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The specific features of the measuring instruments verification based on the results of their calibration are considered. It is noted that, in 
contrast to the verification procedure used in the legal metrology, the verification procedure for calibrated measuring instruments has to 
take into account the uncertainty of measurements into account. In this regard, a large number of measuring instruments, considered as 
those that are in compliance after verification in the legal metrology, turns out to be not in compliance after calibration. In this case, it is 
necessary to evaluate the probability of compliance of indicating measuring instruments. The procedure of compliance probability 
determination on the basis of the Monte Carlo method is considered. An example of calibration of a Vernier caliper is given. 
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1.  INTRODUCTION 

The items 5.6.2.1.1 and 5.10.4.1.b of ISO 17025:2005 [1] 
prescribe that calibration certificates for measuring 
instruments (МIs) shall contain “the measurement results, 
including the measurement uncertainty and/or a statement of 
compliance with an identified metrological specification”. 
From this requirement, it follows that the presence of an 
indication of conformity of the calibrated MI to the 
established metrological requirements or separate 
metrological characteristics is necessary in the calibration 
certificate. The conformity assessment of the gauge 
according to the specified requirements is considered in a 
number of documents [2]-[8]. The main requirement of 
these documents is the need to take into account the 
uncertainty of measurement when performing conformity 
assessment. 
 
2.  SUBJECT & METHODS 
2.1.  Conformity region and probability of compliance 

Conformity with a specification is proved when the complete 
measurement result falls within the tolerance region [5]: 

 
LSL y U≤ −  or y U USL+ ≤ , 

 
where LSL and USL – the lower and upper specification 

limits of the tolerance region, respectively; y  and U  – the 
estimate of measurand and expanded uncertainty, 
respectively. 

These expressions are combined into one, in which the 
measurement result is within the conformity region [5]: 

 
LSL U y USL U+ ≤ ≤ − .                    (1)  

 
A measuring instrument may be an indicating measuring 

instrument (IMI) or a material measure. The measurand of 
IMI calibration is the systematic error XE . In verification of 
an IMI, the modulus of the specification limits of tolerance 
region is equal to its maximum permissible error (MPE): 

 

IMI IMI MPELSL USL= = . 
 
It should be noted that the main sources of uncertainty of 

IMI calibration are: instrumental uncertainty of the 
measurement standard, its instability, changes in its 
operating conditions, mutual influence of the measurement 
standard and the IMI to be calibrated; the observed variation 
in the readings of the calibrated IMI; resolution of a 
displaying device of IMI. With all uncertainty components 
taken into account, the extended measurement uncertainty 
during calibration may be greater than MPE. 
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In the example S10 of calibration of a Vernier caliper with 
a resolution of 0.05 mm, considered in [9], the measurement 
model is: 

 

X iX S S iX ME l l L t l l= − + ⋅α ⋅∆ + δ + δ , 
 

where iXl  – indication of the caliper; Sl  – length of the 

actual gauge block; SL  – nominal length of the actual 
gauge block; α  – average thermal expansion coefficient of 
the caliper and the gauge block; t∆  – difference in 
temperature between the caliper and the gauge block; iXlδ  – 

correction for the finite resolution of the caliper; Mlδ  – 
correction for the mechanical effects. 

The uncertainty budget is given in Table 1. There are 2 
dominating rectangular contributions in this budget. 
Therefore, the expanded measurement uncertainty (for 
trapezoidal distribution law) was: 

 
( ) 1.83 0.0325mm 0.06mm.XU k u E= ⋅ = ⋅ ≈  

 
The coverage factor 1.83 for trapezoidal distribution is 

substituted in clause S10.10 [9]. 
 
Table 1.  Uncertainty budget of Vernier caliper calibration [9]. 

 
quantity  

 

iX  

estimate 
 

ix  

standard  
uncertainty  

( )iu x  

probability 
distribution 

sensitivity  
coefficient 

ic  

uncertainty 
contribution 

( )iu y  

iXl  150.10 
mm – – – – 

Sl  150.00 
mm 0.46 μm rectangular -1.0 - 0.46 μm 

t∆  0 1.15 K rectangular 1.7 μmK-1 2.0 μm 

iXlδ  0 14.4 μm rectangular 1.0 14.4 μm 

Mlδ  0 29 μm rectangular 1.0 29 μm 

XE  0.10 mm – – – 32.44 μm 

 
So, such a Vernier caliper will be unusable even if its 

readings do not deviate from the value of the end length 
gauge, since it is usually equal to its resolution for MPE of 
the Vernier caliper. If we neglect the unjustifiably high 
uncertainty associated with the influence of the measuring 
force (this is quite true for the Vernier calipers with a 
measuring force control), this will lead to a reduced 
uncertainty (Table 2.). There is only one dominating 
rectangular contribution in this budget. Therefore, expanded 
uncertainty in this case will be: 

