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ELECTRODYNAMICS
AND WAVE PROPAGATION

The Scattering of Plane Electromagnetic Waves
from a Cone with Longitudinal Slots

V. A. Doroshenko and V. F. Kravchenko
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Abstract

The paper deals with the boundary-value problem of scattering of a plane electromagnetic wave

from a semi-infinite ideally conducting cone with longitudinal slots cut at regular intervals. The nroblem is
solved using the Kontorovich-Lebedev integral transformation and the semi-inverse method. In particular cases
of a semitransparent cone, a single narrow conical ribbon, and a cone with narrow slot, an analytical solution
is derived that is used to study the structure and polarization of the scattered field, as well as the field behavior

in the vicinity of the cone vertex.

INTRODUCTION

The results of investigation of the boundary-value
problem on the electric-dipole excitation of a cone with
longitudinal slots are given in [1]. However, of great
interest from the standpoint of measurement and radar
applications is the solution of the diffraction problem
for such a structure. This paper, which is a continuation
of [1], gives a solution to the problem of scattering of a
plane electromagnetic wave from a semi-infinite ide-
ally conducting cone with longitudinal slots cut at reg-
ular intervals.

1. FORMULATION OF THE PROBLEM
AND METHOD OF SOLUTION

Let a homogeneous plane electromagnetic wave,
which propagates along the axis of a thin ideally con-
ducting semi-infinite circular cone with N slots cut at
regular intervals along the generatrices, be incident on
that cone (see the figure). The time dependence is given
in the form exp(~imf). In the employed (r, ¥, @)—spher-
ical coordinate system, the conical surface is defined by
the equation ® = y. The interval between slots in the
structure being treated / = 21t/N and the slot width d rep-
resent the magnitudes of dihedral angles formed by
planes passed through the cone axis and the edges of
adjacent conical ribbons. The presence of a cone with
longitudinal slots leads to the emergence of a secondary

=>(d) —2(d) - - -
field £, H '.The total field for £, H has the form
2(in
E( )+

>

B

>(in)  —=2(in) .
where E . H  denote the plane wave field (primary
field) which satisfies the set of Maxwell equations out-
side of the cone, the boundary conditions on the rib-

- = (in)

H=H

2(d) = (d)
E +H

3 s

="
bons Elz = 0, and the conditions of emission and
finiteness of energy. These conditions provide for the
uniqueness of the solution of the boundary-value dif-

271

fraction problem set. We will express the components
of the electromagnetic field in terms of the electric V("
and magnetic V'? Debye potentials and then reduce the
initial electrodynamic problem to two scalar boundary-
value Dirichlet and Neumann problems for the V' and
V2 potentials. The Debye potentials satisfy the homo-

N

The geometry of the structure.




272 DOROSHENKO, KRAVCHENKO

geneous Helmholtz equation outside of the cone, the
Dirichlet (for V") or Neumann (for V) boundary con-
dition, the condition of emission, and the condition in
the vicinity of boundary irregularities (cone vertex, rib-
bon edges). According to the total field structure,

Vl..\"; - vl.\‘\+ VE[.\'), g = l, 2

m

We will use the Kontorovich-Lebedev integral
transformation for solving scalar boundary-value prob-
lems [ 1],

400

H(l) kr)
G(1) = j.g(r)expk—J /2 dr, (1)
0 o A/’
o T Hiy (kr)
g(r) = ~§Jtsmlmtexp(——2—)(}( ) —— 7 dt, (2)
0

Hm (kr) 1s the Hankel function of the first kind, and k =
/c 1s the wave number.

We will treat two cases of polarization of the pri-
mary field, namely,

2in —>in ;
A E = (E{,0,0), H =(0,H0),
E" = H" = exp(ikz)
and
2in iii —2in o
B.E =(0.E",0), H = (H!00),
H" = —E" = exp(ikz).

Case A
E" = H" =exp(ikz).

