УДК 519.7

МОДЕЛЬ ИРРАДИАЦИИ ЗРЕНИЯ

М.Ф. Бондаренко¹, С.Ю. Шабанов-Кушнаренко², Ю.П. Шабанов-Кушнаренко³

^{1, 2, 3} ХНУРЭ, г. Харьков, Украина

Исследуется модель иррадиации зрения и ее реакции на различные виды картин. Представлены диаграммы, характеризующие распределение яркости и светлоты зрительного ощущения в поле зрения. Сформулировано условие, обеспечивающее равенство критической густоты периодических полос произвольной формы.

МОДЕЛЬ ИРРАДИАЦИИ ЗРЕНИЯ, КРИТИЧЕСКАЯ ГУСТОТА ПОЛОС, НУЛЕВОЙ ПРИБОР

Введение

В настоящей статье мы рассмотрим некоторые следствия, вытекающие из математической модели иррадиации зрения

$$S(x,y) = \frac{k}{2\pi b^2} \int_{-\infty}^{\infty} B(\xi,\eta) K_0 \left(\frac{\sqrt{(\xi-x)^2 + (\eta-y)^2}}{b^2} \right) d\xi d\eta.$$
⁽¹⁾

предложенной в работе [1]. Следствия эти будут подвергнуты экспериментальной проверке. Определим, исходя из модели, как будет выглядеть вертикальная полоса, имеющая ширину Δx . Будем считать, что ось полосы проходит через точку фиксации. Яркость фона равна B_0 , яркость полосы отличается от яркости фона на величину ΔB . Яркость описанной зрительной картины может быть выражена в следующем виде:

$$B(x) = \begin{cases} B_0, & \text{если } x \le -\frac{\Delta x}{2}, \\ B_0 + \Delta B, & \text{если } -\frac{\Delta x}{2} < x \le \frac{\Delta x}{2}, \\ B_0, & \text{если } x > \frac{\Delta x}{2}. \end{cases}$$
(2)

На рис. 1 *а* показан ход изменения яркости зрительной картины в зависимости от координаты *х*. Произведя в правой части формулы (1) интегрирование с учетом выражения (2), получим следующее равенство, определяющее светлоту полосы в функции координаты *х*:

$$S(x) = \begin{cases} kB_0 + k\Delta Bsh\frac{\Delta x}{2b}e^{\frac{x}{b}}, & \text{если} \quad x \leq -\frac{\Delta x}{2}; \\ kB_0 + k\Delta B(1 - e^{-\frac{\Delta x}{2b}}ch\frac{x}{b}), \text{если} \quad -\frac{\Delta x}{2} < x \leq \frac{\Delta x}{2}; \\ kB_0 + k\Delta Bsh\frac{\Delta x}{2b}e^{-\frac{x}{b}}, & \text{если} \quad x > \frac{\Delta x}{2}. \end{cases}$$

Диаграмма изменения светлоты полосы представлена на рис. 1. Из диаграммы видно, что уровень светлоты достигает максимального значения при x = 0, то есть на оси полосы. При удалении от оси полосы в ту или иную сторону, светлота постепенно снижается, стремясь к значению B_0 .

Определим максимальное приращение светлоты зрительного ощущения полосы, для чего подставим во второе из уравнений (3) значение x=0:

$$\Delta S = k \Delta B (1 - e^{-\frac{\Delta x}{2b}}) . \tag{4}$$

Формула (4) показывает, что максимальное приращение светлоты ΔS зрительного ощущения полосы зависит от ширины Δx полосы, возрастая при ее увеличении. На диаграмме (рис. 2) показан характер этой зависимости.

Из диаграммы видно, что при неограниченном росте ширины полосы максимальное приращение

светлоты зрительного ощущения полосы стремится к нулю. Уменьшая ширину полосы, всегда можно прийти к такому положению, когда максимальное приращение светлоты ощущения полосы сравняется с пороговым значением ΔS_n . Ширину полосы, при которой максимальное приращение светлоты имеет пороговое значение, назовем пороговой шириной полосы и обозначим ее через Δx_n . Определим пороговую ширину полосы по формуле (4), подставляя в нее вместо ΔS величину $\Delta S_n = k \Delta B_n$, а вместо Δx – величину Δx_n :

$$\Delta x_{\rm m} = 2b \ln \frac{1}{1 - \frac{\Delta B_{\rm m}}{\Delta B}}.$$
 (5)

Полученное соотношение показывает, что пороговая ширина полосы Δx_{n} зависит от величины яркости полосы Δx_{n} . Характер этой зависимости показан на диаграмме (рис. 3). Из диаграммы видно, что при повышении яркости полосы пороговая ширина полосы Δx_{n} снижается и при неограниченном росте ΔB стремится к нулю. При уменьшении яркости полосы е пороговая ширина растет и при значении $\Delta B = \Delta B_{n}$ обращается в бесконечность. Величина ΔB_{n} имеет смысл яркостного порога различения.

Заметим, что зависимость (5) допускает опытную проверку.

