
Abstract—This paper presents a method for automatic RTL-
interface synthesis for a given C++ function as well as for a 
given SystemC-interface. This task is very im-portant in High-
Level Synthesis design flow where design entry is usually done 
in some abstract language (e.g. C++). As a source high-level 
description targets different SoC architectures or protocols, so 
it is needed to generate relevant pin-level interfaces and 
protocols automatically. 

Index Terms— Computer languages. High level synthesis, 
System-level design, System testing. 

I. INTRODUCTION

A system level interface can be mapped to different RTL 
(or pin-accurate) interfaces. The mapping depends on a 
selected architecture and protocol.  

The goal of the presented research is to reduce design 
time and human efforts needed to generate a pin-accurate 
interface and a protocol for a given arbitrary high-level 
description. 

The research tasks are: 
a) to research the state of the art; 
b) to research a mapping between high-level inter-faces 

and RTL interfaces; 
c) to develop a method for generation of a 

communication protocol; 
d) to test the proposed solution. 
This paper is organized as follows. State of the art is 

presented in the second section. The third section defines 
the prerequisites of the proposed method: a) a mapping 
between system-level and RT-level interfaces; b) a way 
how the communication protocol is specified. We conclude 
in the fourth section.  

II. STATE OF THE ART

There are several methods for interface synthesis. The 
interface synthesis task is defined as follows: to generate an 
interface between two processes with arbitrary protocols 
[1]. In [2] authors present a method of interface generation 
for a given waveform. In [3] authors propose a method to 
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generate interface circuits. The proposed solution produces 
flexible microarchitectures from FSM descriptions. The 
FSM descriptions are derived from a formal language called 
SIMPLE. In [4] authors present a method to generate 
hardware interfaces and protocols depending on a VHDL 
description. In [5] authors report on a formal language to 
specify protocols for further synthesis. None of the above 
methods  solve the problem, if a system model is described 
in C++. 

Among modern System-on-Chip communication 
protocols we can outline the following: AMBA [6], 
Wishbone [7], CoreConnect, Open Core Protocol, Avalon 
[8]. The main disadvantage of these specifications is that 
they provide the description of the protocols in verbal form 
with waveforms. There are no algorithms, FSMs, or 
transactors. 

III. A FORMAT OF A SOURCE DESCRIPTION

Let’s consider prerequisites which make this method 
possible. We will consider two main points:  

a) a definition of an interface; 
b) a definition of a communication protocol. 

A. A definition of an interface 

Let F — is a function defined with a high-level 
description language, X = (x1, x2, …, xi) — is a vector of 
arguments , Y = (y1, y2, …, yk) — is a function’s output 
vector. Then, a function to be synthesized looks like: 

Y = F (X).         (1) 

On later design stages, the low-level interface of a 
module must be defined. However, a number of different 
low-level interfaces can be associated with a single high-
level interface. 

In a source model written in C++, a module interface can 
be defined in the following ways: 

a) as a function or member function declaration 
(SystemC-interface); 

b) as a SystemC module (SC_MODULE) with a SystemC 
pin-accurate interface; 

c) in some other way, different from the above. 
A function (member function) declaration looks like the 

following: 
return_type function_name (argument_list); 
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here return_type — is a function return value type, 
argument_list — is a list of arguments, including each 
argument’s type and optional argument’s identifier. A C++ 
function can return values of arbitrary built-in types and 
user types, pointers or references to them. There is one 
exception — type void means function doesn’t return a 
value. A mapping between C++ and VHDL types is shown 
in Table 1. 

TABLE I
A MAPPING BETWEEN C++ AND VHDL TYPES

C++ type Width, 
bit

VHDL type 

char, unsigned char, 
signed char, bool 

8 std_logic_vector (7 downto 0) 

unsigned short int, 
float,  
short int 

16 std_logic_vector (15 downto 0) 

int, unsigned int, 
unsigned long int, 
long int, double 

32 std_logic_vector (31 downto 0) 

*T (pointer to ) 32 std_logic_vector (31 downto 0) 

long long,  
long double 

64 std_logic_vector (63 downto 0) 

wchar_t, void — n/a, non-synthesizable 

Thus, a high-level synthesis program has the following 
options: 8, 16, 32, and 64-bit types without intermediate 
values. These types will be translated into registers and 
buses of respective widths. Sometimes, it may result in 
unreasonable hardware expenses. For example, let’s 
suppose that we need to encode 10 values, so we use a 
variable of type char mapping to an 8-bit register. The 
register can encode 256 values at the most. But to encode 
10 values it is needed only 4 bits. Thus, a half of the 
register will not be used. In general case, if we need to 
encode n values, then number of required bits (k) is: 

nlogk 2 .         (2) 

To address this issue, SystemC provides two type sets to 
work with arithmetic values with arbitrary precision: from 
1- to 64-bit types, 64-bit and above types. Classes sc_int 
(signed integer) and sc_uint (unsigned integer) model 
integer arithmetic types in a range from 1 to 64 bits. These 
classes are recommended for use only for synthesis if 
unambiguity between high-level model simulation and RTL 
simulation is needed. Sole-ly for high-level simulations, it is 
better to use native int type, because its simulation speed is 
higher. Classes sc_bigint and sc_biguint model 64-bit types 
and above. 

