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Abstract—Reflection and transmission coefficients for one-
dimensional magnetophotonic crystal with a bilayer unit cell are 
obtained in analytical form. The bilayer consists of arbitrary 
gyrotropic media. Analytical dispersion equation for gyrotropic 
multilayer periodic structure is obtained. Different regimes of 
bulk and surface wave’s propagation in structure layers are 
investigated. System parameters values that correspond to both 
total reflection and total transmission by gyrotropic Bragg 
structure are found. The possibility of band structure controlling 
with an external magnetic field is shown. 
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I.  INTRODUCTION 

Photonic crystals allow controlling light properties and 
shown promising possibilities for development of novel 
integrated optical devices. Many practical applications of the 
photonic crystal structures based on their unique spectral 
properties which are specified by band gap presence [1]. 
Applications of the electrically and magnetically controllable 
materials in photonic crystals significantly extend the 
functionality of the optical devices.  Inclusion of liquid 
crystals and magnetooptical materials provides the additional 
possibilities of the control the flow of light [2-9].  

When the magnetic materials introduced into photonic 
crystal, the consequent structure is identified as 
magnetophotonic crystal [10, 11]. Such structures have found 
many applications in the optical communications and other 
practical areas. Namely, magnetophotonic crystals are used for 
development of optical isolator/circulator devices [12], 
magneto-optic spatial light modulators [13], unidirectional 
photonic crystal devices [14] etc. Widening of the 
magnetophotonic crystal applications requires further 

experimental and theoretical investigations of the 
electromagnetic waves interaction with artificial periodic 
structures that consist of gyrotropic elements. 

In this report the scattering of the plane wave on the one-
dimensional magnetophotonic crystal (Bragg structure) is 
considered for general case of arbitrary gyrotropy (ferrite or 
plasma media). 

II. STATEMENT AND SOLUTION OF THE PROBLEM 

In the present work, we study the scattering of a plain E-
polarized wave, which is falling on a Bragg gyrotropic 
reflector. The reflector consists of N periods of bilayer 
gyrotropic media and additional layer (Fig. 1). We consider 
that in every region the media differs by the constitutive 
parameters and geometrical dimensions. As one can see from 
the figure, there are three regions: region before the reflector, 
region after the reflector, and the reflector itself. To define the 
reflection and transmission coefficients of the incident plain 
wave on the Bragg reflector, one should consider sequentially 
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Fig. 1.  The model of a gyrotropic Bragg structure. 
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three tasks. In the first task, one needs to find the relation 
between the field coefficients in the region before the reflector 
and the field coefficients in the first layer of the Bragg 
reflector. In the second task, one needs to find the relation 
between the first and the last layer of the Bragg structure. 
Finally, in the third task, one needs to find the relation 
between the last layer of the reflector and the field coefficients 
after the reflector. 

We study wave’s propagation in a stratified bilayer 
periodic structure with gyrotropic layers (one-dimensional 
magnetophotonic crystal) (Fig. 1). Every of two layers on the 
structure period l a b   is anisotropic media (plasma or 
ferrite or their combinations) with dielectric and magnetic 
permeabilities characterized by tensor values of standard form 
with constitutive parameters j


, j


 ( 1,  2j  ). 

The tensors of dielectric j


 and magnetic j


 

permeabilities have the following form [15]: 
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For the plasma medium, the value of the permittivity j


 is 

tensor, while the value of the magnetic permeability j  is 

scalar. Such media are called electrically-gyrotropic. In case 
of ferrite medium, the other way around, the value of the 
magnetic permeability j


 is tensor, while the permittivity   

is scalar. Such media are called magnetically-gyrotropic. If the 
dielectric and magnetic permeabilities of the media are both 
described by the tensors (1), then such media is called 
gyrotropic. The constitutive parameters, which are included in 
the tensors of dielectric j


and magnetic j


 permeabilities, 

are defined by the value of the external controlling magnetic 
field 0 0 0H z H

 
. The study of the general case of gyrotropic 

media with constitutive parameters (1) is reasonable, first of 
all, because it enables us to use the principle of permutation 
duality [15], when relations E H

 
,   
 

 are satisfied, 
to obtain main equation for fields and characteristic equations. 
It follows directly from the Maxwell equations. 

It is well known [15], that there are two independent 
Maxwell equations solutions, two types of waves – zH  (TE) 

waves and zE  (TM) waves in case of two-dimensional 

gyrotropic media  0z   . 

The electromagnetic waves for TE waves ( zH - 

polarization) and TM waves ( zE - polarization) are described 
by two independent solutions of Helmholtz equation, obtained 
directly from Maxwell equations: 
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Relations (3) and (5) are obtained from Maxwell equations 
taking into account the tensor form (1) of magnetic j


 and 

electric j


 permeabilities. They are used for finding the 

tangential components of electromagnetic field in every layer 
of the gyrotropic periodic media. 

As one can simply notice, the Helmholtz solutions (2), (4) 
are interchangeable, if we replace zH  with zE  and 
correspondently replace of all the permittivities   with the 
magnetic permeabilities (  ), and vice-versa. So taking into 
account the principle of permutation duality for fields, the 
further investigation can be done only for one of the described 
above types of waves. Here we describe only zE  polarization 
(TM waves). For TE waves we use the principle of 
permutation duality. 

