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Yu. Machehin, Doctor of Technical Science, Professor, 0. MauexiH, 1oKTop TexHiYHUX

Chief of Physical Foundations of Radioelectronics HayK, mpodecop, 3aBinyBau kadenpu
Department, Kharkov National University bi3MYHMX OCHOB pajioeneKTPOHIKY,
of Radioelectronics, XapkiBCcbKUIL HallioHaNbHWUI YHiBEpCUTET
Yu. Kurskoy, Candidate of Technical Science, pazioenexkTpoHiky,
Assistant Professor of Labor Protection, 10. Kypcbkon, KaHAUZAT TEXHIYHUX HAVK,
Standardization and Certification Department, noueHT Kadenpu oxopoHW Ipaui,
Ukrainian Engineering and Pedagogical Academy, cranpaptu3auii Ta ceprudikauii, Ykpainceka
Kharkov iHeHepHoO-IlefaroriyHa akanemis, M. Xapkis
This article is the first from Tpedcmabrena cmamms € neputoio i3 cepii
the group of publications about nybauxauiti, npucbauerux npuryunobo
new metrological tasks. The article HOBUM  Memporozivnum 3adavam. Y witl
contains the arguments for using 06zpynmobarna reobxiomicmo Guxopucmarnms
entropy analysis during creation EeHMPONILiHO20 anarizy Ors cmbopens
new specific approaches and models cneyiarvnux nidxodi6 i modereti arnarizy
for measurements in real-world pesyrvmami6 Gumiperv y pearvrux
nonlinear dynamical systems. The HeNHIIHUX OUHAMIMHUX CUCTHEMAX.
presenters offer special measurement 3anpononobarno moderi Gumiprobanns
model and measurement results i anarizybanns pesyromami6 Gumiperv
analysis model that based n00ydobani na ocrobuux npuryunax
on the main principles and concepts i noHAmMmMAX Mmeopii UHAMIUHO20 XAOCY
of dynamical chaos theory and fractal i ppaxmarvrux npedcmabrenmsx
representations of the real systems cmpyxmypu maxux cuctmem. Ilodaro
bebavior. The example of entropy NPUKAGD eHIMPONILIHO20 andAAi3y
analysis of measurement results pe3yrvmamil Gumipenns y HeATHIiHUX
in nonlinear dynamical systems Qunaminrux cucmemax. Iloxazaro, wo Yu. Machehin
is represented. It is shown that using 3acmocyBanns eHmponitino anaizy
entropy analysis will allow to use pesyrvmamib Gumiperv dozborumo
the modified Concept of expression Guxopucmamu moduixobary Konyenyiro
of uncertainty of measurements in Bupaxenns nebusnauenocmi Gumiprobanns
real-world, open, dissipative, chaotic 6 ymoBax Gioxpumux i ducunamubrux,
systems. XAOMUUHUX CUCTIEM.
Most of the real-world systems are open, dissipative and nonlinear dynami-
cal systems (NDS). The states of such systems are characterized by a group

of dynamical variables (DV) (X' (¢), X*(¢),..., X" (¢)) (generally for n-dimensional space). Yu. Kurskoy
© Machehin Yu., Kurskoy Yu., 2013 17
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The DVs values at any time ¢, relate to the initial va-
lues (X'(¢,)), X (¢,),..., X" (t,)) by the evolution func-
tion of dynamical system F [1]:

F(X'(t,), X2 (1)), X"(2,)) = (X' (1), X (), .0, X" (1))

In general case the DVs behavior during the time
can be regular or chaotic according to the NDS pro-
perties and their initial conditions.

Analysis of the measured quantity values of DVs
by the standpoints of the classical metrology ap-
proaches is possible only in case of regular or station-
ary behavior of system. If NDS behavior is classified
like the “dynamical chaos”, measurement, process and
analyze of the measured quantity values are able only
with using new methodological basis.

The classical models of measurement, process and
analyze of the measured quantity values are based
on two key physical positions:

e measured physical quantity can be represented
by a single value, the values of physical quantities
in transition or dynamical processes can be described
by mathematical equations, that also ensures the
uniqueness of the physical quantity value;

e physical quantities of systems are ergodicity va-
lues and, as a consequence, measured quantity values
are ergodicity values too and their allocation is ran-
dom [2].

