recurrence and entropy analysis. The main idea of the
application of nonlinear dynamics methods to the analysis of the realizations of a dynamical system
is that the basic structure, which contains all the information about the system, namely, an attractor
of a system, can be reconstructed by measuring only single component of this system [1, 3, 19].
Reconstruction phase space attractor is reduced to the construction of the pseudo-phase space.
Widely used procedure Packard-Takens allows to restore the phase trajectory of a dynamical system
from single realization:

F@)=[x(),x(t+71),...,x(t + mr)]. (1)

One of the most common methods used in practice to determine the existence of chaotic
determinacy and estimate the fractal dimension of the attractor is to study the properties of the

correlation integral C, (&) and behavior of the correlation dimension d.(m) depending on the
dimension m of the pseudo-phase space. The correlation integral C, (¢) is a probability that a pair

of points on the reconstructed attractor in m-dimensional space is within a distance of ¢ each other:
1 N
C,(8) = lim ; Oz —|x,—x |). (2)

Dependence the correlation integral on & at small & obeys a power law, i.e.

lirrol C, (¢) = ag . By increasing the dimension of the pseudo-phase space m correlation dimension
&>
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d.(m) increases too. However, for deterministic chaotic time series correlation dimension will
ultimately be saturate with its true value. Value m at which d.(m) will stop changing, is the

embedding dimension. For uncorrelated stochastic realizations embedding dimension increases with
the dimension of the pseudo-phase space m .
Recurrence plot is a projection of the m-dimensional pseudo-phase space onto the plane [12,

14, 17]. Let point x, corresponds to the phase trajectory x(#) describing the dynamic system in the

m-dimensional space at a time ¢ =1, fori = 1, ..., N, then the recurrence plot RP is array of pixels,

where a nonzero element of the coordinates (i, j) corresponding to the case where the distance

between x; and x; is smaller &:
RE , =0(e—||x;,—x, ), x,x, €R",i,j=1..N. 3)
The states x; are recurrence if they are contained into the m-dimensional neighborhood of

point x, with size & . Arbitrarily chosen recurrence point does not contain useful information about

the state of the system at time moments i and j, only the totality of recurrence points allows you to
restore the system properties. Analysis of the plot topology allows us to classify the observed
processes: homogeneous processes with independent random values, processes with slowly varying
parameters, periodic or oscillating processes corresponding to nonlinear systems, etc.

Numerical analysis of recurrence plots allows us to calculate the measure of complexity
structures of recurrence plots, such as a measure of recurrence and determinism etc. The measure of
recurrence RR shows the density of recurrence points:

1 N
RR=—5D RE,. )
LJ
Measure of determinism Det is a characteristic of predictability process and equal to the

ratio of the number of points in diagonal lines to the total number of recurrence points:
N N
Det=Y P ()/).RE,. (5)
I= ij

Aproximate entropy ApEn is the statistics of time series regularity that defines the possibility
of its forecasting. Time series that contain a many of duplicate values, have a relatively small value,
and for less predictable process ApEn value is larger. Methods of estimating the approximate
entropy ApEn considered in [7, 17].

Consider a time series{x(¢)},¢=1,...,N. Let the vector P (i) is subsequence values

2,

i+12° xi+m

} length of m. Two vectors P, (i) u P, (j) will be similar, if the following condition:

‘ka—xﬂk <& 0<k<m.



Foreach i=1,..,N—-m+1 value C, (¢) is calculated:

C ( ) ni m (8) (6)
(&) =—"—.
" N-m+1
Approximate entropy ApEn determined by the formula
ApEn(m. &) =1n-28)_ )
Cm+1 (8)

1 N-m-+1
where C, (g):m ; C,&).

Consider the basic model types of data needed to conduct research and their statistical
properties. As input data have been chosen realizations of deterministic chaotic systems and
realizations of stochastic processes having different correlation structure: uncorrelated noise,
autoregressive processes with short-term dependence and fractal processes with long-term memory.

Chaos is a complex dynamics of deterministic systems in steady state. The main feature of
such systems is sensitive dependence to arbitrarily small changes in initial conditions. If d, is the
initial distance between two points, then for short time ¢ later the distance between the trajectories,
which start from these points, becomes d(t)=d,e", where the value of A is the Lyapunov
exponent. This leads to the loss of deterministic predictability and the need to introduce
probabilistic characteristics to describe the dynamics of chaotic systems.

