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Abstract—Transient pulsed excitation of the localized surface 
plasmons on nanowire and nanoshell is visualized and analyzed. 
The complex source point concept is used to simulate an incident 
transient beam. Rigorous mathematical method based on the 
Laplace transformation is applied. Time domain field 
representation is obtained through the evaluation of the residues 
at singular points associated with the eigenvalues of the structure 
and integrals along the branch-cuts on the complex plane. 
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I.  INTRODUCTION 

II. MATHEMATICAL BACKGROUND: FORMULATION AND 
SOLUTION  

In this paper, we consider 2D problem of the excitation of 
localized SPs on a nanowire and a nanoshell by a transient 
external beam. The complex source point concept is used to 
simulate an incident transient beam. The model is based on the 
idea of analytic continuation of the functions of real point 
source into the complex space [12]. H-polarized fields will be 
considered. 

At first, assume that the source is at a point with the real 
coordinates represented by a radius vector sρ . Using the 
expression for the 2D Green's function in the time domain, 

Recently, localized surface plasmons (SPs) have attracted 
great amount of attention due to their potential use for the 
subwavelength field enhancement and localization that are 
explored in single molecule detection, transmission through a 
subwavelength aperture, subwavelength imaging, and 
improvement in the performance of conventional photonics 
components such as modulators and switches and others [1-4]. 
It is known that SPs can exist on a metal wire that can be 
considered as a plasma cylinder in the optical region. 
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where (..)θ  is the unit Heaviside function, we can write the 
expression for the magnetic field in free space, 
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In this paper we consider the excitation of SPs on a 
nanowire and a nanoshell by a transient pulsed beam. The 
external beam is modelled by a pulsed source point [5-8] with 
complex coordinates. To find the excited fields we use a 
rigorous mathematical tool that allows analysing problems 
both in the frequency and in the time domains. By applying 
the Laplace transformation directly to a wave equation we 
derive an analytical solution in the frequency domain; the time 
dynamics of the electromagnetic field is recovered by the 
inverse Laplace transformation. In this way we evaluate the 
residues at singular points associated with the eigenvalues of 
the structure and the integral along the branch-cuts in the 
complex plane. This approach guarantees the calculation with 
controllable accuracy and allows us to extract and to interpret 
physical phenomena. This method, introduced by C. Baum 
(singularity expansion method) in the 1970-s, has been 
successfully used in variety of ultra-wide-band antenna and 
target identification problems [9,10], and has been 
successfully applied by the authors to a variety of 1D, 2D and 
3D time domain problems with nondispersive media [11-13]. 

If the source is located in the real point of the space,  
ˆ( , ) ( ) ( )s sj t j t= − −ρ δ ρ ρ ρ ρ , where (..)δ  is the Dirac 

delta function, then 
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Laplace transform of the equation (3) has the form  
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where ( )J p  is image of the function ( )j t , 0 ( , )H p ρ  is the 
image of the function 0 ( , )h t ρ , and  is the modified 
Bessel func ion of the second kind. Let us further assume that 
the vector 

( )0 ..K
t

sρ  is complex s cs=ρ ρ , where csρ  is given by 

0 0cos , sin ,cs csx x ib y y ibβ β= + = +      (5) 
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and 0 0, , ,x y b β  are real numbers.  

In this case, the distance between the point source and the 
observation point is complex as well, 

2 2( ) (cs cs csx x y y− = − + −ρ ρ ) .  

Let us consider the transient dynamics of localized SPs 
excited by the pulsed complex source point on the nanowire 
(Fig. 1 (a)). 

Dispersive medium is described by the Drude model,  
2
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where peω  is the plasma frequency and eγ  is the material 
absorption. The susceptibility of plasma in the frequency 
domain is of the form 
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The susceptibility of the medium in the time domain can 
be found using the inverse Fourier transform 
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In Fourier-transform domain, we look for the solution to 
the problem associated with a nanowire in the following form:  
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where , ( )kI .. ( )kK ..  are the modified Bessel functions of the 
first and second kind, respectively. Representation of the 
external field in the form of functions k ( )K ..  guarantees the 
agreement with the radiation conditions at infinity.  

