
Abstract — The mobile agent approach is a relatively new
concept in the distributed systems environment. The agents
migrate from Client to server in a network where the state of
the running program is saved, transported to the new host,
and are stored, allowing the program to continue from the
point where it stopped. In this paper, we evaluate the
performance of the JADE and Aglet mobile agents. We
developed a simulation program to evaluate the performance
of the two mobile agents using the Encryption time,
Decryption time and file transfer time. Our findings revealed
that there is no significant difference between the
performances of these two mobile agents using the parameters
mentioned before.

Index Terms — Aglets, Decryption, Encryption, JADE,
Mobile Agent.

I. INTRODUCTION

OBILE agents are autonomous programs that move
about the network on behalf of their owners while

searching for information or even negotiating with other
agents. Mobile agents can also be defined as those agents
that possess the characteristics of mobility. This means that
the agents have the ability to migrate from one host
computer to another. This may seem like a trivial
characteristic, but the advantages to mobility are both subtle
and important. Mobile agents are also known as programs
that are able to migrate in a network in order to optimize
their consumption of resources, such as network bandwidth,
or to adapt to a changing environment.

A mobile agent migrates from one Host to another Host
where the data is sourced. This agent could be a control

Manuscript received November 18, 2010. Performance evaluation of
AGLETS and JADE mobile agent using encryption and decryption time.

Dada E. G. is with the Department of Computer Engineering, University
of Maiduguri, Nigeria (e-mail: gbengadada2004@ yahoo.com).

Joseph S. B. is with the Department of Computer Engineering,
University of Maiduguri, Nigeria (e-mail: sjbassi74@ yahoo.co.uk).

M. K. Mishra is with the Department of Computer Engineering,
University of Maiduguri,Borno State,Nigeria, (Corresponding author
phone: +234-8065578635 e-mail: mishrasoft1@gmail.com).

system (in the simplest case, a thermostat), that reads the
source data and then interacts with the system to make
adjustments. In this model, the mobile agent interacts with
the data collection agent at the source. Moreover, the agent
could collect and filter data, and then return to the original
host. This type of agent could be useful in situations where
full-time connections are not always practically possible
(such as satellites in low-earth orbit).

The advent of mobile agents’ technology attracts a lot of
interest from the fields of distributed systems, information
retrieval, electronic commerce and artificial intelligence.
The emergence of Java, with its support for mobile code,
led to heightened research activity in this area. Java is the
language of choice for mobile agent systems such as
Concordia, JADE, Odyssey, Aglets, Tracy and Voyager.
Java also supports development of mobile agents that are
tightly integrated with the Web [1].

Mobile agents have been used in a variety of applications
including process control and network monitoring. Network
monitoring is an ideal application for mobile agents. An
agent is provided details of data collection, and then
disbursed into a network. The agent collects data, and either
communicates the data back to a central server, or migrates
back to itself with its data. Process control is another
interesting application. Instead of purely collecting data
from remote servers, the agents must also monitor and
control the devices to which they’re attached. Prior to
migrating, the agents can be configured for their particular
destination. From this perspective, mobile agents are an
interesting deployment method for distributed systems.

II. MOBILE AGENT ARCHITECTURE

The mobile agent architectural pattern introduces the
ability for agents to migrate themselves between hosts. The
agent architecture includes the mobility element, which
allows an agent to migrate from one host to another. An
agent can migrate to any host that implements the mobile
framework. The mobile agent framework provides a
protocol that permits communication between hosts for
agent migration. This framework also requires some kind of
authentication and security, to avoid a mobile agent

Performance Evaluation of AGLETS and
JADE Mobile Agent Using Encryption and

Decryption Time

Dada E. G., Joseph S. B., and M. K. Mishra

M

16 R&I, 2010, N4

framework from becoming a conduit for viruses. Also
implicit in the mobile agent framework is a means for
discovery. For example, which hosts are available for
migration, and what services do they provide?
Communication is also implicit, as agents can communicate
with one another on a host, or across hosts in preparation
for migration. The mobile agent architecture is
advantageous as it supports the development of intelligent
distributed systems that is dynamic, and whose
configuration and loading is defined by the agents
themselves (see Figure 1).