Here, the Debye potentials corresponding to the
plane wave field are determined, according to [2], in the
form

V(I) _ COs
" kK’ rsin®
X (coskr+icosUsinkr—exp{ikrcost)),
Vi 0,00 = Vi (r 9,5 -0)
We will represent these potentials using the Kontorov-

ich-Lebedev integrals,

+00

I |n T nT
i o 2 (R (_) . (__
in T 2kexp 14 COS([JJ-THI]I’]TCTCXP\ >
0 (3)
H (ke
X—LL—)P ],»+,T(L0<1‘})(lt+zcoﬂptan ginGr

Jr 2 )3

where P” |, . (cos®) denotes associated Legendre
functions. We will introduce the following notation:

\/r( s |.

da

HO (4)
(/&7 )C il:rl)ml/z R 11'( cOS 13 )d“c,

Z exp(unq))_[

m=-1;1

(&)

: s—1
= __l_qsmkr 2 (1—”7—1) P'(;l'”l(cosﬁ)exp([m(p),
e r m

m=-1;1

s= 1.2,

s—1
- () ool
m 2k

o(m)
X Itanhntexp(—z‘z})(tz 4+ 411) o(m) = _5(|l:‘ e ])

Here,

where

= v(\) V(\),. (6)

Hul inc

Ve

in

By analogy with (3)-(6), the Debye potentials vy cor-
responding to the secondary field will be represented as

Vi e Vi + Vies D
Vi
dd
&)
H(U k y m (
J' ( ') 2 C:n‘[ ([ P l/7+IT(LOSY)Unrr(IT

S

m=-1;1

o - P/u+uN (+COS'(3)
(s) (s) 12+
Umt = Z X+ nN = | =
s e S P (Eeosy) ()
dy'
xexp(i(m+nN)Q),
v(.\")
de
_ i sinkr d (l'my) z ( i!—T—')VIU(") o
- . Sl = mnos
2k2 ! dY z m=-1;1 i
PN (+eos®)

_ ($)
m 2 ém-an \Al

H= —09

P”\'””M(%—cosy) (1D
dy'”
xexp(i(m+nN)o),

where x ’ and f; are unknown coefficients related by
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THE SCATTERING OF PLANE ELECTROMAGNETIC WAVES

(s)

o= i 5 (12)

it—=>1/2

The upper signs in (9) and (] 1) correspond to the 0 <
9 < y range, and the lower signs correspond to the y <
¥ < T range.

We use the boundary condition on the conical rib-
bons and the condition of continuity on the slots to
(s)

n o

derive the set of functional equations in x

2 X, exp(inN(p) = exp(imyN@),

n=-—eo

(13)
AT <|No| <m,

o

I ‘“[N(n+v)]"“"”l —eiexp(inNg) = 0,
(14)

Nl <€,
where

[N( 1+V)]X(V)l”| 8(5))

n

(=)"NE T oshntD(1/2 + it + (n + V)N)

msiny I'(1/2+it—(n+i)N)
1
% ds c 1
P“'Jz“lﬂ(cosv) _,17(”172“1’71( cos)
(x(s) = (-1 )“”>,
mIN = my + v, =1/2 £v < 1/2, mq is an integer closest

to m/N, and I'(z) is the gamma function.

The quantity e,(,‘v) is estimated at N(n + v) > 1,

0= o)
N (n+vVv)

When the method of the Riemann—Hilbert problem
is used [1], the functional equations (13) and (14)
reduce to two independent infinite systems of Fred-
holm-type ]mear algebralc equations (ISLAEs) of the

' Following are the ISLAEs for x ,

(15)

second kind in x

By(u)xy =

Iﬂn

{
—"%1 — D)V (u)

51 Lle, v (), (16)
l)

(2)
+ 2 -
P

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS

S RSN L R A R A .

2 273
2P -
B (ll) V- l( “)
V 1( Ll)+P\,( “)
2 m m,, 1 my 5
() SO_DMO n—l( )+Z(X12)—61,)|p! .
p#0
XVIZ )+ x0 (P, (u) +0”V, Ly ()], n#0, (17)
where
m
D, = —|-—°|(1—e,(,,2)) 5= ashs,
0 m 0 [

i 0, m#p,
5! = { !

I, m=p,

and V,’,’:Il(u), Ve(u), and V,' | (1) are Khown func-
tions [1].

It is not difficult to demonstrate that the matrix oper-
ators of two ISLAEs are compact in the Hilbert space

15 of the {x937
product

sequences with the scalar

H = -

oo

3.9 o Z (1 4 [l e,

n=-ce

These systems have a unique solution which, for any
correlations between ribbon width and the period for
arbitrary finite values of parameters N, m, and T may be
derived by the reduction method. Note that the coeffi-

cients x " do not depend on the wave number. and this
is convement for constructing directional patterns and
for studying the behavior of the field in the e vicinity of
the cone point (kr < 1). In particular cases of conical
structure, when the slots are numerous, and their width
is either small or comparable with the interval (semi-
transparent cone) between narrow slots or narrow con-
ical ribbons, the norms of system operators are less
than unity, which enables one to use the method of suc-
cessive approximations for solving the systems.

