
Abstract—This paper presents a method for automatic RTL-
interface synthesis for a given C++ function as well as for a
given SystemC-interface. This task is very im-portant in High-
Level Synthesis design flow where design entry is usually done
in some abstract language (e.g. C++). As a source high-level
description targets different SoC architectures or protocols, so
it is needed to generate relevant pin-level interfaces and
protocols automatically.

Index Terms— Computer languages. High level synthesis,
System-level design, System testing.

I. INTRODUCTION

A system level interface can be mapped to different RTL
(or pin-accurate) interfaces. The mapping depends on a
selected architecture and protocol.

The goal of the presented research is to reduce design
time and human efforts needed to generate a pin-accurate
interface and a protocol for a given arbitrary high-level
description.

The research tasks are:
a) to research the state of the art;
b) to research a mapping between high-level inter-faces

and RTL interfaces;
c) to develop a method for generation of a

communication protocol;
d) to test the proposed solution.
This paper is organized as follows. State of the art is

presented in the second section. The third section defines
the prerequisites of the proposed method: a) a mapping
between system-level and RT-level interfaces; b) a way
how the communication protocol is specified. We conclude
in the fourth section.

II. STATE OF THE ART

There are several methods for interface synthesis. The
interface synthesis task is defined as follows: to generate an
interface between two processes with arbitrary protocols
[1]. In [2] authors present a method of interface generation
for a given waveform. In [3] authors propose a method to

Manuscript received December 15, 2010.
Volodymyr Obrizan is with Kharkov National University of Radio

Electronics, Kharkov, Ukraine (e-mail: volodymyr.obrizan@gmail.com).

generate interface circuits. The proposed solution produces
flexible microarchitectures from FSM descriptions. The
FSM descriptions are derived from a formal language called
SIMPLE. In [4] authors present a method to generate
hardware interfaces and protocols depending on a VHDL
description. In [5] authors report on a formal language to
specify protocols for further synthesis. None of the above
methods solve the problem, if a system model is described
in C++.

Among modern System-on-Chip communication
protocols we can outline the following: AMBA [6],
Wishbone [7], CoreConnect, Open Core Protocol, Avalon
[8]. The main disadvantage of these specifications is that
they provide the description of the protocols in verbal form
with waveforms. There are no algorithms, FSMs, or
transactors.

III. A FORMAT OF A SOURCE DESCRIPTION

Let’s consider prerequisites which make this method
possible. We will consider two main points:

a) a definition of an interface;
b) a definition of a communication protocol.

A. A definition of an interface

Let F — is a function defined with a high-level
description language, X = (x1, x2, …, xi) — is a vector of
arguments , Y = (y1, y2, …, yk) — is a function’s output
vector. Then, a function to be synthesized looks like:

Y = F (X). (1)

On later design stages, the low-level interface of a
module must be defined. However, a number of different
low-level interfaces can be associated with a single high-
level interface.

In a source model written in C++, a module interface can
be defined in the following ways:

a) as a function or member function declaration
(SystemC-interface);

b) as a SystemC module (SC_MODULE) with a SystemC
pin-accurate interface;

c) in some other way, different from the above.
A function (member function) declaration looks like the

following:
return_type function_name (argument_list);

A Method of High-Level Synthesis
and Verification with SystemC Language

Volodymyr Obrizan, Kharkov National University of Radio Electronics, Ukraine

R&I, 2010, N4 47

here return_type — is a function return value type,
argument_list — is a list of arguments, including each
argument’s type and optional argument’s identifier. A C++
function can return values of arbitrary built-in types and
user types, pointers or references to them. There is one
exception — type void means function doesn’t return a
value. A mapping between C++ and VHDL types is shown
in Table 1.