Определим теперь, исходя из модели, как будет выглядеть кружок, имеющий диаметр D. Будем считать, что центр кружка совпадает с точкой фиксации. Яркость фона равна B_0 , яркость кружка отличается от яркости фона на величину ΔB . В этом случае яркость зрительной картины может быть выражена в виде следующих условий:

$$B(r) = \begin{cases} B_0 + \Delta B, \text{если } r \le \frac{D}{2}, \\ B_0, \quad \text{если } r > \frac{D}{2}, \end{cases}$$
(6)

где r — радиус полярной системы координат. Решая уравнение (1) при условии (6), получим следующее выражение для светлоты зрительного ощущения кружка:

$$S(r) = \begin{cases} kB_0 + k\Delta B \left[1 - \frac{D}{2b} K_1 \left(\frac{D}{2b} \right) J_0 \left(\frac{r}{b} \right) \right], \text{ если } r \le \frac{D}{2}, \\ kB_0 + k\Delta B \frac{D}{2b} J_1 \left(\frac{D}{2b} \right) K_0 \left(\frac{r}{b} \right), \quad \text{если } r > \frac{D}{2}, \end{cases}$$
(7)

где K_0, K_1, J_0, J_1 – бесселевы функции.

На рис. 4 *а* и *б* показаны диаграммы изменения яркости кружка и светлоты его зрительного ощущения в зависимости от радиуса *r*, построенные по формулам (6) и (7). Из диаграмм видно, что уровень светлоты достигает максимального значения при r = 0, то есть в центре кружка. При удалении от центра кружка светлота постепенно снижается, стремясь к значению B_0 .

Определим максимальное приращение светлоты кружка, для чего подставим в первое из уравнений (7) значение r = 0:

$$\Delta S = k \Delta B \left[1 - \frac{D}{2b} K_1 \left(\frac{D}{2b} \right) \right]. \tag{8}$$

Формула (8) показывает, что максимальное приращение светлоты ΔS зависит от диаметра кружка D, возрастая при его увеличении. На диаграмме (рис. 5) показан характер этой зависимости.

Из диаграммы видно, что, уменьшая диаметр кружка, можно снизить максимальное приращение светлоты ΔS к пороговому значению ΔS_n . Диаметр кружка, при котором максимальное приращение светлоты кружка имеет пороговое значение, назовем пороговым диаметром кружка и обозначим его через D_n . Пороговый диаметр кружка можно определить из выражения

$$\frac{\Delta B_{\pi}}{\Delta B} = 1 - \frac{D_{\pi}}{2b} K_1 \left(\frac{D_{\pi}}{2b}\right), \tag{9}$$

вытекающего из формулы (8) при подстановке в нее вместо ΔS величины $k\Delta B_{\Pi}$ и вместо D – величины D_{Π} . Полученная зависимость допускает опытную проверку. Опытная проверка формул (5) и (9) описывается в разделе 3.

1. Реакция модели иррадиации на серию прямоугольных полос

Рассмотрим теперь реакцию модели на серию вертикальных черно-белых полос. Белые полосы имеют яркость B_1 , черные — B_2 . Яркость B(x) для этого случая запишется в виде:

$$B(x) = \begin{cases} B_1, \text{ если } nX < x \le (n+\lambda)X, \\ B_2, \text{ если } (n+\lambda)X < x \le (n+1)X. \end{cases}$$
(10)

На диаграмме (рис. 6 *a*) показан характер изменения яркости зрительной картины в зависимости от координаты *x* при ее задании условиями (10). Параметр λ определяет ширину белой полосы, равную λX ; ширина черной полосы равна $(1-\lambda)X$. Величина λ назначается в пределах от 0 до 1.

Пользуясь формулой (1) для условий (10), можно получить следующее выражение для определения светлоты ощущения картины в виде серии полос

$$S(x) = \begin{cases} kB_1 - \frac{sh\frac{X}{2b}(1-\lambda)}{sh\frac{X}{2b}} \cdot ch\frac{2(x-nX) - \lambda X}{2b} k\Delta B, \\ e \in \pi M \quad nX < x \le (n+\lambda)X, \\ kB_2 + \frac{sh\frac{X}{2b}\lambda}{sh\frac{X}{2b}} \cdot ch\frac{2(x-nX) - (1-\lambda)X}{2b} k\Delta B, \\ e \in \pi M \quad (n+\lambda)X < x \le (n+1)X, \end{cases}$$
(11)

где

$$\Delta B = B_1 - B_2 \,. \tag{12}$$

На рис. 6 б представлена диаграмма изменения светлоты серии полос в зависимости от координаты x, построенная по формулам (11). Из диаграммы видно, что светлота колеблется между минимальным S_{\min} и максимальным S_{\max} значениями, достигаемыми соответственно на оси белой и черной полосы при значении координаты x равном $(n+\lambda/2)X$ и $(n+(1+\lambda)/2)X$. По формулам (11) находим:

$$S_{\max} = kB_1 - \frac{sh\frac{X}{2b}(1-\lambda)}{sh\frac{X}{2b}}k\Delta B,$$

$$S_{\min} = kB_2 + \frac{sh\frac{X}{2b}\lambda}{sh\frac{X}{2b}}k\Delta B.$$
(13)

Величина колебания светлоты равна:

$$\Delta S = S_{\text{max}} - S_{\text{min}} = 2k\Delta B \frac{sh\frac{\lambda}{4b} \cdot sh\frac{1-\lambda}{4b}X}{ch\frac{X}{4b}}.$$
 (14)

Формула (14) показывает, что величина колебания светлоты ΔS картины в виде серии полос зависит от значения параметра λ . Характер этой зависимости показан на диаграмме (рис. 7).