Case B

Here, the Debye potentials Vi corresponding to
the primary field are defined by the relations

Heww = (eado

Vid (5,9, @) =

where the tilde indicates the Debye potentml for case B.

V(r

m

. < 78) &
The structures of the potentials V,;  and their repre-
sentation in the form of the Kontorovich-Lebedev inte-
Vol. 46
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274 DOROSHENKO,
gral are analogous to (7)-(12), as in case A. The
unknown Fourier coefficients in the expansions of

i s) . . . .
potentials Vi in series with respect to angle ¢ satisfy
the same functional equations and two ISLAEs as the

coefficients 1" in (13), (14), (16), and (17).

2. ANALYSIS OF ANALYTICAL SOLUTION

In the cases of a semitransparent cone, of a single
narrow ribbon, and of a cone with a single slot, the solu-
tion of two ISLAES is found by the method of succes-
sive approximations to derive an analytical solution of
the boundary-value problem for two different condi-
tions.

Case A

Semitransparent cone. We will treat two cases of
a semitransparent cone, which are defined by the exist-
ence of limits

Tt

o |
(a) vall)nm[——]\-}ln (,Ob-é—i:| 0, (18)
dI— 1
(b) Iim [—lln sm’-ri[} = W. (19)
Nowl N 21
Al =0

() At Q@ #0and W=0, Vf,z) =0, and the secondary

field is described by the potential Vf,” which has the
form
Hy (k) (7 + 1/4)’

«/;' GIT

1/2 + :I(COSY)J_P:l;/z + ,'T(*COS l())(['t

Xtotl_%mk;

. e
V) = —%C()S(pJ. ¢y

0
x| P

[

Cos

tan
K1+20 .

y<O<m, (20)

’

Gie = (T4 1/4)P7 5, - (cosy)

1T

4 |/7+1r( cosy) + 2QQ0§h nT

An analogous representation takes place at 0 < ¥ < ¥.
The components of the electromagnetic field on the
cone surface satisfy the averaged boundary conditions

E' =E,
k(D ;
*{.’ . E,. = (_8_7 +k2)("H(P)a

arcsiny or”
H = H*-—Hi, fir = .f]ﬂ:yi()’

which coincide, within the sign of the wave number,
with the averaged boundary conditions in the case of
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the excitation of a semitransparent cone of the same
type by a radial electric dipole [1]. We proceed in (20)
to integration with respect to imaginary axis and repre-
sent VW by a series of residues over the integrand poles

(T Pr (.1 u(p - 1/4)1,(kr)
= T,\l o exp| 1— lu)x(pz p
g=1 COSTU— i Oy (21)
x [P ,,7+“(cosy)] P ,,7+“( cosﬂ)hl_\
o; = 0. (22)

[

Note that series (21) diverges rapidly when the
observation point is in the vicinity of the vertex
(kr << 1); therefore, it may be used conveniently to clar-
ify the field behavior in the vicinity of the cone point.
At kr > 1, the series converges slowly; for analyzing
the field in the far zone, it is expedient to use the inte-
gral representation (20).

In what follows, by the spectrum of eigenvalues of
the boundary-value problem is meant the set of inte-
grand poles in the integral representation for Debye
potentials corresponding to the total field. The spec-
trum of the problem for semitransparent cone (18) is
defined by the roots of Eq. (22), of which the least char-
acterizes the field behavior at the vertex. In some par-

ticular cases, we will use the asymptotics for \7‘, ;

=<1,

¥, = 0y 1)

" 2QcosT
2 l (] | s =1 -
TC(H _é—l)d_u[P-%w(ww)P—%w( gosy)}
u:uf
+0(Q"),
P:ll L(cosy) =0 P:'l (—cosy) =
(i) 0 > 1,

. i . 5 .
v, = —+q+2Q qlq+ DI P, (cosy)] +0(Q7),
g = 152044}

(i y<1,
- _ 1 (g +1) ( ) -
Vll—‘2+q+4(] ZQ)Y +OYI|]Y q = l,2

The components of the total electric field in the vicinity
—§+Q
of the cone point behave as (kr) =
min (;q . The least root in cases (i)—(iii) is the v, root. In
view of the fact that, at ¥ <€ 1, the total electric field at