A. Technical Obstacles in the Development of Mobile

Agents

The Mobile agent paradigm is a promising technology

and a new method of communication amongst network
nodes. Despite a number of successful mobile agent
applications, still there are some barriers preventing this
technology from spreading out to a wider range of
enterprise and individual users. This is due to many reasons
such as, lack of standard in both software and hardware
products (e.g. programming languages, protocols and
devices). To overcome this, a number of initiatives are
underway which may help developers in building their
applications based on mobile agent technology as in [3].

Researchers and the developers also find it difficult to
define the real concept of mobile agent technology and the

tasks that Mobile Agent should
perform is another contributing
problem. Furthermore, the current
infrastructure is not ready to support
and integrate with mobile agent
technology. Another major concern
made by researchers is the security
issue, for example, when using MAs
whether in E-commerce or M-
commerce fields, to act on behalf of
their users to handle transactions over
the net.

Other unresolved issues include
privacy, trust and integrity. Privacy is
lost since the agent must have access
to the user profile, which may contain
sensitive information about the user,

and may be shared with other agents in the working
environment. In addition, this information may be modified
during the transaction (by a hacker for example).

TABLE I
TECHNICAL IMPLICATIONS OF MOBILE AGENTS

Technical Issue Implication for Mobile Agents

Bandwidth

MAs conserve bandwidth, especially for networks which have low bandwidth capacity (e.g. wireless network). By
replacing continuous communication with an agent directly at the point of information generation, the bandwidth
use can be reduced. Instead of sending dozens or even hundreds of queries across the network, sending one agent
on a single request the agent can manage this process locally at the remote side.

Fault-tolerance
MAs can act or respond on errors that may be encountered within their contexts because of their adaptive and
ragged attributes.

Flexibility
MAs can give greater flexibility, because new tasks and codes can be added to the system without the need for a
fixed code-base.

Interaction Mobile agents enable new types of interaction, such as negotiating agents that travel to vendors’ sites/servers
seeking for the best deal such as comparing prices (e.g. e-commerce application).

Protocols
MAs are able to move (relocate itself) to remote hosts in order to establish "channels" based on proprietary
protocols.

Scalability MAs can carry out their function well (without disruption) when the host system or environment changes in size or
volume in order to meet a new user’s need.

Self-contained tasks
MAs can carry out tasks which require variable degrees of independence such as, network management, software
updates, etc.

Weak coverage
MAs fit perfectly into a disconnected environment where the signal coverage is frequently lost

(being disconnected); MAs will then migrate from one node to another when the coverage becomes
available.

Agent Migration
 Protocol

Agent Agent

Agent

Mobile Agent
Framework

Sensors Actuators

Environment

Agent Agent

Agent

Mobile Agent
Framework

Sensors Actuators

Environment

Fig. 1. The mobile agent framework supports agent mobility [5]

R&I, 2010, N4 17

These issues are trivial but it has to be considered in the
mobile agent applications. In other words, MAs need to be
protected against hosts, and hosts need to be protected
against MAs. In summary, the Table I briefly explains the
implications of using MAs for 8 identified significant
technical issues.

B. JADE

Java Agent DEvelopment Framework (JADE) is a
software framework originally developed by TILAB, Italy
and it is totally written in Java. It is an enabling technology,
a middleware for the development and run-time execution
of peer-to-peer applications which are based on the agents’
paradigm. It also simplifies the implementation of multi-
agent systems through a middleware that complies with the
Foundation for Intelligent Physical Agents (FIPA)
specifications. The agent platform can be distributed across
machines (which not even need to share the same OS) and
the configuration can be controlled via a remote GUI. The
configuration can be even changed at run-time by moving
agents from one machine to another one, as and when
required.

The conceptual model of JADE
dwells mainly on distributed system
topology with peer-to-peer
networking, and software component
architecture with agent paradigm. The
network topology affects how the
various components are linked
together, whereas the component
architecture specifies what the
components are supposed to expect
from one another. The intelligence,
initiative, information, resources and
control are fully distributed on mobile
terminals as well as on computers in
the fixed network. Agents otherwise
called “peer” evolve dynamically in JADE, appearing and
disappearing in the system according to the needs and the
requirements of the application environment.
Communication between the peers, regardless of whether
they are running in the wireless or wired network, is
completely symmetric with each peer being able to play
both the initiator and the responder role.