Как видно из диаграммы, колебание светлоты достигает максимального значения ΔS_{max} при $\lambda=1/2$, то есть когда белая и черная полосы имеют одинаковую ширину:

$$\Delta S_{\max} = k \Delta B \cdot th \frac{X}{4b} \cdot th \frac{X}{8b} . \tag{15}$$

Согласно формуле (15) величина колебания светлоты ΔS_{max} зависит от ширины периода *X*. На диаграмме рис. 8 показан характер этой зависимости. Из диаграммы видно, что при неограниченном росте ширины периода *X* колебание светлоты зрительной картины стремится к значению $\Delta S = k \Delta B$. При уменьшении ширины периода *X* до нуля величина ΔS также стремится к нулю.

Рис. 8

Уменьшая ширину периода, то есть увеличивая густоту полос, можно снизить величину колебания светлоты ΔS до порога различения ΔS_{Π} . Ширину периода, при которой колебание светлоты имеет пороговое значение, назовем критической шириной периода и обозначим ее через *X*_{кр}. Будем также пользоваться понятием критической густоты полос, равной *m*_{кр}=1/*X*_{кр}. Колебания яркости полос не будут обнаруживаться человеком, если их густота превысит критическую величину, при этом произойдет слияние полос. Найдем выражение для определения критической густоты полос *m*_{кр} в зависимости от величины колебания яркости полос ΔB для случая, когда $\lambda = 1/2$. С этой целью подставим в формулу (15) вместо ΔS_{max} величину $\Delta S_{\Pi} = k \Delta B$, а вместо X – величину 1/ $m_{\text{кр}}$. В результате получим:

На рис. 9 показано, как изменяется критическая густота полос $m_{\rm kp}$ в зависимости от колебания яркости ΔB . Значению $m_{\rm kp}$ =0 соответствует величина колебания яркости $\Delta B_{\rm n}$. Формула (16) допускает экспериментальную проверку. При достаточно больших по сравнению с $\Delta B_{\rm n}$ значениях ΔB , зависимость (16), как это видно из диаграммы (рис. 9), приобретает практически параболический характер:

$$m_{\rm kp} = \frac{\sqrt{\frac{\Delta B}{\Delta B_{\rm m}}}}{4b\sqrt{2}} \,. \tag{17}$$

Рассмотрим теперь зависимость критической густоты полос $m_{\rm kp}$ от параметра λ , то есть от соотношения ширины белой и черной полос. С этой целью определим из уравнения (14) величину λ , предварительно заменив в нем ΔS на $\Delta S_{\rm n} = k \Delta B_{\rm n}$ и X на $1/m_{\rm kp}$. В результате получим:

$$\lambda = \frac{1}{2} + 2bm_{\rm kp}Arch\left[\left(1 - \frac{\Delta B_{\rm m}}{\Delta B}\right)ch\frac{1}{4bm_{\rm kp}}\right].$$
 (18)

На рис. 10 в виде диаграммы показан характер зависимости $m_{\rm kp}$ от λ , определяемой формулой (18). Формула (18) допускает экспериментальную проверку.

Рис. 10

При достаточно больших по сравнению $\Delta B_{\rm n}$ значениях ΔB зависимость (18) принимает более простой вид:

$$m_{\rm kp} \approx \frac{\sqrt{2\lambda(1-\lambda)}\frac{\Delta B}{\Delta B_{\rm fr}}}{4b}.$$
 (19)

2. Эксперименты по проверке модели иррадиации

В двух предыдущих разделах были получены аналитические зависимости для описания условий пороговой видимости одиночной полосы, кружка и серии полос. Здесь описываются эксперименты, подтверждающие справедливость этих зависимостей при условии, что яркость полосы или кружка отличается от яркости фона на небольшую величину (до 10 пороговых значений). Первый опыт состоял в определении условий пороговой видимости узкой серой полосы на белом фоне. Ширина полосы Δx , выраженная в угловых единицах, и разность яркости фона и полосы ΔB в процессе опыта регулировались. Цель опыта состояла в определении зависимости между пороговой шириной полосы Δx_{n} и разностью яркости фона и полосы ΔB :

$$\Delta x_{\Pi} = f(\Delta B). \tag{20}$$

Ниже описываются особенности методики проведения первого опыта. Эти особенности в равной степени относятся и к последующим опытам, изложенным в этом разделе. Эксперимент осуществлялся с помощью диска Максвелла (вертушки), на котором устанавливались два белых бумажных кружка (из ватмана) диаметром 50 мм. Кружки имеют прорези и вставлены друг в друга, как показано на рис. 11. На кружок 1 черной тушью наносится полоса в виде дуги окружности со средним радиусом 15 мм, толщина полосы Δx в опытах изменялась в пределах от 0,06 до 5 мм. Кружок 2 оставался белым. Поворотом кружка 1 относительно кружка 2 можно точно дозировать размер дуги видимого участка полосы. Измерение дуги осуществляется с помощью лимба 3, имеющего шкалу на 60 делений. Одно деление составляет 1:1280 часть окружности. Размер дуги устанавливается с точностью до одного деления лимба. В опытах размер дуги измерялся от 6 до 60 делений.

