MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE KHARKOV NATIONAL UNIVERSITY OF RADIOELECTRONICS

ISBN 966-659-088-3

Proceedings of East-West Design & Test Workshop (EWDTW'04)

Yalta, Alushta, Crimea, Ukraine, September 23 – 26, 2004

© Kharkov National University of Radioelectronics, 2004

CONTENTS

EDUARDAS BAREISA, VACIUS JUSAS, KESTUTIS MOTIEJUNAS, RIMANTAS SEINAUSKAS. THE TESTING APPROACH FOR FPGALOGIC CELLS	8
T. TONNISSON, L. KUUSIK. DATA ACQUISITION MODULE FOR OPTICAL TELECOMMUNICATION TEST INSTRUMENT	15
H.J. KADIM. CONDITIONAL ASSERTION OF EVENTS WITH APPLICATIONS TO VERIFICATION OF SOC	17
TOMASZ GARBOLINO, ANDRZEJ HLAWICZKA, ADAM KRISTOF. ANEW IDEA OF TEST-PER-CLOCK INTERCONNECT BIST STRUCTURE	23
M. BRIK, J. RAIK, R. UBAR, E. IVASK. GA-BASED TEST GENERATION FOR SEQUENTIAL CIRCUITS	
JAAN RAIK, PEETER ELLERVEE, VALENTIN TIHHOMIROV, RAIMUND UBAR. FAST FAULT EMULATION FOR SYNCHRONOUS SEQUENTIAL CIRCUITS	35
ELENA FOMINA, ALEXANDER SUDNITSON. INFORMATION RELATIONSHIPS FOR DECOMPOSITION OF FINITE STATE MACHINE	41
JACEK WYTRÊBOWICZ. AGENTIS VALIDATION – A CASE STUDY	48
GENNADIY KRIVULYA, ALEXANDR SHKIL, YEVGENIYA SYREVITCH, OLGAANTIPENKO. VERIFICATION TESTS GENERATION FEATURES FOR MICROPROCESSOR- BASED STRUCTURES	57
SHALYTO A.A., NAUMOV L.A. NEW INITIATIVE IN PROGRAMMING. FOUNDATION FOR OPEN PROJECT DOCUMENTATION	64
ROMANKEVYCH A., ROMANKEVYCH V., KONONOVA A. SOME CHARACTERISTICS OF FTCS MODELS' BEHAVIOR (IN THE FLOW OF FAULTS)	69
BOICHENKO Y.P., ZAYCHENKO A.N. IMPLEMENTATION EXPERIENCE OF DSP APPLICATIONS USING FPGA ARCHITECTURE. RESEARCH OF PRACTICAL	
METHODS FOR IMPROVING LOGIC STRUCTURES	70
DROZD A., SITNIKOV V. AN ON-LINE TESTING METHOD FOR A DIGIT BY DIGIT PIPELINE MULTIPLIER WITH TRUNCATED CALCULATIONS	76
SAPOSHNIKOV V., SAPOSHNIKOV VL., MOROZOV A, OSADTCHI G., GÖSSEL M. DESIGN OF TOTALLY SELF-CHECKING COMBINATIONAL CIRCUITS BY USE OF COMPLEMENTARY CIRCUITS	83
V. ZAGURSKY, A. RIEKSTINCH. BIST FOR HIGH SPEED ADC	
V. ZAGURSKY. I.ZARUMBA, A.RIEKSTINCH. A STATISTICAL METHOD FOR ANALOG-DIGITAL SYSTEM TESTING IN TIME AND SPECTRAL DOMAIN	
A. CITAVICIUS, M. KNYVA. MEASUREMENT INSTRUMENTS SOFTWARE REQUIREMENTS	97
THOMAS KOTTKE, ANDREAS STEININGER A DUAL CORE ARCHITECTURE WITH ERROR CONTAINMENT	102
ORESTA BANDYRSKA, MARTA TALAN, VOLODYMYR RIZNYK. APPLICATIONS OF THE PERFECT COMBINATORIAL SEQUENCES FOR INNOVATIVE DESIGN AND TEST	109
BAZYLEVYCH R.P., PODOLSKYY I.V. INVESTIGATION OF PARTITIONING OPTIMIZATION BY THE OPTIMAL CIRCUIT REDUCTION METHOD	113
VOLODYMYR G. SKOBELEV. NON-STATIONARY SECRET LOCK: MODEL AND CHECKING	117