The development of JADE according to [4] is based on
the following driving principles:

Interoperability: JADE is compliant with the FIPA
specifications. As a consequence, JADE agents can
interoperate with other agents, provided that they comply
with the same standard.

Uniformity and portability: JADE provides a
homogeneous set of APIs that are independent from the
underlying network and Java version. More in details, the
JADE run-time provides the same APIs both for the J2EE,

J2SE and J2ME environment. In theory, application
developers could decide the Java run-time environment at
deploy-time.

Easy to use: The complexity of the middleware is hidden
behind a simple and intuitive set of APIs.

Pay-as-you-go philosophy: Programmers do not need to
use all the features provided by the middleware. Features
that are not used do not require programmers to know
anything about them; neither do they add any computational
overhead.

Architectural Model: JADE includes both the libraries
(i.e. the Java classes) required to develop application agents
and the run-time environment that provides the basic
services and that must be active on the device before agents
can be executed. Each instance of the JADE run-time is
called container (since it “contains” agents). The set of all
containers is called platform and provides a homogeneous
layer that hides to agents (and to application developers
also) the complexity and the diversity of the underlying
tires (hardware, operating systems, types of network, JVM).

As seen in Figure 2, JADE is compatible with the J2ME

CLDC/MIDP1.0 environment. It has already been tested on
the fields over the GPRS network with different mobile
terminals among which include Nokia 3650, Motorola
Accompli008, Siemens SX45, PalmVx, Compaq iPaq,
Psion5MX, HP Jornada 560. The JADE run-time memory
footprint, in a MIDP1.0 environment, is around 100 KB,
but can be further reduced until 50 KB using the ROMizing
technique i.e. compiling JADE together with the JVM.
JADE is extremely versatile and therefore, not only does it
fit the constraints of environments with limited resources,
but it has already been integrated into complex architectures
such as .NET or J2EE where JADE becomes a service to
execute multi-party proactive applications. The limited
memory footprint allows installing JADE on all mobile
phones provided that they are Java-enabled.

Fig. 2. JADE architectural model (Source: Bellifemine F., JADE a White Paper, Exp Journal)

18 R&I, 2010, N4

C. Aglets

 Aglet is a mobile Java object that visits aglet enabled
hosts in a computer network. It is autonomous, since it runs
in its own thread of execution after arriving at a host, and
reactive, because of its ability to respond to incoming
messages [2]. Aglet agent framework was designed by IBM
Tokyo in the 1990s. Aglets is based on the Java
programming language, as it is well suited for a mobile
agents framework. First, the applications are portable to any
system (both homogeneous and heterogeneous) that is
capable of running a Java Virtual Machine (JVM). Second,
a JVM is an ideal platform for migration services. Java
supports serialization, which is the aggregation of a Java
application’s program and data into a single object that is
restartable. In this case, the Java application is restarted on a
new JVM. Java also provides a secure environment
(sandbox) to ensure that a mobile agent framework doesn’t
become a virus distribution system [5].

The Aglets framework is shown in Figure 3.

At the bottom of the framework is the JVM (the virtual
machine that interprets the Java bytecodes). The agent
runtime environment and mobility protocol are next. The
mobility protocol, called Aglet Transport Protocol (or
ATP), provides the means to serialize agents and then
transport them to a host previously defined by the agent.
The agent API is at the top of the stack, which in usual Java
fashion provides a number of API classes that focus on
agent operation. Finally, there are the various agents that
operate on the framework. The agent API and runtime
environment provide a number of services that are central to
a mobile agent framework. Some of the more important
functions are agent management, communication, and
security. Agents must be able to register themselves on a
given host to enable communication from outside agents. In
order to support communication, security features must be
implemented to ensure that the agent has the authority to
execute on the framework. Aglets provides a number of

necessary characteristics for a mobile agent framework,
including mobility, communication, security, and
confidentiality. Aglets provide weak migration, in that the
agents can only migrate at arbitrary points within the code
(such as with the dispatch method).

