УДК 004.9

В.В. Бескоровайный, К.Е. Подоляка

Харьковский национальный университет радиоэлектроники, Харьков

ВЫБОР МНОГОКРИТЕРИАЛЬНЫХ РЕШЕНИЙ ПРИ РЕИНЖИНИРИНГЕ ТОПОЛОГИЧЕСКИХ СТРУКТУР СИСТЕМ КРУПНОМАСШТАБНОГО МОНИТОРИНГА

Рассматривается задача реинжиниринга топологических структур систем крупномасштабного мониторинга с учетом показателей затрат, оперативности, надежности и живучести. В рамках кардиналистического подхода предложен метод многокритериальной оптимизации трехуровневых централизованных систем, использующий направленный перебор вариантов по количеству узлов в системе. В нем реализованы процедуры оценки важности критериев по методу анализа иерархии, формирования подмножества Парето-оптимальных вариантов и их количественной оценки. Результаты экспериментальных исследований подтвердили целесообразность параллельной генерации вариантов и формирования подмножества эффективных решений.

Ключевые слова: система крупномасштабного мониторинга, структура, топология, реинжиниринг, оптимизация, частные критерии, множество компромиссов, обобщенный критерий эффективности.

Введение

Современные системы крупномасштабного мониторинга (СКММ) воздушного пространства, радиоэлектронной обстановки, космических объектов, экологии, других объектов характеризуются множеством противоречивых показателей, таких как оперативность, надежность, живучесть, затраты на создание и эксплуатацию. С учетом этого, выбор наилучшего варианта при их создании или реинжиниринге требует решения задачи многокритериального выбора компромиссного решения в условиях большей или меньшей неопределенности. Неопределенность, в первую очередь, связана с неполным знанием предпочтений между показателями качества и альтернативами.

Современная теория принятия решений предполагает выбор альтернатив на основе ординалистического (предпочтений лица, принимающего решения – ЛПР) или кардиналистического (с использованием формальных моделей) подходов. В качестве методологической основы для построения метрики ранжирования альтернатив используется теория полезности, в соответствии с которой для каждой из альтернатив, принадлежащих множеству допустимых $s \in S$, может быть определено значение ее полезности (ценности) P(s) [1]. При этом для любой пары альтернатив

$$s \sim v \leftrightarrow P(s) = P(v); s \succ v \leftrightarrow P(s) > P(v);$$

 $s \sim v \leftrightarrow P(s) \geq P(v).$

В рамках этого подхода выбор лучшей альтернативы осуществляется на основе аддитивной, мультипликативной или смешанной функции обобщенной полезности.

К настоящему времени создан широкий арсенал математических моделей и методов выбора решений в условиях многокритериальности. Значительная часть исследований в этой области направлена на измерение и шкалирование частных критериев [1], выбор функции нормирования частных критериев, оценку их важности [1 – 3]. В зависимости от роли ЛПР в процессе выбора лучшей альтернативы выделяется множество методов, которые отличаются способом перехода к скалярной оценке полезности альтернатив. В работах [4 – 10] предложены и (или) детально описаны методы принятия решений на основе теории полезности, анализа иерархий, теории нечетких множеств, методов ELECTRE и PROMETHEE, эвристических методов (взвешенной суммы оценок критериев, компенсации).

К числу достоинств существующего аппарата теории полезности относят возможность учета неопределенности и качественных предпочтения ЛПР [2, 7].

Преимуществами метода анализа иерархий (Analytic Hierarchy Process – AHP) являются наглядное системное представление структуры проблемы в виде иерархии и возможность четкого задания суждений экспертов. К числу недостатков этого метода относят его сложность и неустойчивость получаемых оценок к введению недоминирующих альтернатив. Это может приводить к противоречиям при ранжировании критериев и альтернатив [2, 6, 7].

Аппарат теории нечетких множеств позволяет использовать нечеткие данные и учитывать неполную информацию. Недостатком этой группы методов является то, что их применение требует значительных затрат на предварительное моделирование [2, 7].