TABLE I
A MAPPING BETWEEN C++ AND VHDL TYPES

C++ type Width,
bit

VHDL type

char, unsigned char,
signed char, bool

8 std_logic_vector (7 downto 0)

unsigned short int,
float,
short int

16 std_logic_vector (15 downto 0)

int, unsigned int,
unsigned long int,
long int, double

32 std_logic_vector (31 downto 0)

*T (pointer to) 32 std_logic_vector (31 downto 0)

long long,
long double

64 std_logic_vector (63 downto 0)

wchar_t, void — n/a, non-synthesizable

Thus, a high-level synthesis program has the following
options: 8, 16, 32, and 64-bit types without intermediate
values. These types will be translated into registers and
buses of respective widths. Sometimes, it may result in
unreasonable hardware expenses. For example, let’s
suppose that we need to encode 10 values, so we use a
variable of type char mapping to an 8-bit register. The
register can encode 256 values at the most. But to encode
10 values it is needed only 4 bits. Thus, a half of the
register will not be used. In general case, if we need to
encode n values, then number of required bits (k) is:

nlogk 2 . (2)

To address this issue, SystemC provides two type sets to
work with arithmetic values with arbitrary precision: from
1- to 64-bit types, 64-bit and above types. Classes sc_int
(signed integer) and sc_uint (unsigned integer) model
integer arithmetic types in a range from 1 to 64 bits. These
classes are recommended for use only for synthesis if
unambiguity between high-level model simulation and RTL
simulation is needed. Sole-ly for high-level simulations, it is
better to use native int type, because its simulation speed is
higher. Classes sc_bigint and sc_biguint model 64-bit types
and above.

Let’s consider the greatest common factor function. Its
SystemC-interface is defined as a virtual member function
(see below). Then, one needs to inherit this interface and
implement its behavior. (This task isn’t considered in this

paper.)
class find_gcf_if : public sc_interface
{
public:
 virtual int find_gcf (int a, int b) = 0;
}

A synthesis program can extract number and types with
relative bit-widths of the parameters using such description.
Fig. 1 shows the result of such synthesis. We see the well-
defined RTL interface.

Fig. 1. A function declaration and its RTL interface

There are three groups of ports:
a) informational: a, b, value — the number, names and

sizes depend on a given C++ function decla-ration;
b) global control: clk, reset — usually the same for any

function.
c) protocol: enable, ready — the number and mean-ing

depend on a given protocol.

B. A definition of a communication protocol

Usually, a communication protocol is given as a textual
description of rules which one must follow to successfully
communicate with a device. Also, such description is
supplemented with waveforms. However, these kinds of
description aren’t good for automatic translation, so a
designer should manually specify a communication protocol
in VHDL or Verilog.

Let’s consider a simple communication protocol. The
waveform is shown in fig. 2. The communication rules are
the following.

1. Set up the parameters to the inputs ‘a’ and ‘b’.
2. Set up ‘enable’ signal.
3. Wait until ‘ready’ signal is ‘1’.
4. Read the result of the calculation at ‘value’ port.

48 R&I, 2010, N4

10

clk

a[31:0]

enable

ready

value[31:0] invalid

100

1 2 3 4 5 6 7 8

b[31:0] 30

10

Fig. 2. A simple communication protocol

On the slave’s side these rules are defined as follows.
1. Wait until ‘ready’ signal is set.
2. Read the inputs ‘a’ and ‘b’.
3. Perform the calculation.
4. When the calculation is done, set ‘value’ output and

‘ready’ signal.
5. Wait one clock cycle and reset ‘ready’ signal.
We can represent these rules in a form of the following

algorithms. There are two algorithms: one for the master
process (fig. 3) and one for the slave process (fig. 5). There
are corresponding finite-state machines for these
algorithms: fig. 4 and fig. 6 respectively.

The loop at the state a1 in the master process’ FSM
means that the master process must keep the arguments and
‘enable’ signal unchanged till ‘ready’ signal is set. This
makes the master process to wait until the slave process is
ready with calculations and the result is stable.

Actually, at the FSM in the fig. 5, the state a1 is a group
of states, because most calculations will be done in more
than one clock cycle. So this group state can consist of
many operation and decision vertices needed to implement
the function being synthesized.

Fig. 3. An algorithm of the master process

Fig. 4. An FSM of the master process

Fig. 5. An algorithm of the slave process

Fig. 6. An FSM of the slave process

In general case, these algorithms depend on a number of
arguments and body logic of the function. So it is not a
complex task to make the method work for arbitrary
function declarations.

These algorithms can be easily synthesized into FSMs
and further into RTL interfaces and corresponding protocol
logic.