Applying the boundary conditions, which represent 
continuity of the tangential field components at the circular 
boundary a=ρ , we come up to the system (provided that the 
source is located outside, 0 a>ρ ) to determine the unknown 
coefficients mA  and , mB
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For the nanoshell (Fig. 1 (b)) the solution can be found in 
the similar form, 
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Similarly, after the application of the boundary conditions, 
we determine the unknown coefficients from the solution to 
the system 
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The coefficients of expansions have the poles 
corresponding to the plasmon modes and also the branch 
point. The eigenfrequencies of the plasmon modes are 
complex, i′ ′′= +ω ω ω . The dependence on the time of the 
transient pulse source is  
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Figure 1. Schematic diagram of the investigated phenomenon. 

III. NUMERICAL RESULTS AND DISSCUSION 
In this paper, we consider normalized plasma frequency 

p pw a c= ω , 1pw = , 310 pw−= ⋅γ , 0.5b a = . Figure 2 
represents the dependences of the scattering cross sections 
(SCS) of nanowire (dashed line) and nanoshell (solid line) on 
the normalized frequency ka. In the spectrum of the nanowire 
SCS, one can see the resonances on the dipole ( Re( ) 0.63ka = ) 
and the quadrupole ( ) plasmons. In the 
spectrum of the nanoshell SCS, two types of plasmon 
resonances are present: even and odd. The odd plasmon 
resonances are shifted to lower frequencies (

Re( ) 0.675ka =

Re( ) 0.48ka =  
and Re( ) 0.6ka = ) and the even plasmon resonances are 
shifted to the region of higher frequencies ( Re( ) 0.77ka =  and 
Re( ) 0.83ka = ). Figure 3 shows the spectral density of the 
field in the nanoshell at its excitation by a complex source 
point beam. We use the normalized frequency of the source 

0 0 /w a cω= . The solid line corresponds to the case when the 
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frequency of the source coincides with the real part of the 
frequency of even dipolar plasmon and the dashed line 
corresponds to an odd dipole plasmon. The duration of the 
pulse is 2 a c=τ π . In this case, unlike the case of the incident 
harmonic wave (see Fig. 2), in the spectrum multiple peaks that 
are associated with higher plasmons are present. 
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Figure 2. SCS of the nanowire (dashed line) and nanoshell (solid line) as a 
function of the normalized frequency. 
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Figure 3. Spectral density of the field in nanoshell ( 1, 2pw aτ π= = c ) as a 
function of the normalized frequency. 
 

 
Figure 4. Snapshots of the dynamic SP propagation along the nanoshell. From 
left to right: T 100π= , 140T π= ( /T tc a=  is the normalized time, 
where t  is real time,  is radius of wire,  is velocity of light in vacuum). a c

Figure 4 represents snapshots of the absolute value of the 
magnetic field of the transient SPP travelling around the metal 

shell excited by the external transient beam with the 
eigenfrequency 0 0.83ω = .  

We see that the beating of the simultaneously excited SPs 
gives rise to asymmetric running field pattern. The field on the 
surface of the nanoshell is more complicated because in this 
case excited are both even and odd plasmons with different 
quality factors and characteristic fields. 

CONCLUSIONS 
In this paper we built an analytic solution, in the form of 

the Laplace transform, of the problem of transient plasmon 
excitation by a localized directive pulse source. For the 
simulation of transient external beam we used the concept of 
complex source point beam. The model is based on the idea of 
analytic continuation of the functions of real source point into 
the complex space. This kind of source is a very useful model 
for describing the excitation of non-stationary waves. It was 
shown that the beating of the simultaneously excited SPs gives 
rise to asymmetric running field pattern. 
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