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Abstract: A matrix approach to solving the electrody-
namic problems is described. This specificity consists in the 
treatment of an electrodynamic system (ES) as an oscillat-
ing system with a finite number of the degrees of freedom. 
The ES is considered as a set of spatially localized partial 
oscillators (oscillets). Matrices of unit mutual pseudoener-
gies and unit mutual energies of the oscillators are evalu-
ated. The ES eigenvalues, eigenfunctions and excited po-
tentials can be calculated then basing on the lumped ele-
ment circuit matrix theory. The main advantage of such 
approach is substitution of the partial derivative differen-
tial equations with the linear algebra problems and the 
ordinary differential equations. 

Keywords: electrodynamic system; electromagnetic po-
tential; eigenvalue problem; lumped element circuit; linear 
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Introduction 
Many computational methods exist in the electrodynamics, 
nevertheless there are no perfect ones, which are fit in the 
enough degree for simulating, e.g., UWB electromagnetic 
potentials in numerical models of the microwave devices. 
The most popular FDTD/FDFD and FETD/FEFD methods 
are based on the lowest-order interpolation schemes, so 
those are rather “extensive”. As a result, new numerical 
methods appear occasionally [1], and will appear in the 
future too. Possibly, this is profitable to seek ideas for new 
methods in other divisions of science. 

E.g., two approaches to calculating the wave function Ψ  
are known in the quantum mechanics: the Schrödinger’s 
wave mechanics and the Heisenberg’s matrix mechanics 
[2]. The first is based on direct solving PDEs (Klein-
Gordon or Schrödinger’s equation). The second works with 
a vector space produced as ensemble of all possible solu-
tions of the same PDEs. If this space is predefined, the ma-
trix mechanics can be reduced to the linear algebra prob-
lems and ODEs, which are less computationally intensive 
comparing with the direct numerical integration of PDEs. 

The D’Alembert equation for the electromagnetic potential 
is a particular case of the Klein-Gordon equation. There-
fore, in the classic electrodynamics, two approaches to cal-
culating spatio-temporal distributions of the potential also 
may exist. Let us call their as a “wave” and a “matrix” elec-
trodynamics. Note that well-known expansion of the poten-
tial in eigenfunctions of an electrodynamic system (ES) is a 
special case of the matrix electrodynamics. 

Theoretical Part 
A full matrix theory of ES is described in [3]. That is based 
on spatially localized so-called partial functions of the ES 
(partial oscillators, oscillets). If the spectrum of the generic 
potential A  [4] of the ES is finite in the wavenumber do-
main, this potential can be written as a finite series: 

p p( , , , ) ( ) ( , , ) ,t x y z t x y z= uA A  

which is a generalization of the Shannon-Whittaker series. 
The vector of N partial functions pA  is a nontrivial solu-
tion of so-called intervalues problem for the ES: 

2 2
p p p 0 ,k⎡ ⎤∇ + =⎣ ⎦A A   (1) 

which spatially localizes all oscillets (intervalues matrix 
2
pk⎡ ⎤⎣ ⎦  and other designations are explained in [3] and [4]). 

From the physical point of view, the oscillet is a “cloud” of 
the electromagnetic potential oscillating as a single whole, 
i.e. in the same phase. Therefore, the matrix theory of a 
lumped element circuit with N degrees of freedom can be 
applied to the ES treating one as a 1D, 2D or 3D “lattice” 
of the coupled partial oscillators. 

Five fundamental features of the oscillets are given in [3]. 
Each solution of (1) has those features. An inverse supposi-
tion can be made: any function having all those features 
might be one of solutions of (1). Such assumption is of 
practical significance. If some of N partial functions of the 
ES are known a priori, the number of unknown ones in (1) 
reduces respectively. E.g., the oscillators allocated far from 
the ES boundaries are known a priori, as similar to the free-
space oscillets. The oscillators lying close to a flat metal 
surface can be easy found too using “mirror reflections”. 

First, matrices of unit mutual pseudoenergies pW⎡ ⎤⎣ ⎦  and 

unit mutual energies pW⎡ ⎤⎣ ⎦  of the oscillets are evaluated 
[3]. Then, the intervalues matrix can be calculated as 