SKOBTSOV Y.A., SKOBTSOV V.Y. EVOLUTIONARY METHODS OF THE TEST PATTERN GENERATION FOR DIGITAL SYSTEMS AT DIFFERENT PRESENTATION	
LEVELS	123
A. MATROSOVA, S. OSTANIN , A. VORONOV. DESIGNING FPGA-BASED SELF-TESTING CHECKERS FOR ARBITRARY NUMBER OF UNORDERED CODEWORDS	130
SHARSHUNOV S.G., BELKIN V.V. FUNCTIONAL TESTING OF MICROPROCESSORS. CASE STUDY	135
SAMOILOV V.G., SPERANSKIY D.V., KUPRIYANOVA L.V. DIAGNOSTIC PROBLEM FOR LINEAR AUTOMATA IN INTERVAL STATEMENT	142
EVGENY V.GALICHEV, SERGEY A.KOLOMIETS, VLADIMIR LANTSOV. ARCHITECTURE OF FPGA PROGRAMMING FOR PROTOTYPING TASKS	149
M. SKVORTSOV, M. SERINA, S. MOSIN. AUTOMATED TESTING OF SOFTWARE SYSTEMS	150
S.À. KOLOMIETS, I.À. KOLOMIETS, V.N. LANTSOV. DESIGN OF ADPCM-CODEC ON FPGA BASIS	152
KONSTANTIN KULIKOV. IP CORES USING FOR CREATION COMPLEX SYSTEM ON A CHIP	155
MICHAEL A. TROFIMOV. THE SUBSYSTEM FOR AUTOMATING OF MODEL GENERATION ON VHDL-AMS	157
I. A. KOLOMIETS, E. B. KOBLOV, K.V. KULIKOV. RESEARCH OF THE SPEECH SIGNAL PREDICTOR	159
N. KASCHEEV, Y. RYABKOV, S. DANILOV. TEST GENERATION FOR SYNCHRONOUS DIGITAL CIRCUITS BASED ON CONTINUOUS APPROACH TO CIRCUIT MODELING	161
B. SOKOL, I. MROZEK, V. N. YARMOLIK. TRANSPARENT MARCH TESTS TO EFFECTIVE PATTERN SENSITIVE FAULTS DETECTION	166
A.A. USHAKOV, V.S. KHARCHENKO. V.V. TARASENKO. METHODS OF MODELING AND ERROR-TOLERANT DESIGN OF DEPENDABLE EMBEDDED SOPC/FPGA-DECISIONS BY USE OF MULTIVERSION TECHNOLOGIES	172
A.A. BARKALOV, I.J. ZELENYOVA. RESEARCH OF MULTI-LEVEL STRUCTURE OF THE CONTROL UNIT IN THE BASIS OF PLD	179
E. BUSLOWSKA, V. N. YARMOLIK. TWO-DIMENSIONAL COMPACTION TECHNIQUES FOR RAM BIST	
ROMAN KVETNY, VLADIMIR LYSOGOR, ALEKSEY BOYKO. INTERVAL MODELLING OF COMPLEX SYSTEMS	
BARKALOV A.A., BUKOWIEC A.F., KOVALYOV S.A. SYNTHESIS OF MEALY FSM WITH MULTIPLE ENCODING OF INTERNAL STATES	193
DOROFEEVA M.U., PETRENKO A.F., VETROVA M.V., YEVTUSHENKO N.V. ADAPTIVE TEST GENERATION FROM A NONDETERMINISTIC FSM	197
LADYZHENSKY Y.V., POPOFF Y.V. A PROGRAM SYSTEM FOR DISTRIBUTED EVENT-DRIVEN LOGIC SIMULATION OF VHDL-DESIGNS	203
O. NEMCHENKO, G. KRIVOULYA. USE OF PARALLELISM IN FINITE STATE MACHINES. MATHEMATICAL LEVEL	210
VOLODYMYR NEMCHENKO. NETWORK SAFETY. PROBLEMS AND PERSPECTIVES	214
KOLPAKOV I.A., RYABTSEV V.G. OPERATIONS OF TRANSFORMATION OF VECTORS INFLUENCES COORDINATES AT DIAGNOSING MODERN DIGITAL SYSTEMS	217