However, DVs of NDS can't be characterized
by a single value and DVs behavior can't be described
by deterministic equation. The examples of success-
ful description of real systems behavior by equations
(a recovery of evolution function for dynamical sys-
tem F) are very rare events. The specific metrologi-
cal approaches, measurement models and methods for

evaluation of measurement uncertainty must be deve-
loped for measurements in the NDSs. For solving this
problem the measurement model [3] and the measu-
rement results analysis model [4] for NDSs are crea-
ted. These models base on the principles and me-
thods of fractal analysis and dynamical chaos theory.
Entropy analysis of the measurement results for NDS
is made.

THE MEASUREMENT MODEL

The model for measurement of DVs in NDS [3] con-
tains: the scheme of measurement experiment; the
method for assessment of necessary and sufficient
volume of information; the method for identification
of the system behavior and for choosing the mathe-
matical tools for measurement results processing; the
method of measured quantity values evaluation.

The measurement model is destined for obtaining
information about one of DVs set — X. If behavior
of measurement system is chaotic, that system’s phase
portrait is a strange attractor with clear boundaries.
The strange attractor projection on the axis of X va-
lues is equal to the interval [ X, , X .. ] that contains
all possible true quantity values of DV. The purpose
of measurement is to evaluate this interval. The main
difference between DV of NDS and random variable
is that one DV is characterized by interval of all pos-
sible true quantity values [ X, X . |

According to the postulate that it is impossible
to get the true quantity value of X during the measure-
ment, the interval of true quantity values [ X, , X .. ]
must be determined only with measurement uncer-
tainty too. Therefore, applying the measurement model

XA XA
u, U,
ul\\A u’”\\QA
0 : & U
o0
' g ‘ X
+ -

a

b

Figure 1. Measurement results: a — the measured quantity values of DV X at different time moments ¢t,, where
At — an interval between measurements; b — the measurement results of all possible states X.
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gives an interval U(X) > [ X, X,... ] that contains all
measured quantity values x, of X, (here X, is a state
of X) and theirs measurement uncertainties u,. The
interval U(X) is equivalent to measurement uncer-
tainty of all possible DV states. For calculation of U(X)
the group of m identical measuring instruments forms
m time series of measured quantity values:

X (E)yeeer X )3 X (1) ey X (8, )i X (25 X0 (2,), (1)
where x| (¢,), x7(¢,), x"(t,) — the measured quantity
values of state X, in the time moment #, that are got
by measuring instrument Ne1, Ne2, Nom respectively;
n — number of X states.

Evaluation of measurement results y, is based
on knowledge about sources of uncertainties and the
type A measurement uncertainty values. It can be de-
scribed by next way [7]:

O =, vy 1)y (vy =1y, Yy + )55 (v, —u,, 9, +ut,). (2)

The measured quantity values (1) in the phase
space are displayed like areas u, (Figure 1, a), and the
measurement results of all possible states of X look
like the projection of all #, on the phase plane U(X)
(Figure 1, b).

For calculation of U(X) the
(Pmin —Unmins Y TUmin)  and  the
(Pox = Ui > Ve T Ui ) Values of the measurement
results (2) are chosen. In this case all possible values
of DV X are located in the interval:

U(X) = (Vunin = Ui Yimax T Ui )- 3)

For classification of DV behavior the measure-
ment model uses the method of fractal analysis
of time series (2) [6]. For this the fractal dimension
D of time series (2) is defined by Hurst method.
If D=1.5 the DV behavior is random. In a case when
1<D<1.5 or 1.5<D<2 the DV behavior is chaotic. The
fractal analysis of time series lets select the correct
mathematical tools for measurement results proces-
sing. A fractal dimension D is used also for determi-
nation the necessary and sufficient number of mea-
surement experiments:

nmin 2 102+0.4D.

Using the measurement models for NDSs [3] allows
researching any random process with one metrological
base, extending the Guide to the expression of uncer-
tainty in measurement [7] for such complex systems
like open, dissipative and chaotic NDSs.

minimum
maximum

THE MEASUREMENT RESULTS ANALYSIS MODEL
In the metrological theory a measurement equa-
tion is used like a tool for analysis of measurement
results. A necessary condition for creation of measure-
ment equation is stability of system. Stability is ability
of system to save settings or dynamic under small per-

turbations and it is required condition for the analysis
and prediction of the DV behavior. It’s well known that
there are some definitions for stability. Creating the
measurement equation asks for the Lyapunov stabi-
lity when the two random trajectories of the system
phase portrait are close to each other at any time.
The trajectories of chaotic NDSs diverge exponentially,
so chaotic NDSs are not stabile by Lyapunov. For these
systems the measurement equation can't be created
and it is necessary to develop new alternative analy-
sis tools.