Let’s consider the greatest common factor function. Its 
SystemC-interface is defined as a virtual member function 
(see below). Then, one needs to inherit this interface and 
implement its behavior. (This task isn’t considered in this 

paper.) 
class find_gcf_if : public sc_interface 
{
public: 
 virtual int find_gcf (int a, int b) = 0; 
}

A synthesis program can extract number and types with 
relative bit-widths of the parameters using such description. 
Fig. 1 shows the result of such synthesis. We see the well-
defined RTL interface. 

Fig. 1. A function declaration and its RTL interface

There are three groups of ports: 
a) informational: a, b, value — the number, names and 

sizes depend on a given C++ function decla-ration;  
b) global control: clk, reset — usually the same for any 

function. 
c) protocol: enable, ready — the number and mean-ing 

depend on a given protocol. 

B. A definition of a communication protocol 

Usually, a communication protocol is given as a textual 
description of rules which one must follow to successfully 
communicate with a device. Also, such description is 
supplemented with waveforms. However, these kinds of 
description aren’t good for automatic translation, so a 
designer should manually specify a communication protocol 
in VHDL or Verilog. 

Let’s consider a simple communication protocol. The 
waveform is shown in fig. 2. The communication rules are 
the following. 

1. Set up the parameters to the inputs ‘a’ and ‘b’. 
2. Set up ‘enable’ signal. 
3. Wait until ‘ready’ signal is ‘1’. 
4. Read the result of the calculation at ‘value’ port. 
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Fig. 2. A simple communication protocol 

On the slave’s side these rules are defined as follows. 
1. Wait until ‘ready’ signal is set. 
2. Read the inputs ‘a’ and ‘b’. 
3. Perform the calculation. 
4. When the calculation is done, set ‘value’ output and 

‘ready’ signal. 
5. Wait one clock cycle and reset ‘ready’ signal. 
We can represent these rules in a form of the following 

algorithms. There are two algorithms: one for the master 
process (fig. 3) and one for the slave process (fig. 5). There 
are corresponding finite-state machines for these 
algorithms: fig. 4 and fig. 6 respectively. 

The loop at the state a1 in the master process’ FSM 
means that the master process must keep the arguments and 
‘enable’ signal unchanged till ‘ready’ signal is set. This 
makes the master process to wait until the slave process is 
ready with calculations and the result is stable. 

Actually, at the FSM in the fig. 5, the state a1 is a group 
of states, because most calculations will be done in more 
than one clock cycle. So this group state can consist of 
many operation and decision vertices needed to implement 
the function being synthesized. 

Fig. 3. An algorithm of the master process 

Fig. 4. An FSM of the master process 

Fig. 5. An algorithm of the slave process 

Fig. 6. An FSM of the slave process 

In general case, these algorithms depend on a number of 
arguments and body logic of the function. So it is not a 
complex task to make the method work for arbitrary 
function declarations. 

These algorithms can be easily synthesized into FSMs 
and further into RTL interfaces and corresponding protocol 
logic.  

Also, the master process’ algorithm can be used to 
generate a transactor to verify the results of synthesis. This 
transactor converts higher-level requests (function calls) to 
lower-level events (logic signals activations). To do so, it is 
needed to implement the master process algorithm as a 
SystemC-transactor. For example, for the given function the 
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master transactor will look as follows: 

class find_gcf_trans : public find_gcf_if,  
 public sc_module { 
public: 
    // RTL-interface 
    sc_out<int> a, b; 
    sc_in<int> value; 
    sc_in<bool> clock, reset, ready; 
    sc_out<bool> enable; 

    SC_CTOR(find_gcf_trans) { } 

    // High-level interface 
    virtual int find_gcf(int a, int b) { 
        wait(clock->posedge_event()); 
        this.a = a; 
        this.b = b; 
        enable = true; 
        while(!ready) 
            wait(clk->posedge_event()); 
        enable = false; 
        return value; 
    } 
};

The complete system of transactors and modules is 
shown in fig. 7. The ‘Testbench’ module is a high level 
test-bench written using SystemC language. It has a single 
port of the find_gcf_if type (see section III). The ‘H2L’ 
module is a transactor converting high-level calls to low-
level binary signals. It works accordingly with the 
algorithm shown in fig. 3. and the FSM shown in fig. 4. 
The ‘L2H’ module is a transactor converting low-level 
binary signals to high-level system calls. It works 
accordingly with the algorithm shown in fig. 5 and the FSM 
shown in fig. 6. The ‘find_gcf’ module is a high-level 
module written in SystemC language. However, in this 
system, the L2H module can be substituted with an RTL or 
gate-level module. So, the high-level test-bench can be 
reused on all levels of abstraction. 

It should be noted, that the test-bench is a clock-less 
module. The notion of time is specified in transactors only. 

Fig. 7. The complete system of modules and transactors. 

IV. CONCLUSION

A method to generate RTL-interfaces with the simple 
communication protocol for a given function declaration is 
presented. This method defines the required informational, 
control and protocol ports and their bit-widths. We propose 
to specify communication protocols in a form of algorithms 
to simplify the interface synthesis task. The method 
implemented as a part of high-level synthesis tool 
significantly reduces time to RTL and designer efforts. 

Also, the proposed method is useful for automatic 
generation of transactors to verify synthesized solutions. 
This enables reusing of high-level tests.  

This method doesn’t consider a case when it is needed to 
access data in a shared memory (pointers). 

Further research lays in analyzing and defining 
algorithms and FSMs for popular on-chip protocols 
(AMBA, Open Core Protocol, CoreConnect, etc.). Also, it 
is needed to refine the method to handle shared memory 
access via pointers. 
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