Iterated maps x,,, = f(C,x,), where C is control parameter, are the most simple and

intuitive mathematical chaotic models [1, 3]..For a wide class of nonlinear functions f the

sequence {xn}::() is chaotic. In the case of dissipative map the orbits {xn}::() lead to an attractor

having a fractal structure.
Logistic map is the most famous example of chaotic maps. This one-dimensional quadratic

map is defined as follows:
X, =Ax,(1-x,). (8)
Diagram of the Lyapunov exponent A is given in the upper part of fig. 1. Chaotic dynamics

(A1>0) is observed when the parameter 4> A =3.569.... The regions of chaos alternate with
"windows of stability" in which the dynamics becomes periodic. At the bottom of fig. 1 shows the
time realizations of logistic map for parameter values 4=3.7 and 4=3.9. The corresponding

Lyapunov exponents are equal 4 =0.37 and 4 =0.5.
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Figure 1 — Diagram of the Lyapunov exponent and realizations for logistic map: a — diagram of the

Lyapunov exponent, b — realization with A=3.7, ¢ — realization with A=3.9

Autoregressive process of 1st order was chosen as processes with short-term dependence

[5]:
X(@)=pX(t-D)+5(@). )

Autoregressive coefficient value ¢ characterizes the degree of the autocorrelation process.

Fig. 2 shows the realizations of the autoregressive process of the different values of coefficient ¢.
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Figure 2 — The realizations of autoregressive process for different ¢:a— ¢=0.2,b—- $=0.9;c—

¢=-0.7



At present it has been generally accepted, that many stochastic processes in nature and in

engineering exhibit a long-range dependence and fractal structure [20, 21]. Stochastic process X (¢)
is self-similar with self-similarity parameter H , if the process a ' X (at) is described by the same

finite-dimensional distributions that X(¢). One of the most famous and simple models of stochastic
dynamics that have fractal properties, is the fractional Brownian motion (FBM).

Gaussian process X(¢f) with a parameter H, 0< H <1 called FBM if its increments

AX (1) = X(t+7)— X(¢) have a distribution of the form:

1 T z?
P(AX <x)= . Exp{——}dz.
2ro, " J@ 20, 7" (10)

FBM with the parameter H =0.5 coincides with the classical Brownian motion. Parameter H
called the Hurst exponent, is the degree of self-similarity. Along with this property, the index H
characterizes the measure of long-term dependence of a stochastic process, i.e. that autocorrelation
function 7(k) decreases as a power law: r(k)~k™”, k — oo, where 0< <1 and H =1-(5/2).
Fig. 3 shows the realizations of the FBM for the values H= 0.3, 0.5, 0.8.
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Figure 3 — FBM for different values H

4. Experiments

For carrying out numerical experiments investigated time realizations X = {x;},i=1...,N,

were generated according to (8 — 10) for various N . It was first performed the reconstruction of
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pseudo-phase space and estimation of embedding dimension. For this procedure were used time
realizations of N =10000. Smaller length of time series usually leads to large errors. [1-3].

For carrying out entropy and recurrence analysis were used time realizations of N =1000.
This length is sufficient for good visualization of recurrence plots and small errors in the
quantitative characteristics (about +0.005). For each of the generated realization estimates of
approximate entropy and a number of the recurrent characteristics were obtained. Estimation
procedure was carried out for realizations of every type processes M =100 times and each estimate
was averaged over the M values.

For clarity, we first considered the example of a completely different process on complexity:
a periodic motion and uncorrelated white noise. For chaotic processes the realizations with different
values of Lyapunov exponents were investigated. For autoregressive processes the autoregressive
coefficient value was changed. The realizations of FBM were generated for different values of the
Hurst exponent.

After examining the results of the analysis the modeling realizations the entropy and
recurrence analysis of real time series such as bioelectrical signals and financial series was
performed.

5. Results

Consider the reconstruction of pseudo-phase space and estimation of embedding dimension.
Fig. 4 shows the typical dependence of the correlation dimension d.(m) on the dimension m of

pseudo-phase space constructed in accordance with (1) for the realizations of an autoregressive

process, the logistic map and FBM.

’ ‘1(: - 4 dC =
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Figure 4 — Dependence of d.(m) on m for different processes: a — autoregression, b — chaotic map,

c—-FBM

The comparative entropy and recurrence analysis of chaotic realizations and realizations of
the stochastic processes having different correlation structure was carried out. Fig. 5 shows the

recurrence plots for the sum of two sinusoids and independent values of a normal random variable.



10
Table 1 shows the corresponding values of the measures of recurrence RR, determinism Det and

approximate entropy ApEn.

Table 1 — Quantitative characteristics of complexity of sinusoid and uncorrelated noise

RR Det ApEn
Sinusoid 0.18 0.998 0.03
Uncorrelated noise 0.0003 0.025 1.7
800 800
ili] a0
400 400
200 200
00 400 600 800
a b

Figure 5 — Recurrence plots for sinusoid and noise: a — sum of sinusoids; b — uncorrelated noise

Recurrence plots for realizations of map (8), autoregression and FBM with different values
of parameters are presented on fig. 6. In the case of logistic map the Lyapunov exponents are equal

to A=0.37, 0.5, 0.69 according to parameter values.
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Figure 6 —Recurrence plots for under study realizations: a — logistic map with A=3.7, b —logistic
map with A=3.9, ¢ — logistic map with A=4, d — autoregression with ¢ = 0.3, e —autoregression with
¢=0.6, f— autoregression with ¢ =0.9, j— FBM with H=0.3, h— FBM with H = 0.6, 1— FBM
with H=10.9

Table 2 shows the means of recurrence RR, determinism Det and approximate entropy ApEn
corresponding to the plots above.