RYABTSEV V.G., KUDLAENKO V.M., MOVCHAN Y.V. METHOD OF AN ESTIMATION	
DIAGNOSTIC PROPERTIES OF THE TESTS FAMILY MARCH	
MIKHAIL ALEXANDROVICH LODIGIN. THE NEW OPERATIONAL MODE FOR DIGITAL OSCILLOSCOPES	225
T.V. GLADKIKH, S. YU. LEONOV. K-VALUE DIFFERENTIAL CALCULUS CAD	227
S.A. ZAYCHENKO,A.N. PARFENTIY, E.A. KAMENUKA, H. KTIAMAN. SET OPERATION SPEED-UP OF FAULT SIMULATION	231
VOLKER HW. MEYER, AJOY K. PALIT, WALTER ANHEIER. EVALUATION OF SIGNAL INTEGRITY TESTS BASED ON TRANSITION DELAY FAULT TEST PATTERN	238
V. A. TVERDOKHLEBOV. THE GENERAL FEATURES OF GEOMETRICAL IMAGES OF FINITE STATE MACHINES	243
CHUMACHENKO S.V., GOWHER MALIK, KHAWAR PARVEZ. REPRODUCING KERNEL HILBERT SPACE METHODS FOR CAD TOOLS	247
BONDARENKO M.F., DUDAR Z.V. ABOUT 'SIMILAR-TO-BRAIN' COMPUTERS	
CHIKINA V.A., SHABANOV-KUSHNARENKO S.Y. ABOUT MODIFIED CATEGORIES	
M. KAMINSKAYA, O.V. MELNIKOVA, SAMI ULAH KHAN, W. GHRIBI. IMPROVING TEST QUALITY BY APPLYING BOUNDARY SCAN TECHNOLOGY	263
S. HYDUKE, A.A. YEGOROV, O.A. GUZ, I.V. HAHANOVA. CO-DESIGN TECHNOLOGY OF SOC BASED ON ACTIVE-HDL 6.2	269
KAUSHIK ROY. DESIGN OF NANOMETER SCALE CMOS CIRCUITS	273
V.I. HAHANOV, V.I. OBRIZAN, A.V. KIYASZHENKO, I.A. POBEZHENKO. NEW FEATURES OF DEDUCTIVE FAULT SIMULATION	274
LANDRAULT CHRISTIAN. MEMORY TESTING	281
SAMVEL SHOUKOURIAN, YERVANT ZORIAN. EMBEDDED-MEMORY TEST AND REPAIR: INFRASTRUCTURE IP FOR SOC DEBUG AND YIELD OPTIMIZATION	
A.V. BABICH, I.N. CHUGUROV, YE. GRANKOVA, K.V. KOLESNIKOV . PLANNING OF PASSIVE EXPERIMENT FOR EXPLICIT FAULTS AND BOTTLENECKS LOCATION	
BENGT MAGNHAGEN. ELECTRICAL TEST IS NOT ENOUGH FOR QUALITY	

NETWORK SAFETY. PROBLEMS AND PERSPECTIVES

VOLODYMYR NEMCHENKO

Kharkiv National University of Radio Electronics

vpn@narod.ru

Abstract. The necessity of the information protection for networks is shown. Analysis of certain types of the networks attacks is given. Principles of protection of the information in networks and perspectives are shown.

This paper analysis a state of arts in the Network Safety area. The problem is actual especially taking in consideration the escalating of the network attacks amount fixed daily in the Internet. This work estimates the situation with network safety. Summary classification of attacks with the analysis of the basic attacks types is given. Some characteristics of the main types of attacks are shown.