Метод ELECTRE позволяет учитывать неопределенность данных, однако требует дополнительных данных для выполнения процедуры ранжирования альтернатив и не позволяет непосредственно идентифицировать сильные и слабые стороны альтернатив [2, 7, 10].

РКОМЕТНЕЕ прост в использовании и не требует выполнения предположения о пропорциональности критериев, предоставляет графический инструмент для представления ранжирования альтернатив. При этом метод не предоставляет четкого подхода к назначению весов [7, 10].

На последних этапах реинжиниринга необходим более тщательный анализ альтернативных решений. На практике с этой целью применяют сочетания различных методов, что позволяет компенсировать их недостатки для получения эффективного решения [7]. Кроме того, для сокращения времени выбора наилучшего варианта реинжиниринга СКММ целесообразно предварительно выделять подмножество компромиссных (Парето-оптимальных) решений.

Целью исследования является разработка метода выбора решений при реинжиниринге топологических структур систем крупномасштабного мониторинга по множеству функционально-стоимостных показателей.

Постановка и математическая модель задачи

Каждый вариант топологической структуры СКММ задается количеством узлов, местами их размещения и схемой связей между элементами, узлами и центром. Задаваемые ограничения на технологию функционирования, структуру и параметры определяют подмножество допустимых проектных решений. Задача выбора эффективных проектных решений состоит в поиске среди множества допустимых решений таких вариантов, которые являются лучшими в заранее определенном смысле [11]. Таким образом, на первом этапе реинжиниринга желательно максимально полно представить все возможные варианты построения системы. Выбор оптимального проектного решения проводится при ограничениях, определяемых допустимыми затратами на время и средства проектирования.

Задача реинжиниринга топологических структур систем крупномасштабного мониторинга с радиально-узловой структурой рассматривается в следующей постановке [12]. Задано:

- множество элементов системы $I=\{i\}, i=\overline{1,n}$, покрывающих с заданной кратностью все множество объектов мониторинга;
- существующий вариант топологической структуры системы $a \in S$ (где S множество допустимых вариантов топологических структур), за-

даваемый местами расположения элементов, узлов (размещаются на базе элементов), центра (центр системы расположен на базе элемента i=1), а также связями между элементами, узлами и центром $x'=[x'_{ij}], i,j=\overline{1,n}$ (x'_{ij} — булева переменная, $x'_{ij}=1$, если между элементами i и j существует непосредственная связь; $x'_{ij}=0$ — в противном случае);

— затраты на создание или модернизацию узлов $[c_i], i = \overline{1,n}$ и связей $[c_{ii}], i, j = \overline{1,n}$.

Необходимо определить наилучший по показателям затрат, оперативности, надежности и живучести вариант топологической структуры СКММ $s^o \in S$, задаваемый количеством узлов и, местами их размещения (центральный узел размещается на базе первого элемента) и схемой связей между элементами, узлами и центром с учетом заданных ограничений на функциональные показатели (оперативности, надежности и живучести).

Затраты на создание существующего варианта СКММ $C_C(a), a \in S$ состоят из затрат на центр $C_C(a)$, узлы $C_U(a)$, элементы $C_E(a)$, связи между узлами и центром $C_{UC}(a)$, элементами и узлами $C_{EU}(a)$. Критерий минимума затрат $k_1(a,s) \to \min_{s \in S}$ (с учетом возможности использования топологической структуры существующей системы $a \in S$) представим в виде:

$$\begin{aligned} k_{1}(a,s) &= \sum_{i=1}^{n} [(c_{i} + e_{i})(1 - x'_{ii})x_{ii} + (d_{i} - g_{i})x'_{ii}x_{ii}] + \\ &+ \sum_{i=1}^{n} \sum_{j=1}^{n} [(c_{ij} + e_{ij})(1 - x'_{ij})x_{ij} + (d_{ij} - g_{ij})x'_{ij}x_{ij}] \rightarrow \min_{s \in S}, \end{aligned}$$
(1)