 

( ) 0.95 3 0.15 0.0247 mm.XU k u E= ⋅ = ⋅ =  
 
The coverage factor 0.95 3  for rectangular distribution 

was taken from the formula (S9.8) [9]. 
It should be noted that even in this case the condition 

U<MPE/3, given in [3], is not observed. 

Table 2.  Uncertainty budget of calibration of Vernier caliper  
with measuring force control. 

 
quantity  

 

iX  

estimate 
 

ix  

standard  
uncertainty  

( )iu x  

probability 
distribution 

sensitivity  
coefficient 

ic  

uncertainty 
contribution 

( )iu y  

iXl  150.10 
mm – – – – 

Sl  150.00 
mm 0.46 μm rectangular -1.0 - 0.46 μm 

t∆  0 1.15 K rectangular 1.7 μmK-1 2.0 μm 

iXlδ  0 14.4 μm rectangular 1.0 14.4 μm 

Mlδ  0 3.3 μm triangular 1.0 3.3 μm 

XE  0.10 mm – – – 15 μm 

 
It should be noted that the expression (1) is true for 

probability compliance of no more than 0.95. In general, in 
the documents [7]-[8] it is proposed to evaluate the 
probability of compliance of IMIs in the following way: 

 

MPE
( )

 − −   = Φ = Φ = Φ      

X
c N N N

EUSL y
p z

u u



,  (2) 

 
where ( )N zΦ  – standard normal distribution function with 

variable z , XE


, u  – estimation of IMI’s indication error 
and its standard uncertainty, respectively.  

To find ( )N zΦ , it is proposed [8] to use the standard 
normal distribution table (p. 53). However, when calibrating 
a large number of IMIs, such as Vernier calipers, the 
distribution function attributed measurand is often 
trapezoidal or even rectangular. This is due to the fact that 
the dominant sources of uncertainty of the calibrated IMI are 
often rectangular distributed corrections, such as the 
correction of the Vernier caliper resolution [9]. 

The cumulative distribution function (CDF) of the 
trapezoidal distribution, which is a convolution of two 
uniform distributions with the ratio of standard 
uncertainties 2 1 1u uγ = ≤ , has the form: 

 

2 2

2

2 2

0, A;

[ 1 3(1 )] , A B;
24

1 3( ) , B B;
2 3

[ 3(1 ) 1 ]1 ,B A;
24

1, A.

T

z

z z

zF z z

z z

z

< −


+ γ + + γ − ≤ < − γ

 + γ += − ≤ <

 + γ − + γ + − ≤ <

γ
 ≥

   (3) 
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where 2A 3(1 ) 1= + γ + γ ; 2B 3(1 ) 1= − γ + γ . 
For trapezoidal distribution with γ =0.5 (Table 1.) and 

considering ( )= −


Xz MPE E u , we have: 

at 


XE =0, 0.05 1.538
0.0325

z = = , that is 0.936 0.95cp = < ;  

at 


XE =0.025, 0.025 0.769
0.0325

z = = , that is 0.75cp = ; 

at 


XE =0.05, 0z = , therefore 0.5cp = . 
The rectangular CDF has the form: 
 

0, 3;

( ) ( 3) 2 3 , [ 3; 3];

1, 3.
R

z

F z z z

z

 < −
= + ∈ −
 >

        (4) 

 
For the rectangular distribution and data of Table 2., we 

have: 

at 


XE =0, 0.05 3.33> 3
0.015

z = = , that is 1cp = , 

at 


XE =0.025, 0.025 1.67 3
0.015

z = = < , that is 0.98cp = ,  

at 


XE =0.05, 0z = , therefore 0.5cp = . 
Thus, a caliper will be usable with a probability of more 

than 0.95 if its readings do not deviate from the value of the 
end length gauge or equal to 0.5 MPE. Practice shows that 
the number of such calipers is about 60 % of those arrived at 
the test. Thus, 40 % of the verified Vernier calipers are 
unusable. 