In dynamical systems theory, along with the
Lyapunov stability, the Lagrange stability is consi-
dered. The Lagrange stability asks for a location
of all measured DV X values within a certain phase
space area. In the case of dissipative chaotic NDS such
area is a strange or chaotic attractor. If the system
phase portrait is a strange attractor, the NDS is sta-
bile by Lagrange. In this case, all possible values X,
of X locate in the interval U(X) (3).

Thus, if the NDS is not stabile by Lyapunov that its
description by the measurement equation is an impos-
sible task, but if the NDS is stabile by Lagrange that
its dynamic can be analyzed and predicted with using
U(X) (3) — the measurement results of all possible
states X, of DV X.

The measurement results analysis model [4], in-
stead of researching the measurement equation, pro-
poses to research the key NDS parameters. The model
provides making a number of successive operations:
determination of the attractor embedding dimension,
the phase portrait restoration, the definition of local
(the Lyapunov exponents, the time of prediction) and
general (the Kolmogorov-Sinay entropy) parameters
of NDS.

The most important part of the model is a restora-
tion of a phase portrait. The restoration method was
proposed by F. Takens [8] and consists in the construc-
tion of the state vectors of a system using the time
series of measured quantity values (1):

56([[) = (xl (ti):xz (ti _T)V"’xM (ti - (M _I)T))r (4)
where T — the time-step delay of state vector com-
ponents; M — the embedding dimension of phase
portrait.

The Takens method is the established and widely
used tool for restoration of a phase portrait. But from
the metrological point of view it has the drawbacks.
The method uses measured quantity values (1) like
initial dates and doesn’t use the measurement uncer-
tainty. Since the true value of DV X locates in the in-
terval y, —u, < X, <y, +u, (2) the analysis model pro-
poses instead of one state vector X(z,) (4) to use two

19




EHTPOMIAHUA AHANI3

6’2013 « METPOJIONIS TA [TPUTTAAN

Y §
Y(®) Y(yi —Y 7ti)

S(u;,t,)

X (1)
Y(yi Tu, ti)
0 Y(t-7)
Figure 2. The restored vector field in point of time t,
for M = 2.

vectors (Figure 2):

Y(y,- _ut) :{Yl(yi —u, ), Y, (v, —u, 1, — A1), }’
s Vo Drapar = Uiagerot, — (M =1DAY)

Y(y,~ ut) :{Yl(yi +u,t,), Y, (., tu .t =AY, }’
ceos Yy (Vs Tl ypirst, — (M =1)A1)

where i =M +1,...,n.

The distance between the vectors (5) characte-
rizes the uncertainty of the restored state vector ?(tl.)
in point of time #;

(6)

The vector field limited by state vectors (5) forms
the phase portrait that contains the uncertainty of the
restored state vector ¥ (t,) (6) (Figure 2).

The restored NDS's phase portrait is the object for
analysis of the measurement results and for prediction
of future behavior of NDS. Using restored phase por-
trait the formulas for determination of NDS local and
general parameters, that contain the measurement un-
certainties of DV, are represented in the analysis model.

2 2 2 .
S(ui,ti)=‘2\/ui tu et

THE ENTROPY ANALYSIS
Also in metrology for evaluation of measurement
results the probabilistic information theory is applied.
This theory uses its key elements — the amount of in-
formation 7 and the Shannon entropy H like the quan-
tities characterizing the measurement uncertainty.
In the terms of the information theory the sense
of measurement is a reduction of the interval of know-
ledge uncertainty about measured value (Figure 3).
The amount of information obtained from measure-
ments is given by next formula:
I=H,,,, ~H g, (7)
where: H, , , — the Shannon entropy of DV X before
measurement; H,,, — the Shannon entropy of DV X af-

ter measurement.
20

a b c

Figure 3. The visualization of information sense
of measurement: a — the uncertainty area before
measurement; b — the uncertainty area after
measurement (white area); ¢ — the area without
uncertainty that is equal to the amount of received
information (white area).