где c_i — стоимость элементов, узлов или центра в новой структуре, $i=\overline{1,n}$; e_i — затраты на демонтаж узлов существующей структуры $i=\overline{1,n}$; x'_{ij} и x_{ij} — соответственно элементы матриц смежности (связей) между элементами, узлами и центром в существующей $x'=[x'_{ij}]$ и структуре после реинжиниринга $x=[x_{ij}]$ ($x'_{ij}=1$ или $x_{ij}=1$, если между элементами $x_{ij}=0$ или $x_{ij}=0$ — в противном случае); d_i — стоимость модернизации элемента, узла или центра в новой структуре $x=\overline{1,n}$; $y=\overline{1,n}$; $y=\overline{1,n}$ — стоимость ресурсов, которые могут быть повторно использованы (реализованы) после демонтажа оборудования узлов $x=\overline{1,n}$; $x'_{ij}=\overline{1,n}$ — соответственно стоимость связи, затраты на демонтаж, стоимость модерниза-

ции и стоимость ресурсов, которые могут быть повторно использованы для связи между элементами і и j; S — множество допустимых вариантов топологических структур СКММ.

В качестве оценки оперативности варианта построения СКММ в используется значение максимального времени получения центром информации о наблюдаемом объекте:

$$k_{2}(s) = \max_{1 \leq i \leq n} \left[\tau_{i}^{C} + \frac{\alpha_{i}}{\gamma_{ij}} + \tau_{i}^{E} + \frac{\beta_{i}}{\gamma_{ij}} + \left(\frac{\alpha_{i}}{\gamma_{i}} + \frac{\alpha_{i}}{h_{i}^{1}} + \frac{\beta_{i}}{h_{i}^{2}} + \frac{\beta_{i}}{\gamma_{i}} \right) \sum_{i=1}^{n} \sum_{j=1}^{n} x_{ij} x_{ii} \right], (2)$$

где n- количество элементов системы; τ_i^C- время выдачи запроса i-му элементу; $\alpha_i=$ const , $\beta_i=$ const — объемы запросов и ответов; γ_i и $\gamma_{ij}-$ пропускные способности каналов связи центр-узел и узел-элемент; h_1 и h_2 — скорости обработки запроса и ответа на запрос в узлах системы.

При использовании в системе мониторинга не строго детерминированной технологии сбора информации, приводящей к возникновению в сети неоднородных потоков, соотношение (2) используется для предварительной оценки оперативности. При выборе окончательного решения для оценки времени получения информации в СКММ целесообразно использовать имитационное статистическое моделирование.

Для оценки надежности варианта построения СКММ s воспользуемся соотношением:

 $k_3(s) = k^C \times (k^U)^u \times k^E)^n \times (k^{CU})^u \times (k^{UE})^n$, (3) где $k^C, k^U, k^E, k^{CU}, k^{UE}$ — соответственно, коэффициенты готовности топологической структуры СКММ в целом, технических средств верхнего уровня (центра), среднего уровня (узлов), нижнего уровня (элементов), каналов связи верхнего уровня (центр — узлы), каналов связи нижнего уровня (узлы — элементы); и — количество узлов; п — количество элементов системы. В качестве показателя живучести используем значение доли элементов в функционирующей СКММ, связанных с центром при единичных повреждениях (для равновероятного единичного повреждения центра, узлов, элементов или одной из связей):

$$k_4(s) = \min_{1 \le j \le n} \left\{ \left(n - \sum_{j=1}^n \sum_{i=j}^n x_{ji} x_{jj} \right) \middle/ n, \frac{n-1}{n} \right\}, \quad (4)$$

где x_{ij} — булева переменная ($x_{ij}=1$, если между элементами і и ј существует непосредственная связь; $x_{ij}=0$ — в противном случае), $i=\overline{1,n}$; n — количество элементов системы.