III. DISCUSSION

We developed an application for the implementation of
two mobile agent systems on win32 platform that is,
windows XP SP2. Five dummy files whose size ranges
from 500kb to 1mb were created on the client system. The
results of the comparison encryption and decryption time
between Aglets and JADE can be view from the server. The
time is measured in milliseconds while the size of the files
is measured in bytes. From the experiments performed, it
was observed that there is difference in encryption and
decryption time between Aglets and JADE with the latter
giving a better performance than Aglets in all test cases.
The time difference was not much, it was also observed that
the time taken to encrypt, decrypt and transfer files
increases as the file sizes increases.

IV. ANALYSIS OF RESULTS

The Table II is a comparison between the encryption time
of each file from 500kb – 1mb for JADE and Aglets (see
Figure 4).

The Table III is a comparison between the decryption
time of each file from 500kb – 1mb for JADE and Aglets
(see Figure 5).

Agent

Agent Agent

Agent API

Agent
Runtime
Environment

Mobility
Protocol

Sensors

Java Virtual Machine

Environment

Actuators

Fig. 3. Aglets mobile agent architecture [5]

Fig. 4. Graph showing encryption time comparison between JADE and Aglets

TABLE II
ENCRYPTION TIME COMPARISON BETWEEN JADE AND

AGELETS

 Encryption Time (ms)

Size (kb) JADE Aglet
500 760 765
600 1681 1686
700 1700 1705
800 1761 1766
900 1971 1977
1000 2052 2058

R&I, 2010, N4 19

The Table IV shows the comparison of JADE and Aglet
in terms of the time it takes to send files from one computer
system to another one (see Figure 6).

It was observed from the Table IV that the rate at which
JADE transfers the encrypted files is to some extent faster
than that of Aglets.

V. CONCLUSION

The results obtained showed that there is only some
slight difference in performance between JADE and
Aglet in terms of Encryption time, Decryption time
and file transfer. The little differences could be due to
the fact that all information exchanged by JADE
complies with FIPA specification and hence include
only the information required by the transport layer
unlike Aglet that exchanges all data. Another factor is
that JADE support skeletons that are implemented as
abstract classes that relief the programmer the burden
of solving synchronization, timeouts and other
challenges. Also JADE uses the asynchronous method
of messaging, which puts the Agent Communication

Language (ACL) into consideration and supports multiple
agent execution and interaction. This makes it more
preferred in multi agent distributed environments. Aglets
use API for transfer of agent and RMI for exchange of
messages which is not in line with FIPA regulations that
JADE is using. Our future work will focus on using
memory utilization and fault tolerance to test the
performance of mobile agents across different platform.

REFERENCES

[1] Wong, D., Paciorek, N. and Moore D., “Java-based mobile agents,”
Communications of the ACM 42(3), 1999, pp. 92-105.
[2] Lange, D. B. and Oshima, M., “Programming and deploying Java
mobile agents with aglets,” Addison-Wesley, 1998.
[3] FIPA, “Foundation for intelligent physical agents”, 2004, URL:
http://www.fipa.org/
[4] Bellifemine, F., “JADE – a white paper. EXP. 3.3”, Retrieved October
1, 2010 from http://exp.telecomitalialab.com, , 2003
[5] Jones Tim M., “Artificial intelligence: A System Approach.,” Infinity
Science Press LLL, 2008.

TABLE IV
FILE TRANSMISSION TIME COMPARISON BETWEEN JADE

AND AGELETS

 Time taken to send files from one system
to another (ms)

Size (kb) JADE Aglet
500 169,337,778,715 169,337,778,713
600 169,337,778,775 169,337,778,773
700 169,337,779,790 169,337,779,788
800 169,337,780,037 169,337,780,034
900 169,337,780,318 169,337,780,315

1000 169,337,780,500 169,337,780,497

TABLE III
DECRYPTION TIME COMPARISON BETWEEN JADE AND AGELETS

 Decryption Time (ms)

Size (kb) JADE Aglet
500 302 300
600 455 451
700 510 504
800 612 1766
900 667 661
1000 730 731

Fig. 5. Graph showing decryption time comparison between JADE and Aglets

Fig. 6. Graph showing file transmission time comparison between JADE and Aglets

20 R&I, 2010, N4