Рис. 11

При вращении вертушки с большой скоростью (порядка 50 об/сек) мы увидим, благодаря инерции зрения, вместо движущегося отрезка черной дуги серую линию в виде непрерывной окружности той же толщины Δx . Согласно обобщенному закону Талбота такая искусственным путем созданная зрительная картина тождественна по своему действию на глаз неподвижной серой окружности, вычерченной на белом фоне, яркость *В* которой равна:

$$B = \frac{\varphi B_{\rm q} + (2\pi - \varphi) B_6}{2\pi} , \qquad (21)$$

где $B_{\rm q}$ и B_6 – яркость соответственно черной и белой поверхности; φ – угловой размер дуги, установленный на вертушке. Использование формулы (21) позволяет точно дозировать яркость полосы во время проведения опытов. Это дозирование осуществляется выбором углового размера дуги φ . Разность яркости белого фона и яркости полосы окружности равна:

$$\Delta B = B_{\rm f} - B \,. \tag{22}$$

В связи с тем, что в опытах яркость полосы лишь незначительно отличалась от яркости белого фона,

существенной помехой для точного дозирования яркости полосы явилось просвечивание прикрытого участка черной дуги сквозь белый кружок. Для борьбы с просвечиванием дуги пришлось увеличить толщину белого кружка, делая его двухслойным. Опыт не может считаться удовлетворительным, если при полностью прикрытой дуге ($\phi=0$) глаз все же ее обнаруживает вследствие просвечивания сквозь белый кружок. Во время проведения опытов диск освещался лампой накапливания с вольфрамовой нитью напряжением 220 В мощностью 150 Вт с расстояния 3 м под углом 45°. Освещенность составила 130 лк. Для коэффициентов отражения белого и черного оттенков, использованных в опытах, получены значения соответственно 0,83 и 0,02. По этим данным с помощью формулы (21) определялись искомые коэффициенты отражения серой полосы. В опытах наибольшее отношение яркости белого фона B_6 к яркости полосы B составляло менее 1,05, то есть яркость фона превышала яркость полосы на величину не более 5 %.

Яркость полос, использованных в опытах, сравнивалась с яркостью эталонного сплошного черного поля под микроскопом при стократном увеличении. К испытанию допускались лишь те полосы, для которых глаз не замечал отклонений яркости по сравнению с эталонным черным полем. Полосы, имеющие толщину 1мм и более, сличались по яркости с эталонным полем непосредственно, без увеличения. Толщина полос также определялась с помощью микроскопа с точностью 0,005 мм, причем главным ограничением для точности замера являлось наличие неровностей краев у полосы. Поскольку толщину полосы при вычерчивании точно дозировать не представилось возможным, полоса требуемой толщины выбиралась из большого числа вычерченных полос разной толщины. Для полос с толщиной до 0,5 мм отклонения фактического размера толщины полосы от указанного в приведенных ниже таблицах не превышают 0,005 мм, для полос с толщиной свыше 0,5 мм – 0,01 мм.

Важным моментом при постановке опытов явились меры по тщательному центрированию кружка с нанесенной на нем дугой, так как малейший эксцентриситет или перекос дуги приводит к увеличению ее видимой ширины и искажению яркости. Другим важным фактором, от которого также зависел успех опыта, является правильный выбор пределов расстояния, с которого рассматривается полоса. Эти пределы должны выбираться с таким расчетом, чтобы не могли сказаться оптические несовершенства глаза (близорукость или дальнозоркость). В описываемых опытах расстояние наблюдения в первом опыте составляло постоянную величину, равную 500 мм, а в последующих опытах изменялось в пределах 210÷540 мм. Опыты осуществлялись на одном наблюдателе, замеры многократно повторялись в течение месяца в различное время суток. Определялись пороги как на появление, так и на исчезновение полосы. В нижеприведенных таблицах указаны средние значения из 8-12 замеров. Разброс результатов в отдельных замерах, как правило, не выходил за пределы 10%. Результаты опытов представлены в табл. 1.

Поро- говая ширина полосы <i>h</i> , мм	0,06	0,07	0,09	0,12	0,16	0,25	0,5	0,16	0,9	1,8	5,0
Число делений по шкале <i>n</i>	57	49	39	30	23	16	10	23	7	6	6

Таблица 1

В первой строке таблицы указана ширина полосы, предъявляемой для рассматривания, во второй строке указано число делений по шкале, соответствующее размеру дуги, при котором имеет место пороговая видимость полосы.