Формально рассматриваемая задача реинжиниринга топологических структур СКММ может быть представлена в виде:

$$\begin{cases} k_{1}(a,s) \to \min_{s \in S} k_{1}(a,s) \leq k_{1}^{*}; \\ k_{2}(s) \to \{\max_{1 \leq i \leq n} \varphi\} \to \min_{s \in S} k_{2}(s) \leq k_{2}^{*}; \\ k_{3}(s) \to \max_{s \in S} k_{3}(s) \geq k_{3}^{*}; \\ k_{4}(s) = \{\min_{1 \leq i \leq n} [k_{4j}^{CU}(s), k_{4j}^{U}(s)]\} \to \max_{s \in S} k_{4}(s) \geq k_{4}^{*}, \end{cases}$$
(5)

где k_1^* , k_2^* , k_3^* и k_4^* – граничные значения показателей затрат на реинжиниринг $k_1(a,s)$ (1), оперативности $k_2(s)$ (2), надежности $k_3(s)$ (3) и живучести $k_4(s)$ (4).

Метод решения задачи

В рамках кардиналистического подхода для многокритериальной количественной оценки качества вариантов реинжиниринга топологических структур СКММ воспользуемся аддитивной сверткой частных критериев [15 – 17]:

$$P(s) = \sum_{i=1}^{4} \lambda_i \xi_i(s), \tag{6}$$

где λ_i , $i=\overline{1,4}$ — коэффициент важности критерия $k_i(s)$, выбираемый с учетом условий $\lambda_i\geq 0$, $\sum_{i=1}^4 \lambda_1 = 1\;;\;\; \xi_i(s) \; - \;$ функция полезности частного критерия $k_i(s)\;;$

$$\xi_{i}(s) = \left(\frac{k_{i}(s) - k_{i}^{-}}{k_{i}^{+} - k_{i}^{-}}\right)^{\mu_{i}}, i = \overline{1,4},$$
 (7)

где k_i^+, k_i^- , $i=\overline{1,4}$ — соответственно текущее, наихудшее и наилучшее значения і-го частного критерия; μ_i — параметр, определяющий вид зависимости (7): выпуклая, линейная или вогнутая.

Тогда задача выбора наилучшего компромиссного решения (5) может быть представлена в виде:

$$s^{o} = \arg \max_{s \in S} \sum_{i=1}^{4} \lambda_{i} \xi_{i};$$

$$k_{1}(a,s) \leq k_{1}^{*}; \quad k_{2}(s) \leq k_{2}^{*};$$

$$k_{3}(s) \geq k_{3}^{*}; \quad k_{4}(s) \geq k_{4}^{*},$$
(8)

где k_1^* , k_2^* , k_3^* и k_4^* – граничные значения показателей затрат на реинжиниринг $k_1(a,s)$, оперативности $k_2(s)$, надежности $k_3(s)$ и живучести $k_4(s)$.

Для определения весовых коэффициентов аддитивной свертки частных критериев (6) воспользуемся методом анализа иерархий АНР [4-6].

В общем случае его реализация состоит из следующих этапов:

- описание задачи в виде иерархической структуры с уровнями: цель критерии альтернативы;
 - формирование структуры модели;
- попарные сравнения элементов каждого уровня, с присвоением количественных оценок;
- вычисление коэффициентов важности элементов каждого уровня;
- вычисление веса каждой из альтернатив и определение наилучшей.

По результатам анализа решаемой задачи создана иерархическая структура модели (рис. 1). Для нее определим приоритеты критериев. Сравнив важность критериев, сформируем матрицу парных

сравнений $Y=[y_{ij}]$, элементы которой служат оценками относительной важности критерия i относительно критерия j. При этом если $y_{ij}=f_k$, то $y_{ji}=1/f_k$, где f_k – оценка важности критерия i относительно критерия j.