In reality today almost each server is exposed to the attack having place several times in day. The information from CERT (Computer Emergency Response Team) shows the distribution of an amount of the incidents registered in Internet coupled to a network attacks on years since 1988 (6 incidents) till today (137.529 incidents in 2003) [http://www.cert.org]. In total 319.992 cases of network attacks have been fixed during this period. The figure 1 presents this distribution.

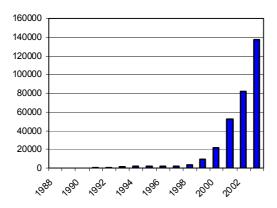


Fig. 1. Distribution of an incidents amount on years

The analysis of the literature shows that today there is no the uniform system permitting to

classify possible network attacks. There is a lot of classifications not coupled with each other. In [1] a successful trying to realize systematization of all classifications is made. The brief characteristic of this classification is made in [2].

Before to proceed to the network protocols vulnerabilities reviewing we shall mark that all structures of Internet attacks are shown in this paper very schematically and they cannot be used by malefactors for a realization of real attacks. We use below only public data.

On the other hand, it is necessary to remember ancient wisdom – "who is informed that is armed". In this context the vulnerabilities network protocols knowledge allows users to be ready for any sort of attacks in the web.

Historically the basic network ideas came on 70 - 80th years of past century when it was not given the due attention to the questions of a network safety. The result is that practically all network protocols of OND/IP version 4 are vulnerable for attacks.

We shall examine now the basic types of network attacks.

Ethernet technology using in the LAN (Local Area Networks) uses the common bus topology. It means, that any information circulating on a one segment level can be intercepted and analyzed by any host of this segment. This property can be used by attacking host to pick up a confidential information from an attack victim host. This attack is classified as passive attack [2]. FTP and TELNET protocols are sensible to this attack type because they transmit an information without use of a cryptographic coding.

Another type of attack consists in the substitution of some network subject by another one. In this case when an attacking node sends to the victim a queries on behalf of another subject.

There are two possibilities of the organization of this type attacks. At first, the attacking node realizes the commands on behalf of a control network node, for example, on behalf of the server or of the router. Second, it is the attack realized through the virtual channel established by the TCP protocol. In this case the attacking node substitutes one of the trusted subject of a network. The structure of the ARP false server attack (Address Resolution Protocol) is presented by the figure 2 on the Message Sequence Charts (MSCs) form.

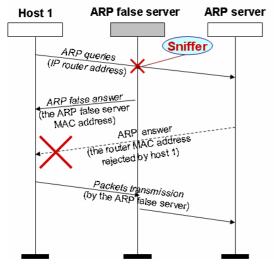


Fig. 2. Structure of the ARP false server attack

The main objective of this attack is to introduce the ARP false server between a host 1 and the real ARP server. As result, the transmitted information can be intercepted or forged by ARP false server.

The DNS server (Domain Name System) is used for transformation of a domain name to the IP-address. The basic vulnerability of the DNS server consist in the use of the UDP protocol (User Datagram Protocol) which is not protected against attacks.

There are some possibilities to realize a DNS attack. The figure 3 presents an example of the DNS false server attack structure.

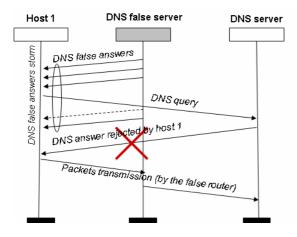


Fig. 3. Structure of the DNS false server attack

The malefactor connects the both nodes through the false router which address was received from the DNS false server. Thus the malefactor intercepts a link. Further all information exchange between hosts will be carried out through the false router, i.e. through the malefactor.

The routing on the network is carried out by such protocols as RIP, OSPF, etc., and the control of a routing is realized by protocols of ICMP family. In a case when a packet cannot be supplied to the destination node because of problems in a web the initial router receives a recommendation to redirect the route. A malefactor can take advantage and replace in the routing table the information concerning a default router. In this case we have the false router attack.

So, we stop our examination of the attack examples end we go on to the question concerning a perspectives of the network safety.