, where v

. 1
the vertex of a solid cone behaves as (kr)' "=, we con-

Vol. 46 No. 3 2001
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clude that, in the case of the semitransparent cone
(Y < 1) being treated, the total electric field decreases
more slowly as the cone point is approached than in the
case of the solid cone. The secondary field is defined by

the electric Debye potential alone (H‘,{ =0), as a result

of which this field is a field of the electric type (trans-
verse-magnetic field). The plane wave field is defined by
two potentials (4)—(6); therefore, it does not belong to
either the electric or magnetic type.

(b) At W0 and Q = 0, the secondary field compo-
nents are expressed in terms of both Debye potentials;
in so doing, the electric potential is the same as in the
case of a solid cone and experiencing no effect of the
slots, and the magnetic potential is defined by the
expression

(2) 2‘(0 sin j 2
A” —ql'-P“l (—cosY)
d’Y —%+i‘t ol
1 2w I Qsmkr
XP_l ( cosf})d‘c+k sln(p] 2Wtan 5 t2 :
T<B<n, (23)
A =2W
coshmt 1

msiny (12+%)%P:‘| (cow) P . I(—cosy)
2 “3t

An analogous representation takes place at 0 < ¥ <.
We pass on to the limit in (23) at W — oo (semitrans-
parent cone transforms to solid) to derive the expres-
sion for the magnetic Debye potential as applied to a
solid cone. The field components on the surface of a
semitransparent cone satisfy the following averaged
boundary conditions:

(ii) Wsin?y > 1,

275

ik = _ (3 ).
“4WsinyH" = (a—’} +k )(;Em).

In order to analyze the field behavior in the vicinity of
the cone point, we will represent V¥ as a series with
respect to integrand poles,

o 8 el
I krexp cos(pi e I, (kr)
P:‘l (cosy) !
X p 2] P"'l. (—cos1})
—P, (-cosy) %
di :
w=o,
¢ S w(kr)
% —2W? exp( )gm(pzcosnu v (24)
n=1 []“A“
%];] (cosy)
dp £ P:]l l(—cosﬁ) .
5 (—cosv) :
d _1
v L=v,
y<d<mw, A, =0.

m

We will investigate for some cases the :oots of Eq. (24)
that enter the spectrum of the boundary-value problem
and define the field behavior in the vicinity of the cone
point,

() W< 1,
& 1 5y 3 " =
Vv, = =+n+2Wsiny(-1) n(n+1)—~P, (cosy)
2 dy
xiP“(~cosy)+0(W2) n=12..;
e ! o Dsare]

- 1+ COSTT I
Vi = Gy (Y)_ZW : = P p, +O0((Wsin'y) ),
sin’ L ( ) [—P cosy)—pP"' —C0S
T - 3)anldy ala u( Y)dy —%+u( Y)
: ) s
d
= . (Ecosy) = O
dy -3+
=g,
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(iii) y < 1,

v, = +/1711(11+I)

Y_
2

DI —

+2W
R R0

In (i)—(iii), the magnetic field in the vicinity of the cone

(y ln?\}

point behaves as & ", where
1
4Wsm 2y, W<,
- 3. = .2
Vy = 3=m+Vy, Wsiny® 1,

%4 2
Trow! o Tl

In view of the fact that the magnetic field at the vertex
of a solid cone at y < 1 has a singularity of the order of

(kr)" > one can conclude that, in the case of a semi-
transparent cone (19) and y < 1, the singularity of the
magnetic field in the vicinity of the vertex is weaker
than in the case of a solid cone. The behavior of the
electric field (y < 1) at the vertex is asymptotically the
same as in the case of a solid cone.