12
p 0 0 p pk W W

−
⎡ ⎤ ⎡ ⎤⎡ ⎤= ε μ ⎣ ⎦ ⎣ ⎦⎣ ⎦ . Diagonalizing 2

pk⎡ ⎤⎣ ⎦  with a form-

matrix: [ ] [ ] 12 2
e pk F k F −⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦  the eigenvalues matrix is 

obtained. Finally, vector of N eigenfunctions of ES is found 
as [ ]e p( , , )x y z F=A A . A matrix ODE for the instantane-
ous values vector pu  (a substitute for the D’Alembert PDE 
in the matrix electrodynamics) is given in [3]. 
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Numerical Results 
As an example, the eigenvalue problem for 1D oscillating 
systems is solved using the matrix approach. Two systems 
both having 1024 units in the length and divided into 1024 
intervals are simulated: (i) with the periodical boundary 
condition (BC), N = 32; and (ii) with the Neumann’s BC, 
N = 33. A finite oscillet (Fig. 1) having 256 units in the 
length is used in both cases. The oscillet is synthesized us-
ing the truncated Gaussian normalization [3]. The ampli-
tude spectrum of one in the basis of complex eigenfunc-
tions of the closed-loop system is in Fig. 2. Two variants of 
the oscillet location are examined: (i) regular with the dis-
tance of 32 units; and (ii) stochastic with a random devia-
tion of each oscillet position no more than ±16 units from 
the “regular” location of one. The Neumann’s BC for the 
boundary oscillets are simulated by superposition of “mir-
ror reflections” of the outside fragments with further nor-
malization of the peak values of the obtained sums. 

The results of simulations of the systems (i) and (ii) are 
given in Tables 1 and 2 respectively. Structures of both 
tables are similar. Column 1 is the eigenvalue numbers m. 
Column 2 shows the rigorous (analytically calculated) ei-
genvalues. Columns 3 and 4 contain numerically evaluated 
eigenvalues for the regular and the stochastic oscillet dispo-
sitions respectively with the described above technique. 

As it can be seen from the tables, the regular location of the 
oscillets ensures almost perfect evaluation of the lowest 

roots. The stochastic position also gives good results for 
these values. The highest eigenvalues are evaluated less 
reliably. However, even in this case, the maximal relative 
error does not exceed 3…4 percent, i.e. is small enough. 

Conclusion 
The matrix electrodynamics is an equipollent alternative to 
the classical “wave” electrodynamics. This shows consid-
erable promise for the simulations of electromagnetic po-
tentials in ESs of various microwave devices. 

References 
1. Ala, G., A. Spagnuolo, F. Viola, “An Advanced Grid-

less Method for Electromagnetic Transient Simula-
tion,” in Proc. Int. Symp. Electromagnetic Compat. 
(EMC Europe 2004), Eindhoven, 2004, pp. 54-59. 

2. Wichmann, E. H., Quantum Physics (Berkeley Physics 
Course, vol. 4). New York: McGraw-Hill, 1971. 

3. Gritsunov, A. V., “Expansion of Nonstationary Elec-
tromagnetic Potentials into Partial Functions of Elec-
trodynamic System,” Radioelectronics and Comm. 
Systems, vol. 49, no. 7, pp. 6-12, 2006. 

4. Gritsunov, A. V., “Methods of Calculation of Nonsta-
tionary Nonharmonic Fields in Guiding Electrody-
namic Structures,” J. Comm. Technol. and Electronics, 
vol. 52, no. 6, pp. 601-616, 2007. 

 

 
Figure 1 

 
Figure 2 

Table 1 

1 2 3 4 
0 
1 
2 
3 
4 
5 
6 
… 
27 
28 
29 
30 
31 

+0.0000000 
+0.0000376 
+0.0000376 
+0.0001506 
+0.0001506 
+0.0003388 
+0.0003388 

… 
+0.0073793 
+0.0073793 
+0.0084711 
+0.0084711 
+0.0096383 

+0.0000000 
+0.0000377 
+0.0000377 
+0.0001506 
+0.0001506 
+0.0003388 
+0.0003388 

... 
+0.0073789 
+0.0073789 
+0.0085766 
+0.0085766 
+0.0096353 

+0.0000004 
+0.0000377 
+0.0000383 
+0.0001507 
+0.0001510 
+0.0003389 
+0.0003391 

... 
+0.0073946 
+0.0074361 
+0.0085294 
+0.0087103 
+0.0096803 

Table 2 

1 2 3 4 
0 
1 
2 
3 
4 
5 
6 
… 
28 
29 
30 
31 
32 

+0.0000000 
+0.0000094 
+0.0000376 
+0.0000847 
+0.0001506 
+0.0002353 
+0.0003388 

… 
+0.0073793 
+0.0079158 
+0.0084711 
+0.0090453 
+0.0096383 

+0.0000000 
+0.0000094 
+0.0000377 
+0.0000849 
+0.0001509 
+0.0002358 
+0.0003395 

... 
+0.0073894 
+0.0079417 
+0.0085696 
+0.0092720 
+0.0096507 

+0.0000003 
+0.0000096 
+0.0000380 
+0.0000852 
+0.0001509 
+0.0002358 
+0.0003396 

... 
+0.0073958 
+0.0079668 
+0.0085492 
+0.0093444 
+0.0096766 