Для матрицы $Y = [y_{ij}]$ определим собственный вектор уровня критериев $w = [w_i]_{i=1}^4$ и весовые коэффициенты аддитивной свертки частных критериев

$$w_i = 4 \int_{j=1}^{4} y_{ij}, i, j = \overline{1,4}; \quad \lambda_i = w_i / \sum_{j=1}^{4} w_i, \quad i = \overline{1,4}.$$
 (9)

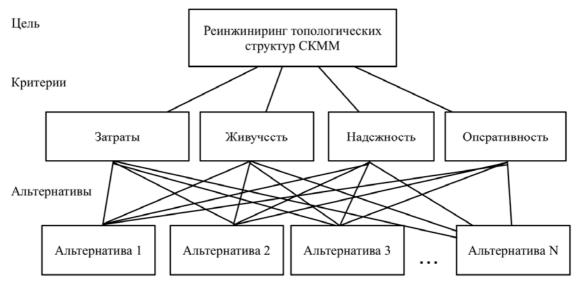


Рис. 1. Структура модели задачи оценки важности частных критериев на основе метода анализа иерархий

На последних этапах метод предполагает анализ всего множества возможных вариантов реинжиниринга топологических структур системы крупномасштабного мониторинга.

Его мощность в общем случае составляет:

$$N(n) = \sum_{u=1}^{n} C_n^u = \sum_{m=1}^{n} \frac{n!}{u!(n-u)!} = 2^n , \qquad (10)$$

где n — количество мест возможного размещения узлов (элементов системы); u — количество узлов в системе.

Ввиду того, что ЛПР не под силу анализ огромного количества допустимых вариантов реинжиниринга топологических структур СКММ N (10), а количественные методы оптимизации позволяют определять численные значения функционально-стоимостных характеристик топологической структуры, предлагается реализовать последний этап метода в автоматическом режиме. С этой целью можно использовать комбинаторные методы направленного перебора или приближенные (эвристические) методы [18]. При этом, не зависимо от используемого метода анализа, целе-

сообразным является выделение подмножества эффективных (компромиссных, Парето-оптимальных) вариантов.

Традиционно в задачах выбора многокритериальных решений предполагается наличие сформированного множества допустимых решений $S = \{s\}$. При решении задач проектирования или реинжиниринга объектов это требует хранения огромных массивов излишних данных. Для уменьшения объема требуемой памяти и сокращения времени поиска наилучшего компромиссного решения предлагается формировать множество компромиссов $S^K \subseteq S$ параллельно с формированием множества альтернативных решений.

Анализ зависимостей значений частных критериев $k_1(a,s)$ (1) , $k_2(s)$ (2), $k_3(s)$ (3) и $k_4(s)$ (4) от количества узлов в системе и позволил выявить границы подмножества компромиссов S^K [1, u_{max}]. Значение u_{max} соответствует количеству узлов в системе, после которого значения всех частных критериев ухудшаются (рис. 2).

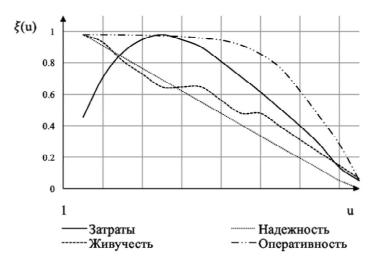


Рис. 2. Графики изменения функций полезности частных критериев (7) с увеличением количества узлов в системе u

Алгоритм формирования подмножества компромиссов S^K включает следующую последовательность шагов.

- 1. Задать: начальное значение количества узлов u:=1; начальное значение номера варианта решения i:=0; множество компромиссных вариантов пустое, $S^K=\varnothing$.
- 2. Увеличить значение счетчика i := i+1, сформировать вариант топологической структуры $s_i \in S$ и вычислить оценки затрат $k_1(a,s)$ (1), оперативности $k_2(s)$ (2), надежности $k_3(s)$ (3), живучести $k_4(s)$ (4).
- 3. Сравнить вариант s_i с каждым из вариантов $s_j \in S^K, j=\overline{1, \left|S^K\right|}$. Если хотя бы один вариант $s_j \succ s_i$, исключить s_i из дальнейшего рассмотрения и перейти к шагу 4; в противном случае, добавить s_i в S^K и удалить из S^K все s_j , которые по всем показателям хуже s_i .
- 4. Если условия останова метода формирования множества допустимых решений S для заданного значения количества узлов u не выполняются, перейти к u. 2, в противном случае v v. 5.
- 5. Если наилучшие значения всех показателей (1)-(4) для значения u хуже, чем для u-1, перейти к пункту 6; в противном случае u=u+1, i:=0 и перейти к π . 2.
- 6. Окончание работы алгоритма: выделено подмножество компромиссных решений S^K .