Narrow conical ribbon (N=1,B=2n-d < 1). We
will designate the angular width of a conical ribbon
as p. Away from the ribbon edges, the asymptotic
expansion of electric potential w1th respect to the
smallness parameter 3 has the form

I | +oo
v 1 1 . .
! 2Insin(B/4)k _Z: (=1)"exp(in®)

1

o (1-8,")
X ij]fr'[’ (wsy)' Bl 7 (25)
. 5 T
P",  (fcos®)
e H kr) i sinkr B’
X I 4% e 1
P", (fcosy) Jr 3 Ing
—= #iT
! B
where 1 — 8" = —le Ap=—

, —-P CcosY) X
1 —e"" " cosht —»1+ir( "
‘n 2

P

~(=cosy), and
+iT

M. =

1T

1=

-Z }

pz0

21 B[
1191114

In this case, the magnetic Debye potential Vf,Z) is of the
. 2,4 (1Y . ;
order of O (B /ln(B)) . Therefore, the dominant terms

in the expansion of field components with respect to
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parameter 3 correspond to the dominant term in the
expansion of electric Debye potential (25). The spec-
trum of the boundary-value problem is defined in this
case by the roots of the equations

COoSTU
1 <
P, (cosy)P , (- cosy)—cosnuzl . I’l
L L 0 (26)
I
= B
2lnsm4
COSTIIL
. 2 I P =
TSI y(;ﬁ—Z)P‘%W(cosy)P’éw(*cosy) 27)
_ _an2B
= —sin i
SoRt = —sin’ E,
ncosmp + m(—1)"" ‘MHDL\) 4
F(%+p+n) .
fo) = (siny)' M= ‘ — (28)
| dy
r(é +,J —/I)
\—I
®P ((,OSY) —P” "] “(—cosy).
5t

The roots of Egs. (27) and (28) are in the vicinity of
zeros of cosmp, with the exception of i = /2. The roots

of (26) have the form A
1 (¢ +p)!
Gy B o= =—— {[Pq(cosy) +22 ——
. 21In smE (q p):

(29)

><[P;(I(COSY)]z}+0(]I]_2[3), g = 0y ls 20

The minimal eigenvalue of the spectrum is the least
root of (29),
I |

S =35~ — 5 + O(ln_z(sing—)),

2Insint
nsin;,

which characterizes the electric field behavior at the
vertex of the conical ribbon. For example, component
Eq in the vicinity of the vertex behaves in the following
manner:

1 _;"'90
Ey~—————(kr) F(8, 9),

B

2Insin*=
4

where
Vol. 46
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A C0t§+-—l~ -1

Fig,wpl = sin®
- ip
+Re e . (30)
[blexp(2ip) + 2?76xp(i(p)cos§ +1
y<O<m,

where A is the known coefficient, and b = cotg .
Y
tan 2

For 0 <% < v, ¥ 1in (29) must be replaced by © — 0.

Cone with narrow slot (N =1,d << 1). It is known
that the spectrum of the boundary-value problem for a
solid cone, on which a plane wave is incident along its

axis, consists of zeros of the functions P“'I (—cosY)
iy
and iP_l] (=cosY). In so doing, the least of the roots
d‘y —§+u

of these functions characterizes the behavior of the

electric and magnetic fields at the cone vertex, respec-

tively. The presence of a narrow slot perturbs the spec-

trum for a solid cone and causes a variation of the sec-

ondary field structure. Following are the expressions

for eigenvalues in the case of a cone with a narrow slot,
rE

R ”+(y) g,,‘sm —+0(d ),

Pt _ (1/2+u—-p)
& S Tn2+u+p)

(=1)"cosmpu

*d
na—t[P ’ l(cosy)P:’;w(—cosy)}

n=oy

P_’; (fcosy) =0, n,p=0,1,2,...;

3t

I"

= ¢ (y) - b sin” §+ odh,

1
L F(i ok H—(I)

b, =

n

(-1 cosmp

.2.dTd .
msin yTt—P | (ws})dyP_%w( cosy)}

duldy -3+u

X

Tt
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dv Lgleosy) =0, g =12
1 1 =
EJ = z—-——-—+0(ln (]) 31
2 sinzyln sin 7

The electric field in the vicinity of the point of a cone
with a narrow slot behaves as

3

(kr)q : Y<T/2,
where
Vg = (xg—h[,sinu—j+0(d4),

O =05 | _ ., 0<og(y)<3/2,
_ COSTUOL,
hy = 7 ) i > 0.

nP 1”6(005}’)(1—“]’“%+“(~cosy)

= oy

The values of 0, () are given in [3]. In view of the fact

that the electric field has no singularity at the vertex of
a solid cone, because it is defined by the term of the

3
= i
order of (kr) . Y e Oc(])" (77), one can conclude that

the presence of a narrow slot results in the emergence
of a singularity of the electric field. As the cone point is

3 1=
—5+¢C

approached, the magnetic field increases as (kr) °

(the values of c_;0 are given in [3]). The components of

the magnetic field in the vicinity of the vertex of a cone

with a narrow slot have a singularity of the order of

,24.

