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Abstract– Active anterior rhinomanometry is important 

method for diagnosis of rhinological disorders. This 

paper presents the new approach for feature extraction 

based on chaos theory for tasks of rhinology. It has been 

demonstrated that rhinomanometric signals have a 

fractal properties. The usage of phase space diagram for 

feature extraction for rhinomanometric data was 

proposed.  
Keywords—Biomedical signals, Rhinomanometry, Hurst 

parameter, Feature extraction, Classification. 

I. INTRODUCTION 

Patients with diseases of the nose and paranasal sinuses 

in most cases have nasal obstruction. A lot of pathologies 

relate to nasal obstruction. There are sinusitis, rhinitis, 

rhinosinusitis and others. For example, sinusitis can be 

divided into many different categories [1, 2].  Such 

Rhinology disorders have a wide range of symptoms. 

Medical data are complex, with low accuracy. Internal 

dependences are hidden, their distributions are often not 

known. 

Medical diagnosis in rhinology is very complex process. 

There is a wide variety of methods for evaluating the 

parameters of nasal breathing. There are acoustic 

rhinometry, rhinomanometry, peak nasal flow, nasal 

spirometry and other. An overview of objective measures 

for functional diagnostics of nasal breathing is given in [3]. 

Rhinomanometry is one of the most widely used methods of 

objective evaluating of nasal breathing function [4]. In work 

[5] the spectral parameters derived from sound signal of 

nasal breathing. They were used for obstruction 

identification. Logistic regression, linear and piecewise 

linear regression were used to identify relationship between 

clinical symptoms, nasal resistance coefficients and 

anthropometric data of patients [6]. All of these methods 

have common disadvantage: lack of objective criteria for 

differential diagnosis of rhinological pathologies. 

In recent years, there has been a dramatic increase in the 

use of computation-intensive methods to analyze 

biomedical signals. The general approach falls under the 

methods of artificial intelligence or machine learning for 

decision-making in medicine. Such methods require a 

dataset of significant features that will be fully 

representative of underlying biological processes.  

Rhinomanometric signals are time series data. In this case 

the data scientists usually use two approaches: analysis of 

global integral statistical properties of signals or analysis of 

significant parts of signal [7]. The probabilistic-statistical 

methods for diagnosis of nasal breathing are not suitable 

because the law of the distribution of the test data is not 

determined [6].  

 In paper [8] the study was conducted on features which 

could be derived from airflow waveform. This study 

analyzed flow patterns for identifying of patients with 

abnormal spirometry. The method of fuzzy approximation 

based on F-transform for preprocessing of rhinomanometric 

signals was used for feature extraction [9].  

However, physiological processes are all nonstationary 

and highly nonlinear. The study of biomedical processes, 

which are heavily depended on observations, is crucially 

important for analysis. The usage of highly sensitive sensors 

is always associated with the registration of noises. 

Preprocessing stage is necessary to informative features of 

signals extraction. Also the ‘’hidden information” in time 

series can be generated by complex biological systems. 

Loss of complexity may be a generic, defining feature of 

pathologic dynamics and the basis of new diagnostic, 

prognostic, and therapeutic approaches [10]. It’s very 

important to find the criteria derived from the data itself. 

Applications of nonlinear signal processing methods 

allow analyzing test results in decision support for variety 

of illness. The list of applications includes automated 

electrocardiogram (ECG) or electroencephalogram (EEG) 

analysis for cardiovascular or neurological disorder 

diagnosis [11, 12].  Several techniques using non-linear 

chaos features of the signal have been proposed for 

classification [13, 14]. 

. 

II. MATERIALS AND METHODS 

Rhinomanometric data are the result of the measurement 

according to active anterior rhinomanometry (AAR) 

method. This method is based on simultaneous registration 

of two parameters: differential pressure p  and an airflow 

rate Q  through a nasal cavity. Rhinomanometric data were 

recorded by a system for rhinomanometric measurements 

[15]. The measurements result are the values of the 
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differential pressure p  [Pa] and the airflow rate Q  [cm
3
/s 

] on a time t [s], presented in Fig.1. 

 

Fig.1.The dependence of pressure and airflow rate on a time 

 

A. Fractal properties of rhinomanometric signals 

Rhinomanometric signals are quasi periodic, 

nonstationary and nonlinear. In work [16] several chaotic 

properties of rhinomanometric signals were investigated.  

The main properties of a chaotic system are aperiodicity, 

determinism, confinement and sensitive dependence on 

initial conditions. For additional validation of existence of 

fractal properties of signals, we propose a calculation of 

Hurst parameter and fractal dimension. Hurst parameter is 

suggested as a measure of the degree of self-similarity of a 

data series because it allows the evaluation of the bursty 

nature of a data [17]. For calculation we use (1). 

 

 








 












2
log

S

R
log

H , (1) 

where R – delta between maximal and minimal values of 

deviation ),t(X  ,   - is amount of elements of time series. 