Для оценки относительных размеров (мощностей) подмножеств компромиссных решений при реинжиниринге топологических структур S^K была проведена серия компьютерных экспериментов, в

ходе которых было решено 60 задач (по 10 задач с количеством элементов $n = 15 \div 40$) (табл. 1, 2).

При этом были получены оценки средних δN и максимальных δN_{max} относительных мощностей подмножеств компромиссных решений S^K в зависимости от количества элементов СКММ n .

Таблица 1 Относительные мощности подмножеств компромиссных вариантов S^K в множествах допустимых вариантов S, %

n	15	20	25	30	35	40
δN	2.7	0.89	0.19	0.11	0.07	0.009
δN _{max}	3.4	1.86	0.25	0.15	0.09	0.012

Данные для средних значений $\delta N(n)$ относительных мощностей подмножеств компромиссных решений S^K аппроксимируются с достоверностью R=0.96 функцией

$$\delta N(n) = 56.786 \cdot e^{-0.21 \cdot n}$$
.

Параллельное формирование подмножества компромиссов S^K позволяет существенно уменьшить время решения задачи (табл. 2).

Таблица 2 Среднее относительное сокращение времени формирования множества компромиссов, %

n	15	20	25	30	35	40
δt	2.4	4.8	11.6	18.7	25.1	36.2

Данные для среднего относительного сокращение времени формирования подмножества компро-

миссов S^K за счет распараллеливания процесса аппроксимируются с достоверностью $R=0.99\,$ функцией

$$\delta t(n) = 0.0299 \cdot n^2 - 0.2918 \cdot n - 0.325.$$

Анализ поведения функций полезности частных критериев оперативности, надежности и живучести $\xi_i(u), i=\overline{2,4}$ (7) при увеличении количества узлов в системе u, позволяет сделать вывод о том, что ограничения по оперативности $k_2(a) \leq k_2^*$, надежности $k_3(a) \geq k_3^*$ и живучести $k_4(a) \geq k_4^*$ выполняются уже для u=1 или не могут быть выполнены ни для одного варианта на всем интервале $[1,u_{max}]$.

С учетом этого, а также возможной многоэкстремальности функции (1) от количества узлов в системе $k_1(u)$, для поиска глобального оптимального решения задачи предлагается использовать идею направленного перебора [18].

Суть ее состоит в определении отрезка $[u_{min},u_{max}]$, который гарантированно содержит оптимальное решение.

В качестве нижней границы количества узлов в системе выберем $\,u_{min}\,=1\,.$

Для определения верхней границы u_{max} необходимо определить минимум максимальных затрат ΔC_{max} .

С этой целью требуется решить задачу синтеза оптимальной топологии сети (без учета существующей топологии).

Поиск оптимального решения задачи будем производить на отрезке $[1,u_{max}]$, изменяя количество узлов в системе по правилу u:=u+1.

Для решения задачи предложенным методом необходимо решение двух подзадач поиска минимума максимальных затрат ΔC_{max} и поиск минимума функции затрат на реинжиниринг. Каждая задача сравнима по сложности с классической задачей структурно-топологического синтеза. С учетом этого временная сложность предлагаемого метода имеет порядок $2 \cdot O[t(n)]$, где t(n) — временная сложность метода решения базовой задачи структурнотопологического синтеза.

Точность предлагаемого метода определяется точностью метода размещения узлов. Для уменьшения времени решения задачи предлагается ряд модификаций метода направленного перебора с использованием различных процедур определения мест размещения узлов.

В качестве базовой использована комбинаторная процедура, реализующая полный перебор всевозможных вариантов размещения узлов. В качест-

ве альтернативных предлагается использовать процедуры на основе методов покоординатной оптимизации, имитации отжига (Simulated annealing), поиска с запретами (Tabu Search), эволюционного синтеза, кластеризации на основе k-means.

По результатам экспериментальных исследований определены оценки точности $O[\epsilon(n)]$ и временной сложности O[t(n)] предлагаемых модификаций метода, выполнены их полиномиальные аппроксимации.