Table 2 — Quantitative characteristics of complexity of realizations

Logistic map Autoregression FBM
A RR Det | ApEn | ¢ RR Det | ApEn | H | RR Det | ApEn
3.7 | 0.008 | 0.1 | 093 | 03] 0.0003 | 0.03 | 1.72 | 0.3 | 0.02 | 055 | 0.47
3.9 | 0.004 | 0.07 1.2 | 0.6 | 0.0005 | 0.05| 1.65 | 0.6 | 0.02 | 087 | 0.21
4 0.002 | 0.05| 086 | 09| 0.002 | 0.13 | 1.25 |09 | 0.0l | 095 | 0.12

In this work the time series corresponding to a various complex dynamical systems:

bioelectrical signals and financial series were considered. In particular, the RR-intervals series were
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investigated. RR-interval is the time interval between adjacent teeth of electrocardiogram and it
equals to the duration of the cardiac cycle. Initial data for the research in this paper were obtained
on a specialized website [24] containing an extensive medical database. As an example of financial
series, the dynamics of change in the currency pair EUR/RUB for 2004-2006 was examined. Fig. 7

shows the time series and recurrence plots of data described above.

Figure 7 — Recurrence plots of real time series: a — series of RR-intervals, b — series of EUR/RUB,

¢ — recurrence plots of RR-intervals, d — recurrence plots of EUR/RUB

Quantitative recurrence and entropy characteristics obtained from the time series are

presented in Table 3.

Table 3 — Quantitative characteristics of complexity of time series

RR Det ApEn
RR-intervals 0.05 0.61 1,07
EUR/RUB 0.08 0.85 0.17
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5. Discussion

Numerical analysis shows that the realizations of the random and deterministic chaotic
motion may have similar statistical characteristics [3, 22, 23]. Reconstruction of pseudo-phase
space and estimations of embedding dimension detected essential differences in the structure of
chaotic realizations and realizations autoregressive processes with short-term dependence.
However, the embedding dimension, evaluated for the FBM realizations with a long-term
dependence, is also limited [6, 7]. The estimation results presented in fig. 4 confirm that the
construction of the pseudo-phase space and the estimation of embedding dimension cannot be a
reliable tool for distinguishing between chaotic and stochastic fractal realizations and fitting of
appropriate mathematical models.

Carried out recurrent analysis detected strong differences in visual topology and the
numerical characteristics of realizations of the above processes. It is obvious that the characteristics
of chaotic and random processes must be located within the range of characteristic values calculated
for the periodic and completely random trajectories, see fig.5 and tab.1. It can be noted for chaotic
realizations that greater value of Lyapunov exponent corresponds to a greater randomness of the
system, which is clearly evident on recursive plots: the existence of some plot structure replaced
uniform filling (top of Fig.6). In the case of autoregressive process (middle Fig.6) it is necessary to
note the lack of plot structure and uniform filling regardless of the autocorrelation degree. The
recurrent plots of FBM have the specific structure, which depends on the Hurst exponent value
(bottom of Fig.6). With the increasing exponent H the range of values, i.e. plot filling, decreases.

As regards the quantitative characteristics, the research has shown that the most informative
recurrent characteristics are the indexes of recurrence and determinism. The values RR and Det are
measure of regularity, therefore in each case they decrease, when randomness or uncorrelation of
realizations increase. The entropy ApEn is measure of unpredictability therefore it increases with
uncorrelation. Value ranges of characteristics are quite different for various processes. This allows
us to identify the generating process by the set of characteristics.

Based on the results of qualitative and quantitative analysis can be propose for modeling
realizations RR-intervals to use deterministic chaotic systems, while the mathematical modeling of
S&P500 series should be based on self-similar stochastic processes. For a correct choice of the
model in the first case the estimation of such characteristics as the Lyapunov exponent, invariant
measure distribution, etc. is necessary, and in the second case — the estimation of fractal
characteristics.

Conclusion
Using the results of the recurrent and entropy analysis to distinguish deterministic chaotic

and fractal random processes was first proposed in this work. It is shown that the set of
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characteristics such as indexes of recurrence and determinism, approximate entropy and recurrence
plot allows to identify the type of process that generated the time series. The dependences of
information complexity measures of time series from the parameters of the processes were obtained.
Thus it is possible to choose the mathematical model of process has a certain correlation and
recursive structure for the simulation and forecasting. It is shown that series of RR-intervals
corresponds to a chaotic process and S&P500 series has the structure corresponding to a fractal
Brownian motion. Further studies propose the calculation of confidence intervals for estimates of
the characteristics, the analysis of the short time series and investigation a large number of real time

series a various complex dynamical systems.
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