Согласно формулам (21) и (22) разность яркости белого фона и полосы определится зависимостью:

$$\Delta B = \frac{n}{1280} (B_0 - B_{\rm q}) \,. \tag{23}$$

Введем пороговую разность яркостей $\Delta B_{\rm n}$, соответствующую 6 делениям по шкале $\Delta B = \frac{n}{1280}(B_{\rm 5} - B_{\rm q})$, и отношение $\frac{\Delta B}{\Delta B_{\rm n}} = \frac{n}{6}$. Пороговая ширина полосы $\Delta x_{\rm n}$ в угловых единицах (радианах) определится зависимостью $\Delta x_{\rm n} = h/H$, где h – пороговая ширина полосы в линейных единицах, H=500 мм, расстояние, с которого велось наблюдение полосы.

На рис. 12 в координатах $\Delta B / \Delta B_{\Pi}$ и $1 / \Delta x_{\Pi}$ в виде точек представлены результаты опытов по данным табл. 1. На этой же диаграмме нанесена кривая, построенная по формуле (5):

При построении теоретической кривой по формуле (5) постоянная иррадиации зрения принята равной B=1,85'. Как видим, теоретическая кривая хорошо соответствует экспериментальным точкам. Отклонения экспериментальных данных от теоретических находятся в пределах точности постановки опытов. Необходимо заметить, что учет сравнительно небольшой кривизны линии, имевшей место в опыте, при теоретическом расчете не вносит заметной разницы в результаты вычислений по сравнению с формулой (5), при выводе которой полоса предполагалась прямой.

Второй опыт заключался в определении условий слияния серии из 12 серых концентрических полос. Яркость полос, так же как и в первом опыте, дозировалась с помощью вертушки изменением углового размера видимого участка серии полос. Ширина белого промежутка между соседними полосами равнялась ширине одной серой полосы. Все полосы одинаковы по ширине. Результаты опытов представлены в табл. 2.

Таблица 2

Пороговая ширина периода (белой и серой полос) <i>h</i> , мм	0,55	0,55	0,55	0,55	0,55	1,2	1,2	1,2	2,0
Число делений по шкале <i>п</i>	60	51	42	33	24	16	10	7	6
Расстояние на- блюдения <i>H</i> , мм	540	500	450	390	320	540	350	340	500

На рис. 13 по данным табл. 2 точками нанесена экспериментальная зависимость между критической густотой полос $m_{\rm kp} = H/h$ и величиной $\Delta B/\Delta B_{\rm n}$, равной, как и в предыдущем опыте, $\Delta B/\Delta B_{\rm n} = n/6$. На точки наложена теоретическая кривая, построенная по формуле (16):

Постоянная иррадиации принята равной B=1,85', то есть такой же, как и в случае с одиночной полосой. Сравнение теоретических и опытных данных указывает на хорошее согласование теории с опытом. Следует заметить, что при выводе формулы (16) предполагалось, что полосы прямые, а их число бесконечно велико. Фактически же в опытах полосы несколько искривлены, а их число конечно. Однако, как показывают расчеты, теоретический учет этих факторов не вносит сколько-нибудь заметных поправок в ход теоретической кривой.

Третий опыт отличался от второго тем, что при сохранении постоянной ширины периода в размере 0,55 мм ширина серой полосы изменялась от 0,03 до 0,52 мм. Число делений по шкале во всех опытах было постоянным и равным 60. В табл. 3 указаны результаты опытов.

Таблица	3
гиолици	~

Пороговая									
ширина серой	0,03	0,06	0,10	0,16	0,27	0,39	0,45	0,49	0,52
полосы <i>h</i> , мм									
Расстояние									
наблюдения	210	310	420	500	540	490	410	330	200
Н, мм									

На диаграмме (рис. 14) результаты опыта изображены графически в координатах $m_{\rm kp}=H/0,55$ и $\lambda=h/0,55$, где *H* и *h* необходимо подставлять в мм. Теоретическая диаграмма строилась по формуле (18):

При построении кривой принято прежнее значение постоянной иррадиации зрения b=1,85'.

Кроме того, в согласии с предыдущими опытами принято $\Delta B/\Delta B_{\Pi}=10$, что соответствует 60 делениям по шкале вертушки. Как видим, и в этом случае наблюдается удовлетворительное согласование теории с опытом. Итак, в трех разнородных опытах получено хорошее согласование с теоретически выведенными модельными реакциями. Это обстоятельство служит веским доводом в пользу справедливости предложенной нами математической модели иррадиации зрения.

В литературе описаны опыты А.А. Смирнова по определению условий пороговой видимости светлого кружка на более темном фоне [2]. На рис. 15 в виде серии точек показаны результаты одного из этих опытов.

На экспериментальные точки наложена теоретическая кривая, построенная по формулам (9), при значении постоянной иррадиации зрения b = 1,9', то есть почти такой же, как и в наших опытах (b = 1,85'). Как видим, теоретическая кривая хорошо соответствует опытным точкам.