Это позволяет выбирать наиболее эффективную модификацию метода при решении практических задач, исходя их требуемой точности и имеющихся вычислительных и временных ресурсов.

Рейтинг модификаций метода по показателю точности: покоординатная оптимизация, поиск с запретами, эволюционный синтез на основе генетического алгоритма, имитация отжига, кластеризация на основе k-means.

Рейтинг модификаций метода по показателю временной сложности: метод имитация отжига, кластеризация на основе k-means, поиск с запретами, эволюционный синтез на основе генетического алгоритма, покоординатная оптимизация.

Выводы

Разработан метод реинжиниринга топологических структур централизованных трехуровневых систем крупномасштабного мониторинга по показателям затрат, оперативности, надежности и живучести. В нем рационально сочетаются достоинства экспертной оценки важности частных критериев путем анализа иерархии и направленного перебора вариантов по количеству узлов в системе с параллельным выделением подмножества Паретооптимальных решений и выбором единственного решения.

Практическое применение метода позволит сократить время решения задачи за счет параллельного с генерацией вариантов формирования подмножества Парето-оптимальных решений. При необходимости решения задач большой размерности предлагается использовать модификации метода, реализующие размещения узлов на основе методов покоординатной оптимизации, имитации отжига, поиска с запретами, эволюционного синтеза, кластеризации на основе k-means.

Предложенный метод может быть развит в части формирования обобщенного критерия эффективности и использован при решении задач оптимизации информационных, транспортных, логистических систем и систем обслуживания. Его практическое применение позволит сократить сроки решения задач реинжиниринга и (или) затраты на реализацию топологических структур реструктуризируемых объектов.

Список литературы

- 1. Овезгельдыев О. А. Синтез и идентификация моделей многофакторного оценивания и оптимизации / О.А. Овезгельдыев, Э.Г. Петров, К.Э. Петров. К.: Наукова думка, 2002. 161 с.
- 2. Christodoulos A. Recent Advances in Global Optimization / A. Christodoulos, M. Pardalos. Princeton: Princeton University Press, 2014. 648 p.
- 3. Соболева Е.В. Модификации критериев обобщенной полезности в задачах идентификации многокритериального выбора / Е.В. Соболева // Системні дослідження та інформаційні технології. 2012. № 3. С. 58-65.
- 4. Xu L. Introduction to multi-criteria decision making and the evidential reasoning approach / L. Xu, J.B. Yang. Manchester: Manchester School of Management, 2001. P. 163-187.
- 5. Hwang C.L. Multiple attribute decision making: methods and applications a state-of-the-art survey / C.L. Hwang, K. Yoon Springer Science & Business Media, 2012. Vol. 186. 270 p.
- 6. Саати Т. Теория принятия решений. Метод анализа иерархиий / Т. Саати. М.: Радио и связь, 1993. 278 с.
- 7. Velasquez M. An analysis of multi-criteria decision making methods // International Journal of Operations Research / M. Velasquez, P.T. Hester. 2013. Vol. 10. №. 2. P. 56-66.
- 8. Ambrasaite I. MCDA and risk analysis in transport infrastructure appraisals: The Rail Baltica case Ambrasaite, I., Barfod, M., and Salling, K // Procedia Social and Behavioral Sciences. 2011. Vol. 20. P. 944-953
- 9. Kiker G.A. Application of multicriteria decision analysis in environmental decision making / G.A. Kiker et al. // Integrated environmental assessment and management. 2005. Vol. 1, № 2. P. 95-108.
- 10. Corrente S. Multiple criteria hierarchy process with ELECTRE and PROMETHEE / S. Corrente, S. Greco, R. Slowiński // Omega. 2013. Vol. 41, № 5. P. 820-846.
- 11. Чеботарева Д.В. Многокритериальная оптимизация проектных решений при планировании сотовых

сетей мобильной связи / Д.В. Чеботарева, В.М. Безрук. - Х.: Компания СМИТ, 2013. – 148 с.