Fig.1. shows the CDF for the uniform, triangular, 
trapezoidal, and normal distribution laws. 

 

 
 

Fig.1.  CDF ( )F z  for uniform (∙∙∙), trapezoidal (---) with γ = 0.5, 
triangular (−∙− ), and normal (─) distribution laws. 

 
From Fig.1. it is seen that the CDF for the triangular and 

normal laws practically coincide (with an error of no more 
than 2 % in probability), therefore, instead of a table with 
values of the normalized normal distribution given in [8], 
one can use the dependence for the triangular distribution 
law: 

2

2

0, 6;

( 6) 12, 6 0;
( )

1 ( 6 ) 12, 0 6;

1, 6.

T

z

z z
F z

z z

z

 < −


+ − ≤ <
= 

− − ≤ <


≥

         (5) 

 
The formulas (2) - (4) are obtained for rectangular, 

triangular and trapezoidal distributions of variable with zero 
expectations and unit standard deviations. However, these 
models are only an approximation of the real law of 
distribution obtained as a result of calibrations. In those 
cases, we recommend to evaluate the probability of 
compliance with help of the Monte Carlo method [10]. 

 
2.2.  Monte Carlo procedure 

Monte Carlo procedure for construction of distribution 
function includes the following operations, registered in 
uncertainty budget (Table 3.): 

 
Table 3.  Uncertainty budget. 

 
input 

quantity estimate standard 
uncertainty 

probability 
distribution 

sensitivity 
coefficient 

uncertainty 
contribution 

1X  1x  1( )u x  PDF 1 1с  1( )Xu E


 

2X  2x  2( )u x  PDF 2 2с  2 ( )Xu E


 
: : : : : : 

NX  Nx  ( )Nu x  PDF N Nс  ( )N Xu E


 

output 
quantity estimate 

combined 
standard 

uncertainty 

coverage  
probability 

coverage 
factor 

expanded 
uncertainty 

XE  XE


 ( )с Xu E


 0.95 k  U  

 
1.  Recording the model equation: 

 

1 2( , ,..., )X NE f X X X= ,                    (6) 
 
where 1 2, ,..., NX X X  - input quantities (first column of the 
Table 3.). 

2.  Evaluation of the input quantities as 1 2, ,..., Nx x x  
(second column of the Table 3.). 

3.  Evaluation of standard uncertainties of the input 
quantities as 1 2( ), ( ),..., ( )Nu x u x u x  (third column of the 
Table 3.). 

4.  Assigning the probability density functions (PDFs) for 
input quantities (fourth column of the Table 3.). 

5.  Selecting the number M of Monte Carlo trials to be 
made ( 410M ≥ ). 

6.  Generating M trials of measurand for vector, by 
sampling from the assigned PDFs as realizations of the (set 
of N) of the input quantities iX . 

7.  For each such vector, forming the corresponding model 
value of XE , yielding M model values XiE . 
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8.  Calculation of an estimate XE  of XE  by the formula: 
 

1

1 M

X X i
i

E E
M =

= ∑ .                           (7) 

 
9.  Calculation of unbiased estimate *

XiE  using the 
formula: 

 
*
Xi Xi XE E E= − .                             (8) 

 
10.  Sorting these M model values *

XiE  into strictly 
increasing order, using the sorted model values to provide an 
implementation of the propagation of distributions G [10]. 

11.  Calculating the values of probability 
 

( ) 100p i i M= ⋅ , i =1…M, 
 

which correspond to the values of *
XiE . 

12.  Construction of dependence *( ) Xip i E= . 
13.  Finding the probability of compliance cp  for the 

value of  
 

*
Xi XE MPE E= − . 

 
Realization of the steps 6-8 of the above described Monte 

Carlo procedure gives the dependence (MPE )c Xp E− , 
represented in Fig.2.  

 

 
 

Fig.2.  Dependence cp  of MPE XE− . 
 
3.  CONCLUSIONS 

The approaches for compliance probability determination 
of the IMIs with the specification requirements taking into 
account the uncertainty of the measurements for the 
abnormal laws of distribution of their error are presented. 

The examples adduced in the article show that for all 
distribution laws the condition U <MPE/3 given in [3] is not 
observed. 

When carrying out verification of the IMIs applied in the 
legal metrology, it would also be necessary to take into 
account the uncertainty of measurements. 
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