Today the Ethernet technology using a common bus topology is widely applied. Thus all hosts of the same segment have a possibility to gain any information circulating on a common bus. So, the malefactor can use a "sniffer" to intercept a confidential information.

Using a dedicated line segment topology permits to avoid this type of attack. In this case each host of segment should have a proper connection line with each host of the same segment. At the same time, the given structure has no property of flexibility and it is a bounded problem solution.

Other solution is the use of the network switch which connects all hosts of a segment by a dedicated lines. But for all that, in this case the main principle of a network construction survivability is broken. I.e. if switch goes out of operation or is exposed to attack the functioning of all segment will be broken.

Another perspective to protect information in the web consist in the using of special Internet protocols of new generation. First of all we shall mark that the most protected protocol now is the TCP protocol. The initial TCP connection stage - handshake allows to lower considerably a possibility of attack but does not eliminates it completely [3]. Only use of special encryption methods allows to solve this problem practically. For this purpose it is possible to use the SSL standard (Secure Socket Layer). It is the information encoding algorithm using the open key based on the Diffie - Hellman method [1].

This idea is embodied in the protocol stack of new generation TCP/IPv6. The formation of a cryptographic context is presented in the fig. 4.

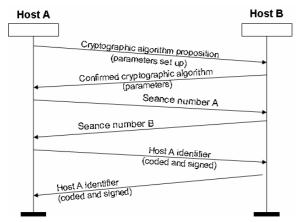


Fig. 4. The TCP/IPv6 cryptographic context formation

So, the use of a TCP/IPv6 stack protocols allows to lower a possibility of a network attacks.

Concerning a problem of routing attacks we note that this type of attacks is based on a IP address

falsification of a host sending a packet. For solve this problem each router should test the IP address of the initial host and associate it with an appropriate subnet address. They must correspond each other. But in this case there is a problem of the packet header representation.

We shall mark that network safety contradicts always such web parameters as functionality, accessibility, velocity, etc. Therefore, before to undertake a safety measures it is necessary to determine the necessity level to guard the available information in each concrete case. It may be a price of the undertaken gains above a value of the defended information.

So, the present paper attempts to generalize the available information about the network safety and to show the development paths of this research area.

References: 1. *I. Medvedovsky, etc.* Attack against Internet DMK. 1999. **2.** *V. Nemchenko, A. Schaff.* Vulnerabilities and test of Internet protocols / Radioelectronika i Informatika. 2003, No.3, p. 194-195. **3.** Technical details of the attack described by Markoff in NIT. San Diego Supercomputer Center. 1995.

ELECTRICAL TEST IS NOT ENOUGH FOR QUALITY

BENGT MAGNHAGEN

JONKOPINGUNIVERSITY, SWEDEN

bengt.magnhagen@ing.hj.se

Electrical test means Functional Test (FT), In Circuit Test (ICT) or Boundary Scan Test (BST) or even a combination of these technologies. However, with modern technology, like SMD (Surface Mounted Devices) technology, BGA (Ball Grid Array) components and extremely small component dimensions, electrical test alone does not meet the quality requierments. Electrical test can not identify bad soldering and bad alignment of components, as examples. Missing decoupling capacitors and so on can not be detected because of it is hard to get physical access for testprobes. Do not forget that digital designs contains a lot of analogue devices!

The tutorial will discuss today test technology with equipment for ICT and BST as well as its pros and cons. And as the addition of this, Inspection. Inspection has traditonally been performed manually but this is not realistic today with board crowded by components. Today Inspection is performed by machine vision. Optical technique named Automated Optical Inspection (AOI) and more advanced X-ray inspection (AXI). AOI and AXI is not the future, it is here today.

EMC/EMI is also a growing challenge and some new ideas will be discussed how to test for these phenomenas.

Підписано до дру* у 9.09.т004. Формат 60*84¹/_«.

Умов. дру*. ар*. ууи4. Облі*.-вид. ар*. у0и0. Зам. № т-875. Тираж №0 прим. Віддру*овано в навчальнофнау*овому видавничофполіграфічному центрі ХНУРЕ. 6№6иХар*івипросп. Ленінаи№.