Also, the master process’ algorithm can be used to
generate a transactor to verify the results of synthesis. This
transactor converts higher-level requests (function calls) to
lower-level events (logic signals activations). To do so, it is
needed to implement the master process algorithm as a
SystemC-transactor. For example, for the given function the

R&I, 2010, N4 49

master transactor will look as follows:

class find_gcf_trans : public find_gcf_if,
 public sc_module {
public:
 // RTL-interface
 sc_out<int> a, b;
 sc_in<int> value;
 sc_in<bool> clock, reset, ready;
 sc_out<bool> enable;

 SC_CTOR(find_gcf_trans) { }

 // High-level interface
 virtual int find_gcf(int a, int b) {
 wait(clock->posedge_event());
 this.a = a;
 this.b = b;
 enable = true;
 while(!ready)
 wait(clk->posedge_event());
 enable = false;
 return value;
 }
};

The complete system of transactors and modules is
shown in fig. 7. The ‘Testbench’ module is a high level
test-bench written using SystemC language. It has a single
port of the find_gcf_if type (see section III). The ‘H2L’
module is a transactor converting high-level calls to low-
level binary signals. It works accordingly with the
algorithm shown in fig. 3. and the FSM shown in fig. 4.
The ‘L2H’ module is a transactor converting low-level
binary signals to high-level system calls. It works
accordingly with the algorithm shown in fig. 5 and the FSM
shown in fig. 6. The ‘find_gcf’ module is a high-level
module written in SystemC language. However, in this
system, the L2H module can be substituted with an RTL or
gate-level module. So, the high-level test-bench can be
reused on all levels of abstraction.

It should be noted, that the test-bench is a clock-less
module. The notion of time is specified in transactors only.

Fig. 7. The complete system of modules and transactors.

IV. CONCLUSION

A method to generate RTL-interfaces with the simple
communication protocol for a given function declaration is
presented. This method defines the required informational,
control and protocol ports and their bit-widths. We propose
to specify communication protocols in a form of algorithms
to simplify the interface synthesis task. The method
implemented as a part of high-level synthesis tool
significantly reduces time to RTL and designer efforts.

Also, the proposed method is useful for automatic
generation of transactors to verify synthesized solutions.
This enables reusing of high-level tests.

This method doesn’t consider a case when it is needed to
access data in a shared memory (pointers).

Further research lays in analyzing and defining
algorithms and FSMs for popular on-chip protocols
(AMBA, Open Core Protocol, CoreConnect, etc.). Also, it
is needed to refine the method to handle shared memory
access via pointers.

REFERENCES

[1] Narayan, S. and Gajski, D. D. “Interfacing incompatible protocols
using interface process generation”. In Proceedings of the 32nd

ACM/IEEE Conference on Design Automation, ACM, San Francisco,
California, United States, June 12 - 16, 1995, pp. 468-473.

[2] Chung, K., Gupta, R. K., and Liu, C. L. “An algorithm for synthesis
of system-level interface circuits”. In Proceedings of the 1996

IEEE/ACM international Conference on Computer-Aided Design,
IEEE Computer Society, San Jose, California, United States,
November 10 - 14, 1996, pp. 442-447.

[3] Yun, C., Kang, D., Bae, Y., Cho, H., and Jhang, K. “Automatic
interface synthesis based on the classification of interface protocols
of IPs”. In Proceedings of the 2008 Conference on Asia and South

Pacific Design Automation, IEEE Computer Society Press, Seoul,
Korea, January 21 - 24, 2008, Los Alamitos, pp. 589-594.

[4] Smith, J. and De Micheli, G. “Automated composition of hardware
components”. In Proceedings of the 35th Annual Conference on

Design Automation, ACM, San Francisco, California, United States,
June 15 - 19, 1998, pp. 14-19.

[5] Madsen, J. and Hald, B. “An approach to interface synthesis”.
In Proceedings of the 8th international Symposium on System

Synthesis, ACM, Cannes, France, September 13 - 15, 1995, pp. 16-
21.

[6] “AMBA Open Specifications”. arm.com/products/system-
ip/amba/amba-open-specifications.php

[7] “Specification for the: WISHBONE System-on-Chip (SoC)
Interconnection Architecture for Portable IP Cores”. Revision: B.3,
Released: September 7, 2002
opencores.org/cdn/downloads/wbspec_b3.pdf

50 R&I, 2010, N4