(kr) * 7 This is indicative of an increase in the singu-
larity of the magnetic field (as compared with a solid
cone).

The structure of a scattered field includes terms cor-
responding to the field for a solid cone and terms due to
the presence of a slot. One of the latter terms is the
wave corresponding to the eigenvalue of § (31). In addi-
(fcosy) = 0. n 2 1, the

tion to the roots of ~(II—P_”]
d'Y =5 + 1
value of W = 1/2 that corresponds to a function making
no contribution to the field is present in the spectrum of
eigenvalues of the boundary-value problem of Neu-
mann for magnetic potential in the case of a solid cone.
In the presence of a narrow slot, the value of u = 1/2 is
perturbed by the slot, and the function corresponding to
this value introduces into the field a nonzero contribu-
tion and characterizes the singularity of the magnetic
field in the vicinity of the cone point. When a plane
electromagnetic wave is incident on a cone with narrow

Vol. 46 No. 3 2001
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slot, a wave of the slot type is present in the secondary
field structure, this latter wave corresponding to the
value of § and defining the magnetic field behavior in
the vicinity of the cone point.

Case B
Semitransparent cone
D) Q =0, W=0:

Vi 0.9y = v (n 9.5 0)

() Q=0 W#0.

F (1 . p -
The potential V" is the same as in the case of a
solid cone, and

\N/f/h(r, Y, Q) = Vf,D(r, 9, %t_ )

The spectrum of the boundary-value problem and the
field behavior in the vicinity of the cone vertex are the
same as in the case A of plane wave incidence.

Narrow conical ribbon. Following is the asymptotic

‘ = (1) < ;
expression for Vi, away from the ribbon edges,

s B e -
Ve = s 5 —ZZ(,ﬁl) Texp(m(p)J &
n#0 0
Pnl r(_COSl})H(]) ke
g =it _— 2
x P\ (cosy) . - (F ")(1'7:4-—1
‘§+u P71+ T(_COSY) \/)' /\’A
2y O
tan =cot—=s )
SOty me sinkr B
X +0|— | vy<od<m,
h™+2bcos@+1 * lnl

B
where 7, =1 - 8" sin?(B/2).

For a narrow ribbon, the spectrum is defined by the
set of roots of Eqs. (26)—(28). The field behavior in the
vicinity of the vertex does not depend on the polariza-
tion of the incident field and, therefore, its singularity at
kr <1 is the same as in case A (the difference resides
in the amplitude factor containing the smallness param-

eter [3).

CONCLUSION

The Kontorovich-Lebedev integral transformation
was used in combination with the semi-inverse method

to perform an analytic investigation of the boundary-
value problem of scattering of a plane electromagnetic
wave from an ideally conducting semi-infinite circular
cone with slots cut at regular intervals. In the cases
when the vector of the intensity of the electric or mag-
netic field of the plane wave propagating along the cone
axis was directed on the abscissa of Cartesian coordi-
nates, the problem was solved for a semitransparent
cone, for a single narrow ribbon, and for a cone with a
narrow slot. The spectrum of eigenvalues of the
Dirichlet and Neumann boundary-value problems for
the electric and magnetic Debye potentials was found.
It has been demonstrated that the spectrum in the case
of'a cone with narrow slot is the spectrum (perturbed by
the slot) of eigenvalues of the respective boundary-
value problems for a solid cone. The polarization and
structure of the scattered field were investigated in the
treated cases of conical surface. In the cases involving
a semitransparent cone, its polarization depends on the
cone filling parameters Q and W.

An analysis of the solution for a cone with a narrow
slot has demonstrated the presence in the scattered field
structure of a slot-type wave whose properties are sim-
ilar with those of a slot wave in a cylindrical slot line.
The field behavior in the neighborhood of the boundary
irregularities has been determined. In so doing, the field
components perpendicular to the ribbon edge have a
known root singularity, and the presence of a narrow
slot causes an increase in the field singularity in the
vicinity of the cone point as compared with the case of
a solid cone. The employed approach to the solution of
such a problem may be applied to the investigation of
structures of a more complex conical geometry.

The results of this study were reported in part at the
Second International Conference on Modern Trends in
Computational Physics (July 24-29, 2000, Dubna,
Russia) [4].
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