- 12. Бескоровайный В. В. Разработка модели многокритериальной задачи реинжиниринга топологических структур систем крупномасштабного мониторинга / В.В. Бескоровайный, К.Е. Подоляка // Восточно-Европейский журнал передовых технологий.— 2015. — № 4(76).— С. 49 — 55.
- 13. Бескоровайный В.В. Синтез логической схемы системного проектирования территориально распределенных объектов / В. В. Бескоровайный // Радиоэлектроника и информатика. 2002. № 3. С. 94-96.
- 14. Подиновский В.В. Парето-оптимальные решения многокритериальных задач / В.В. Подиновский, В.Д. Ногин. М.: Наука, 1982. 256 с.
- 15. Модели и методы управления устойчивым развитием социально-экономических систем: монография / Е.В. Губаренко, А.О. Овезгельдыев, Э.Г. Петров; под. общ. ред. Э.Г. Петрова. Херсон: Гринь Д.С., 2013. 252 с.
- 16. Методы и модели принятия решений в условиях многокритериальности и неопределенности: моногр. / Э.Г. Петров, Н.А. Брынза, Л.В. Колесник, О.А. Писклакова; под. общ. ред. Э.Г. Петрова. Херсон: Гринь Д.С., 2014. 192 с.
- 17. Введение в нормативную теорию принятия решений. Методы и модели: монография / В.В. Крючковский, Э.Г. Петров, Н.А. Соколова, В.Е. Ходаков; под. общ. ред. Э.Г. Петрова. – Херсон: Гринь Д.С., 2013. – 284 с.
- 18. Бескоровайный В.В. Метод реинжинириннга топологических структур систем крупномасштабного мониторинга / В.В. Бескоровайный, К.Е. Подоляка // Прикладная радиоэлектроника. — 2015. — Т. 14, № 3. — С. 197—202.

Поступила в редакцию 1.04.2016

Рецензент: д-р техн. наук, проф. Л.И. Нефедов, Харьковский национальный автомобильно-дорожный университет, Харьков.

ВИБІР БАГАТОКРИТЕРІАЛЬНИХ РІШЕНЬ ПРИ РЕІНЖИНІРИНГУ ТОПОЛОГІЧНИХ СТРУКТУР СИСТЕМ ВЕЛИКОМАСШТАБНИХ МОНІТОРИНГУ

В.В. Безкоровайний, К.Є. Подоляка

Розглядається задача реінжинірингу топологічних структур систем великомасштабного моніторингу з урахуванням показників витрат, оперативності, надійності та живучості. У рамках кардиналістичного підходу запропоновано метод багатокритеріальної оптимізації трирівневих централізованих систем, що використовує спрямований перебір варіантів за кількістю вузлів у системі. У ньому реалізовані процедури оцінки важливості критеріїв за методом аналізу ієрархії, формування підмножини Парето-оптимальних варіантів і їх кількісної оцінки. Результати експериментальних досліджень підтвердили доцільність паралельної генерації варіантів і формування підмножини ефективних рішень.

Ключові слова: система великомасштабного моніторингу, структура, топологія, реінжиніринг, оптимізація, часткові критерії, множина компромісів, узагальнений критерій ефективності.

SELECTION MULTICRITERIA DECISION IN PROCESS OF REENGINEERING THE TOPOLOGICAL STRUCTURE OF LARGE-SCALE MONITORING SYSTEMS

V.V. Bezkorovainyi, K.E. Podoliaka

In paper considered the problem of reengineering of topological structures of large-scale monitoring systems based on indicators of cost, efficiency, reliability and survivability. As part cardinal approach proposed a method of multi-criteria optimization of three-level centralized systems using a directed search option on the number of nodes in the system. Proposed method implements the procedure of evaluating importance of criteria based on method of hierarchy analysis and forming a subset of the Pareto-optimal options and their quantification. The experimental results confirmed the appropriateness of parallel generation options and form a subset of effective solutions.

Keywords: large-scale monitoring system, structure, topology, re-engineering, optimization, particular criteria, set of compromises, the generalized criterion of efficiency.