According to information theory, when the number
of measurement experiments increases the value
of Shannon entropy decreases H ,, — H,, —0,
it’s got the maximum amount of information about the
measured DV X and the uncertainty area (Figure 3, b)
tends to the point (Figure 3, ¢) matching the true va-
lue of the measured DV X.

In case of the measurement of DV in NDS the situa-
tion is different. The multiple measurements of DV al-
so lead to a decrease of the Shannon entropy value
H after < H before *
deration of all the factors, that influence on the mea-
surement result, reduce the entropy values to certain
minimum value H ,,, — H,,,. However, the minimum
value of the Shannon entropy doesn't tend to zero
H_. #0. The amount of information received during
measurement in NDS is limited to some uncertainty
area (Figure 3, b). Increasing the number of measure-
ment experiments and an observation time system al-
so doesn't let to reduce this area. The reason of such
situation is next. The measurement uncertainty in the
case of NDS depends on the factors that are the cau-
ses of the type A and type B uncertainties that can
be considered or excluded, but also on a complicated
behavior of DV.

The measurement model, the measurement results
analysis model and the entropy analysis will allow
to create and to use the modified Concept of expres-
sion of uncertainty in measurement in case of real-
world, open, dissipative, chaotic systems of different
origins.

A long-term measurements and consi-

THE PRACTICAL APPLICATION

Successful metrological provision of scientific and
industrial problems is the important key for their so-
lutions. On the other hand, the quality of a measure-
ment model and a measurement results analysis model
are depended on a research profoundness of observed
processes and systems.
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The results of research of real physical, bio-
logical, social and even financial systems often al-
low us to classify them like open dissipative NDSs.
Physicists, chemists and biologists more often use the
synergistic approaches, methods of dynamical chaos
theory and fractal analysis for study of various dy-
namical systems. However, using the modern methods
for study of real NDSs researchers have not had the
adequate metrological approaches and measurement
models for such difficult systems.

The examples of real chaotic physical NDSs are the
electrical circuits, lasers and acoustic beams in the
far field. In 1983 Professor of California University
L. Chua first ever demonstrated the regime of chao-
tic oscillations in an electrical circuit that consisted
of two capacitors, a coil, linear and non-linear resistors
of negative resistance. The experiment confirmed the
assumption that even the simplest electrical circuits
may have a chaotic behaviour.

In 2005 the group of scientists at the Max Planck
Institute of Quantum Optics, investigating the chaotic
behaviour of the quantum world, have been able to give
the first ever demonstration of quantum chaos during
atom ionisation. The experiment based on a display
of classical photoeffect was fulfilled. During the experi-
ment a laser beam forced rubidium to emit the elec-
trons in a strong magnetic field. As a result, the elec-
trons, whose behavior should be random, had a chaotic
behaviour. The experiment proved that there is a link
between chaos and fluctuations of photostream.

The scientists deal with dissipative and chaotic
NDSs during a solving of various hydroacoustic prob-
lems too. In 1990s in the ocean acoustics the phe-

nomenon of ray chaos in inhomogeneous waveguides
was described. It has been shown that at large dis-
tances (the thousands kilometers) the acoustic beams
start to behave chaotically. This chaotic behavior must
be taken into account in metrological assurance of hy-
droacoustic measurements.

A living organism can be represented like an open
and self-organizing dissipative NDS. In the general
case, the biophysical condition of human can be re-
presented like an attractor. The different external
random or periodic disturbances influence on this
attractor. If we accept the model that health cha-
racterizes an organism's stability then for quantita-
tive evaluation of health it is necessary to measure
the recovery time of the steady state. Experimental
medicine during a long time has used for evaluation
of health the recovery time after physical exercises.
The blood tension, heart rate, brain activity indicators
and other characteristics of body, changing in time,
can be considered like DVs of such DNSs. In this case
any DV must be characterized by the interval of all
possible values U(X) (3) and the recovery time of the
steady state.

Until recently some of the described DNSs and their
DVs have been considered like “immeasurable” vari-
ables from the point of view of classical metrology. The
development of the measurement model and measure-
ment results analysis model and use of entropy analy-
sis will allow metrological science to solve these and
similar difficult measurement tasks that exist today
and will appear in the future. The use of these mo-
dels will allow examine any random processes standing
on single position.
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