3. Исследование совместного действия моделей инерции и иррадиации зрения

До сих пор рассматривались реакции модели инерции и иррадиации в тех случаях, когда зрительная картина являлась либо только функцией времени, либо только функцией координат поля зрения. В настоящем параграфе будут изучены некоторые реакции модели инерции и иррадиации зрения при подаче на ее вход таких зрительных картин, которые зависят сразу и от времени и от одной из координат поля зрения (координаты x), то есть B=B(x, t). В этом случае реакции модели будут описываться следующим интегральным выражением, являющимся частным случаем формулы (22) из работы [1]:

$$S(x,t) = \frac{k}{2b\sqrt{\pi}} \int_{-\infty}^{t} \frac{e^{\frac{-t-\tau}{a}}}{\sqrt{\frac{t-\tau}{a}}} dt \int_{-\infty}^{\infty} B(\xi,\tau) e^{\frac{-(\xi-x)^2}{4b^2\frac{t-\tau}{a}}} d\xi.$$
(24)

Рассмотрим, как, согласно модели, будет выглядеть движущаяся в поле зрения полоса. Пусть в поле зрения на фоне с яркостью B_0 с равномерной скоростью *v* движется вертикальная полоса. Яркость полосы отличается от яркости фона на величину ΔB . Полоса имеет ширину Δx . В момент времени *t*=0 ось полосы проходит через точку фиксации (*x*=0). Функция яркости в этом случае запишется в виде:

$$B(x,t) = \begin{cases} B_0, & \text{если } x \le vt - \Delta x/2, \\ B_0 + \Delta B, & \text{если } vt - \Delta x/2 < x \le vt + \Delta x/2, (25) \\ B_0, & \text{если } x > vt + \Delta x/2. \end{cases}$$

На рис. 16 *а* показано положение полосы в поле зрения в момент времени *t*. Рис. 16 δ изображает изменение яркости *B* в функции координаты *x* в тот же момент времени.

Форму задания зрительной картины можно упростить, если перейти к системе координат, движущейся вместе с полосой:

$$x^* = x - vt. \tag{26}$$

В новой системе координат яркость *В*^{*} зрительной картины запишете в виде:

$$B^* = \begin{cases} B_0, & \text{если } x^* \leq -\frac{\Delta x}{2}, \\ B_0 + \Delta B, & \text{если } -\frac{\Delta x}{2} < x^* \leq \frac{\Delta x}{2}, \\ B_0, & \text{если } x^* > \frac{\Delta x}{2}. \end{cases}$$
(27)

Решая уравнение (24) при условии (27), получим следующее выражение для определения светлоты ощущения полосы в движущейся системе координат:

$$S^{*}(x^{*}) = \begin{cases} kB_{0} - k\Delta B \frac{2r_{1}}{r_{2} - r_{1}} sh \frac{r_{2}\Delta x}{2} e^{r_{2}x^{*}}, \text{ если } x^{*} \leq -\frac{\Delta x}{2}, \\ kB_{0} + k\Delta B - k\Delta B \frac{r_{2}}{r_{2} - r_{1}} e^{\frac{r_{\Delta} x}{2}} e^{r_{1}x^{*}} + \\ + k\Delta B \frac{r_{1}}{r_{2} - r_{1}} e^{-\frac{r_{2}\Delta x}{2}} e^{r_{2}x^{*}}, \text{ если } -\frac{\Delta x}{2} < x^{*} \leq \frac{\Delta x}{2}, \\ kB_{0} - k\Delta B \frac{2r_{2}}{r_{2} - r_{1}} sh \frac{r_{1}\Delta x}{2} e^{r_{1}x^{*}}, \text{ если } x^{*} > \frac{\Delta x}{2}, \end{cases}$$
(28)

где

$$r_{1,2} = \frac{-av \mp \sqrt{a^2 v^2 + 4b^2}}{2b^2}.$$
 (29)

Определение светлоты ощущения в неподвижной системе координат может быть выполнено по формуле:

$$S(x,t) = S^*(x - vt)$$
. (30)

Диаграмма изменения светлоты ощущения полосы в зависимости от координаты x, построенная по формулам (28)—(30) для некоторого момента времени, представлена на рис. 16 e. Из диаграммы видно, что полоса видится размытой, ее светлота не остается постоянной и имеет максимум в некоторой точке, сдвинутой от оси в сторону, противоположную направлению движения полосы. Координату x_0^* точки с максимальной яркостью в подвижной системе координат найдем, дифференцируя по x^* второе из равенств (28) и приравнивая производную dS^*/dx^* нулю. В результате получим:

$$x_0^* = -\frac{r_1 - r_2}{r_2 - r_1} \cdot \frac{\Delta x}{2}.$$
 (31)

Определим максимальное приращение светлоты ΔS ощущения движущейся полосы. Для этого подставим во второе из равенств (28) вместо текущей координаты x^* ее значение x_0^* , при котором светлота достигнет максимума. В результате получим:

$$\Delta S = k \Delta B (1 - e^{-\frac{\Delta x}{\sqrt{a^2 v^2 + 4b^2}}}).$$
(32)

Формула (32) показывает, что максимальное приращение светлоты ΔS полосы зависит от скорости движения полосы *v*. Диаграмма на рис. 17 показывает характер этой зависимости. Из диаграммы видно, что при увеличении скорости движения полосы максимальное приращения светлоты ΔS уменьшается, стремясь к нулю. При некоторой критической скорости $v_{\rm kp}$ движения полосы светлота достигает порогового значения $\Delta S_{\rm n}$ и полоса вовсе не будет обнаруживаться наблюдателем.