A. The first task 

To complete the first task, we write solution of the 
Helmholtz equation (4) for the region before the multilayer 
structure and the first layer of the Bragg reflector: 

 
 

0 0

0 0

0 0 0

0 0 00

0

( , ) ,           

( , ) ,

i x i x i y
z

i x i x i y
y

E x y a e b e e

H x y a e b e e
k

  

  






 

 




 1 1

1

1

1
0 0

1
0 1

11

1 1
0 1

1

( , ) ,  

1
( , ) ,

i x i x i y
z

i xa

i y
y

i xa

E x y a e b e e

a i e

H x y e
k

b i e

  







 


  




 

 

  
   

            



The boundary conditions for tangential components lead to 
the following matrix equation: 
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Using the inverse matrix and the rule of matrices 
multiplication, one can obtain the following matrix equation 

for column vector 
0
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a

b
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where matrix elements ijn  are defined by the expressions 

obtained by matrices multiplication according to the definition 
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B. The second task 

Using obtained results, one can connect unknown 
coefficients for electromagnetic fields in the first and the last 
layers of the reflector, namely 
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is unimodular matrix. For unimodular matrices the following 
identity should be satisfied: 
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and K  is Bloch wave number which is defined by the 
characteristic equation for infinite periodical structure [16,17], 
namely: 
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Elements of the transmission matrix ABCD  for the 
periodic gyromagnetic structure have the following form: 
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The important property of ABCD  matrix is the 
unimodularity, when between the elements of matrix we have 
equality: 1AD BC  . Using the expressions for matrix 
elements ABCD  one can show that this condition is satisfied. 
Note, that when 2 2 2

1 1 1 0k      , 1  is a real number, 

A D  and B C  as follows from the matrix elements. 

Elements of matrix M  can be calculated numerically by 
multiplication of matrix ABCD  or analytically from 
Chebyshev polynomial NU . Using the property of inversed 
matrices one can also find: 
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If the number of periods is fixed (N), then in the equations 
we need to replace index n  with N. 

C. The third task 

Here we study the task of the field scattering of the 
interface of the reflector last layer with the external media. 

The electric and magnetic fields in the last layer of the 
gyrotropic Bragg structure: 



1 1( , ) ,                  

1 1
1

1 1
( , ) .

1 1 1
1

1

i x Nl i x Nl i yNE x y a e b e ez N N

i x Nlaa i eN
i yNH x y ey k i x Nlab i eN

      
   

  
 

  
 

   
   
 

   
   

    
         

    

  

 
 

 
  

 




We present field in the media after the Bragg reflector in 
the following way: 
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The boundary conditions for the tangential components of 
the field lead to the following matrix equations for unknown 
field coefficients in this region: 

1 1

1 1

3
3

1 1

1 1

3 3

3
3

1 1

1 1

1 1

1 1

               

N

a a
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i b
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 

        
 

           (21) 

This equation can be transformed into matrix equation of a 
standard type: 

311 12

321 22

N

N

a ak k

b bk k

    
    
    

,                           (22) 

where 

1 1
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3
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3
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 



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Since in media « 3 » after the reflector, there are no 
reflected waves, then 3 0b   and equation (22) takes the form: 

11 12 113
3

21 22 210
N

N

a k k ka
a

b k k k

      
       

     


Finally one can write matrix equation, which represents the 
scattering of initial plain wave on the Bragg reflector, using 
equations (10), (15) and (23), namely  

11
0

11 12

2

12 11
30

21 1 2 1222 2

M Mn n ka
a

n n kb M M

 


     
     
    


 



From this matrix equation one can simply find the 
reflection and transmission coefficients for a plain wave 
incident on the Bragg reflector from the media « 0 », namely: 
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, (25) 
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The obtained expressions can be used both for electrically-

gyrotropic and magnetically-gyrotropic media. 

III. ANALYSIS OF RESULTS 

As the analysis shows, for such structures there are 
transmission and forbidden bands, which can be controlled by 
the applied magnetic field. A number of variants of dispersion 
curves are found. Depending on the problem parameters, in 
the structure one can find both fast bulk waves and slow 
surface waves on the layers interfaces, and also their 
combinations in every single layer. The solutions for fast 
waves are defined by the conditions 2 2

2 2k     and 
2 2

1 1k     for corresponding layer. To define conditions for 
slow waves, one should reverse the sings in the inequalities 
into the opposite. 

Fig. 2 shows an example of dispersion diagrams – the 
projection of function ( , )K k   on the plane ( ,k  ) in three-
dimensional wave number space. The shadowed regions 
correspond to the transmission bands, while light regions 
correspond to the forbidden bands. Fig. 2 shows dispersion 
characteristics of magnetophotonic crystal, when both layers 
on the period are anisotropic ferrite media. As one can notice, 

Fig. 2. Dispersion characteristics of a magnetophotonic 
crystal with two ferrite layers. 
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in this case with different width of each of the layers one can 
considerably change the width of the forbidden region and 
control its position in the dispersion diagram. 

Fig. 3 and Fig. 4 show spectral dependencies of reflection 
and transmission coefficients for Bragg ferrite crystal. In this 
case structure consists five periods. Calculations are 
performed for such parameters: 1 2 1   ; 1 1.5  ; 

1 1.0a  ; 2 4  ; 2 5.18a  . The analysis shows that there 
are frequency regions of total transmission and reflection. 
Their width and position can be controlled with dc magnetic 
field. 

IV. CONCLUSIONS 

The analytical expressions for reflection and transmission 
coefficients of a plain wave in the one-dimensional 
magnetophotonic crystal are found. The dispersion equation 

and its solutions are obtained. It is shown that there are 
different regimes – fast bulk waves, slow bulk and surface 
waves, and their combinations depending on the problem 
parameters. In addition, we found frequency regions of total 
transmission and reflection on the spectral characteristics. 
Width and position of these regions can be controlled by 
means of the external dc magnetic field. 
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Fig. 3. The dependence of reflection coefficient 
modulus on the frequency parameter. 
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Fig. 4. The dependence of transmission coefficient 
modulus on the frequency parameter. 