Deviation ),t(X  is calculated using 

 





t

1u

,y)u(y),t(X The mean value 


y  is defined 

by: 

,)t(y
1

y

1t





 
  

where   ,y)t(y
1

S

1t

2









 where parameter t  has  

discrete integer values. Fractal dimension is calculated 

using (2): 

 

 H2D   (2) 

 

Parameter D depends on the number of elements of the 

series, so we have used an amount of elements equal to 

10000 and above [18]. Processed dataset contains 1076 

measurements of rhinomanometric signals. Result of 

calculation is within the range of [0.16,0.20]  and the range 

of [1.80,1.84] for H and D respectively. If 

)D,H(P  belongs to this range, the rhinomanometric 

signals will have a fractal properties and will be anti-

persistent. 

 

B. Phase Space Reconstruction method 

Phase space reconstruction is a standard procedure when 

analyzing chaotic systems. It shows the trajectory of the 

system in time. The phase space diagram of the 

rhinomanometric signal is constructed as follows [19]: the 

differential function t/xx   is plotted on the Y-axis, 

and the original function x   - on the X-axis of the phase 

plane. Phase diagrams for norm and septal deviation are 

shown in Fig. 2, 3. 

   
Fig.2.The phase diagram of pressure for ‘norm’ 

 

 
Fig.3.The phase diagram of pressure for ‘septal deviation’ 

 

 

Processing and analysis of this data have one problem 

related with nature and technology of data receiving – 

amount of points in the source data differs for each 

measurement. We propose solution of this problem. 
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Let Ni ..1 , where N  - amount of calculated values of 

phase diagram.  

Represent each point with coordinates  ii yx ,  of the 

shape as a complex number 

jyxz iii  , 

where ix as real part and iy as imaginary part.  

We will apply Discrete Fourier transform (DFT) to the 

vector NzzZ ...1  using method from [20] 

As result we will receive components  

],...,,[ 110  NFFFF  

Let the K  - count of pairs of Fourie components F , 

which will be used in reduced Fourie component list rF  

],,...,,...,,[ 12210  NNKNKr FFFFFFFF  

If we perform Inverse Discrete Fourie Trasform (IDFT) 

to this reduced components list, we will receive 

approximated representation of the phase space diagram. It 

allows making visualization which could be useful in 

exploratory analysis of the data. 

Also, we apply scale normalization, using approach 

represented in [21] 
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Sample of visualization for the 40 Fourie components 

using IDFT is shown in Fig. 4 

 

 
Fig. 4. Approximated phase diagram (bold line) and 

source phase diagram (thin line). 

 

Using this approach we can receive fixed count of 

features ( rF ) invariant to scale, which can be passed to 

supervised learning algorithms which have restriction for 

fixed count of input values. 

Also, usage of restricted amount of Fourie components 

allows doing decrease level of hi-frequency noise in phase 

diagram. 

In this preprocessing method K  shows how many Fourie 

components will be selected. Approximation result will be  

smooth or more close to initial data depends on value of the 

K  variable. This value is discreet. Selection of this value 

should be preformed to receive best learning values using 

learn/test/validation data set. For current research best K  

value is 43.  

This processing method should be applied to the both 

differential pressure and airflow rate. 

III. EXPEREMENTS AND RESULTS 

We have used the data set with rhinomanometric signals. 

The signals have been collected from database of complex 

for objective evaluating of nasal breathing “Optimus”. Each 

measurement stores information about differential pressure 

and airflow rate. Amount of elements in data set is 1076 

measurements, which were classified by otolaryngologists 

to the ‘norm’ and ‘deviation’ classes. 

The classifiers implemented in this research were Support 

Vector Machine (SVM) [22] and Random Forest Approach  

(RF) [23]. Set of features consists of approximated phase 

diagrams. For each classification method the set of features 

has been performed such that the optimal classification 

results are achieved. 

Learning set takes 85% from all measurement numbers, 

test set takes 15% from all measurement numbers. Best K 

value was selected equal to 43. Error rates for different 

learning methods are shown in Tabl.1. 

 

TABLE I.  ERROR RATES FOR DIFFERENT LEARNING METHODS 

K 
Learning Test 

RF SVM RF SVM 

43 95,6 96,4 11,8 11,7 

 

IV. CONCLUSION 

The paper demonstrates the potential of using the methods 

of nonlinear dynamics for processing of time series in 

biomedicine. The phase space diagram to finding significant 

features of rhinomanometric signals approach was 

proposed. Approach is based on DFT for generation of fixed 

amount of initial features of rhinomanometric signals. 

Supervised learning algorithms SVM and RF were used for 

classification on two classes ‘norm’ and ‘pathology’: The 

best value of K is equal to 43. Future investigation can be 

related with usage of methods of signal approximation.   
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