Определим критическую скорость по формуле (32), подставляя в нее вместо ΔS величину $\Delta S = k \Delta B_{\Pi}$, а вместо v – величину $v_{\text{кр}}$:

$$v_{\rm kp} = \frac{1}{a} \sqrt{\frac{\Delta x^2}{\ln^2 \left(1 - \frac{\Delta B_{\rm m}}{\Delta B}\right)} - 4b^2}.$$
 (33)

Как видно из соотношения (33), критическая скорость увеличивается при увеличении ширины полосы Δx и уменьшается, стремясь к нулю, при уменьшении Δx до величины $\Delta x_n = 2B \ln(1 - \Delta B_n / \Delta B)$. Диаграмма зависимости $v_{\rm kp}$ от x показана на рис. 18 *а*. Зависимость $v_{\rm kp}$ от величины ΔB носит аналогичный характер. При увеличении ΔB величина $v_{\rm kp}$ растет, стремясь к бесконечности, а при уменьше-

нии ΔB – к величине $\Delta B_{\Pi}^* = \frac{\Delta B_{\Pi}}{1 - e^{-\frac{\Delta x}{2b}}}$, $v_{\text{кр}}$ убывает до

нуля (рис. 18 б). Формула (33) допускает экспериментальную проверку.

Рассмотрим теперь реакцию модели на зрительную картину в виде серии движущихся полос. Пусть в поле зрения на фоне с яркостью B_1 движется бесконечная серия полос. Яркость каждой полосы B_2 отличается от яркости фона на величину ΔB . Ширина каждой полосы равна λX , расстояние (просвет) между соседними полосами $(1-\lambda)X$. Параметр λ может колебаться в пределах от 0 до 1. Функция яркости $B^*(x, t)$ в этом случае запишется в виде (в движущейся системе координат):

$$B^{*}(x^{*}) = \begin{cases} B_{1}, & \text{если } X(n - \frac{\lambda}{2}) < x^{*} \le X(n + \frac{\lambda}{2}), \\ B_{2}, & \text{если } X(n + \frac{\lambda}{2}) < x^{*} \le X(n + 1 - \frac{\lambda}{2}). \end{cases}$$
(34)

На рис. 19 *а* представлена диаграмма изменения яркости $B^*(x^*)$ зрительной картины, определяемой условиями (34).

Воспользовавшись линейностью уравнения (24), мы можем получить его решение в данном случае как бесконечную сумму слагаемых вида (28). После преобразований эту сумму можно представить в следующем виде:

$$S^{*}(x^{*}) = \begin{cases} kB_{1} - k\Delta B \frac{r_{2}}{r_{2} - r_{1}} e^{r_{1}(x^{*} - nX)} \cdot \frac{sh\frac{r_{1}(1 - \lambda)X}{2}}{sh\frac{r_{1}X}{2}} + \\ + k\Delta B \frac{r_{1}}{r_{2} - r_{1}} e^{r_{2}(x^{*} - nX)} \cdot \frac{sh\frac{r_{2}(1 - \lambda)X}{2}}{sh\frac{r_{2}X}{2}}, \\ e C \pi \mu X(n - \frac{\lambda}{2}) < x^{*} \le X(n + \frac{\lambda}{2}), \\ kB_{2} - k\Delta B \frac{r_{2}}{r_{2} - r_{1}} e^{n\left[x^{*} - (n + \frac{\lambda}{2})X\right]} \cdot \frac{sh\frac{r_{1}\lambda X}{2}}{sh\frac{r_{1}X}{2}} - \\ - k\Delta B \frac{r_{1}}{r_{2} - r_{1}} e^{r_{2}\left[x^{*} - (n + \frac{\lambda}{2})X\right]} \cdot \frac{sh\frac{r_{2}\lambda X}{2}}{sh\frac{r_{2}X}{2}}, \\ e C \pi \mu X(n + \frac{\lambda}{2}) < x^{*} \le X(n + 1 - \frac{\lambda}{2}). \end{cases}$$
(35)

Характер изменения светлоты $S^*(x^*)$ серии движущихся полос показан на диаграмме (рис. 19 б). Дифференцируя соотношение (35) и приравнивая производные к нулю, найдем максимальное S_{max} и минимальное S_{min} значения светлоты:

$$S_{\max} = kB_{1} - k\Delta B \left(\frac{sh \frac{r_{1}(1-\lambda)X}{2}}{sh \frac{r_{1}X}{2}} \right)^{\frac{r_{2}}{r_{2}-r_{1}}} \times \left(\frac{sh \frac{r_{2}(1-\lambda)X}{2}}{sh \frac{r_{2}X}{2}} \right)^{-\frac{r_{1}}{r_{2}-r_{1}}},$$
(36)

$$S_{\min} = kB_2 + k\Delta B \left(\frac{sh\frac{r_1\lambda X}{2}}{sh\frac{r_1X}{2}}\right)^{\frac{r_2}{r_2 - r_1}} \cdot \left(\frac{sh\frac{r_2\lambda X}{2}}{sh\frac{r_2X}{2}}\right)^{-\frac{r_1}{r_2 - r_1}}.(37)$$

Полагая $S_{\text{max}} - S_{\text{min}} = \Delta B_{\Pi}$, найдем соотношение между критической скоростью $v_{\text{кр}}$ движения полос, пороговой шириной Δx_{Π} и параметром λ :

$$\frac{\Delta B_{\pi}}{\Delta B} = 1 - \left(\frac{sh\frac{r_{1}(1-\lambda)X}{2}}{sh\frac{r_{1}X}{2}}\right)^{\frac{r_{2}}{2-\eta}} \cdot \left(\frac{sh\frac{r_{2}(1-\lambda)X}{2}}{sh\frac{r_{2}X}{2}}\right)^{-\frac{r_{1}}{2-\eta}} - \frac{sh\frac{r_{1}\lambda X}{2}}{-\left(\frac{sh\frac{r_{1}\lambda X}{2}}{sh\frac{r_{1}X}{2}}\right)^{\frac{r_{2}}{2-\eta}}} \cdot \left(\frac{sh\frac{r_{2}\lambda X}{2}}{sh\frac{r_{2}X}{2}}\right)^{-\frac{r_{1}}{r_{2}-\eta}} \cdot \frac{sh\frac{r_{2}\lambda X}{2}}{sh\frac{r_{2}X}{2}} = \frac{sh\frac{r_{1}\lambda X}{2}}{sh\frac{r_{2}X}{2}} \cdot \frac{sh\frac{r_{2}\lambda X}{2}}{sh\frac{r_{2}X}{2}} = \frac{sh\frac{r_{1}\lambda X}{2}}{sh\frac{r_{2}X}{2}} \cdot \frac{sh\frac{r_{2}\lambda X}{2}}{sh\frac{r_{2}X}{2}} = \frac{sh\frac{r_{1}\lambda X}{2}}{sh\frac{r_{2}\lambda X}{2}} \cdot \frac{sh\frac{r_{2}\lambda X}{2}}{sh\frac{r_{2}\lambda X}{2}} = \frac{sh\frac{r_{1}\lambda X}{sh\frac{r_{2}\lambda X}{2}}} \cdot \frac{sh\frac{r_{2}\lambda X}{sh\frac{r_{2}\lambda X}{2}} \cdot \frac{sh\frac{r_{2}\lambda X}{sh\frac{r_{2}\lambda X}{2}}} \cdot \frac{sh\frac{r_{2}\lambda X}{sh\frac{r_{2}\lambda X}{2}} \cdot \frac{sh\frac{r_{2}\lambda X}{sh\frac{r_{2}\lambda X}{2}}} \cdot \frac{sh\frac{r_{2}\lambda X}{sh\frac{r_{2}\lambda X}{2}}} \cdot \frac{sh\frac{r_{2}\lambda X}{sh\frac{r_{2}\lambda X}{2}} \cdot \frac{sh\frac{r_{2}\lambda X}{sh\frac{r_{2}\lambda X}{2}}} \cdot \frac{sh\frac{r_{2}\lambda X}{sh\frac{r_{2}\lambda X$$

Характер зависимости величины ΔB от $v_{\rm kp}$, λ и *x* соответственно представлен на рис. 20*a*, *б*, *в*. Эти зависимости допускают опытную проверку.

Выводы

Исследованы реакции модели иррадиации зрения на одиночную полосу и кружок. Получены формулы, определяющие условия порогового видения полосы и кружка, допускающие прямую экспериментальную проверку. Выполнены психофизические эксперименты по проверке найденных зависимостей. Получено удовлетворительное согласие теории с опытом. Исследованы реакции модели на серию прямоугольных полос различной скважности, получены зависимости для определения критической густоты слияния серии полос, осуществлена их экспериментальная проверка, получено согласие теории с опытом. Найдено численное значение постоянной иррадиации для человеческого зрения, равное b = 1,85'. Исследованы реакции модели инерции и иррадиации зрения на одиночную движущуюся полосу и на серию движущихся полос, получены зависимости, допускающие их прямую опытную проверку.

Список литературы: 1. Бондаренко М.Ф., Шабанов-Кушнаренко С.Ю., Шабанов-Кушнаренко Ю.П. Модель сглаживания в зрении // Бионика интеллекта: науч.-техн. журнал. — 2007. — № 1. — С. 33-47. 2. Смирнов А.А. Зависимость различительной чувствительности глаза от величины объектов // В сб. «Зрительные ощущения и восприятия». — М.-Л.: Соцэкгиз, 1935. Т. 2.

Поступила в редколлегию 22.01.2008