# МЕТОДЫ МОДЕЛИРОВАНИЯ ТЕПЛОВЫХ ПОВРЕЖДЕНИЙ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ

## ЧУМАКОВ В.И.

Приводится обзор моделей анализа тепловых деградаций полупроводниковых приборов при действии импульсных электрических перегрузок. Развивается линейная тепловая модель импульсных повреждений.

#### 1. Введение

Исследования теплового механизма деградаций радиоэлементов и компонентов являются одной из актуальных задач при проектировании РЭА. Это объясняется тем, что тепловые перегрузки являются наиболее тяжелым режимом работы элементов РЭА. Кроме того, деградационные эффекты, связанные с превышением допусков теплового режима, приводят к необратимым повреждениям элементов и являются наиболее частой причиной катастрофических отказов РЭА. Возникновение тепловых перегрузок связано обычно с нарушением электрических режимов функционирования полупроводниковых элементов и компонентов РЭА, наиболее восприимчивых к воздействию внешних факторов. При этом деградационные эффекты могут проявляться в результате весьма кратковременных импульсных электрических перегрузок. Ужесточение требований к обеспечению теплового режима полупроводниковых приборов вызвано миниатюризацией и высокой степенью интеграции элементов (особенно цифровых ИС), переходом к субмикронным технологиям и повышением широкополосности и быстродействия РЭА и средств вычислительной техники (ВТ) [1-5].

Один из аспектов проблемы анализа деградационных эффектов в элементах РЭА при импульсных энергетических нагружениях заключается в ответе на вопрос: какова будет реакция объекта на воздействие токов и напряжений данной интенсивности. Ответ на этот вопрос зависит в первую очередь от теплофизических параметров самого объекта, т.е. от того, какое количество энергии будет рассеяно в структуре объекта в течение длительности воздействия и достаточно ли этой энергии для реализации деградационных эффектов.

В работе рассмотрены различные модели анализа теплового механизма деградации полупроводниковых приборов при импульсных электрических кондуктивных нагружениях либо перегрузках, возникающих в результате действия электромагнитного излучения. Приведенные результаты могут быть использованы для исследования деградационных эффектов в полупроводниковых элементах РЭА, возникающих в результате электрических перегрузок, которые вызываются нештатными аварийными режимами РЭА, а также для анализа повреждений, возникающих при облучении РЭА и средств ВТ электромагнитными полями, что характерно для проблем ЭМС и особенно для обострившейся в настоящее время проблемы электромагнитной стойкости РЭА.

# 2. Линейные тепловые модели деградационных эффектов в РЭА

При тепловом механизме деградации анализ процесса диссипации энергии в объекте проводится на основе уравнения теплопроводности

$$\frac{\partial T}{\partial t} = \nabla (k_T (\nabla T)) + \frac{q_v(t)}{C_p \rho}, \qquad (1)$$

где T — температура в точке с координатой *r* в момент времени *t*; С — линейный дифференциальный оператор;  $k_T$ ,  $C_p$ ,  $\rho$  — удельная теплопроводность, теплоемкость и плотность полупроводника;  $q_v(t)$  — объемная плотность мощности источников (стоков) тепла в структуре полупроводника.

Граничные и начальные условия задаются структурой объекта и условиями его эксплуатации.

Моделирование процессов деградации в элементах и компонентах РЭА проводится традиционно в рамках линейной тепловой модели, в которой величины  $k_T$ ,  $C_p$ , считаются не зависящими от температуры, что приводит к упрощению анализа.

## 2.1. Модель W-В

Классическая тепловая модель (модель W-B) деградации дискретных полупроводниковых приборов (диодов и транзисторов) в результате электрических перегрузок приведена в работе [1]. Рассматривается модель плоского p-n перехода, в котором мгновенный плоский источник тепла мощностью Q создает тепловой поток в направлении нормали к плоскости перехода. На основании анализа однородного уравнения теплопроводности для плоского одномерного p-n перехода показано, что зависимость пороговой мощности  $P_n$  импульсной электрической перегузки, при которой возникают деградации в p-n переходе, от длительности импульса электрической перегрузки описывается выражением

$$P_n/S = B_1 (T_n - T_n) t^{-0.5} , \qquad (2)$$

где *S* – площадь перехода;  $B_1 = \sqrt{\pi k_T \rho C_p}$  – постоянная величина, определяемая теплофизическими константами материала; *T<sub>n</sub>*, *T<sub>n</sub>* – начальная и конечная

температура материала соответственно. Под деградацией можно понимать любое явление, приводящее к изменению характеристик полупроводникового прибора при достижении температуры перехода *T<sub>n</sub>*. Так, в качестве конечной температуры может рассматриваться температура плавления полупроводника, тогда деградационный эффект проявляется в виде проплавления перехода и необратимого отказа полупроводникового прибора [1, 5].

В качестве характеристики восприимчивости полупроводниковых приборов различных типов к тепловым перегрузкам вводится величина

$$w_B = B_3(T_n - T_n), \qquad (3)$$

называемая постоянной повреждений (постоянная W-B).

Зависимость (2) выполняется в диапазоне длительностей электрической перегрузки 10<sup>-7</sup>÷2\*10<sup>-5</sup> с, что подтверждается результатами приведенных в [1] экспериментов.

Физическая интерпретация зависимости (2) основана на предположении о неравномерном распреде-

лении плотности тока, протекающего через p-n переход в диапазоне исследуемых длительностей импульса, локализации его в отдельных каналах, что эквивалентно уменьшению эффективной площади перехода, т.е. уменьшению зоны энерговыделения. При этом температура, локальных областей возрастает быстрее, чем происходит теплообмен с прилегающими областями полупроводника, и по достижении температуры плавления  $T_n$  возникает тепловое повреждение.

При укорочении длительности и увеличении мощности электрической перегрузки область энерговыделения в объеме полупроводника практически ограничивается объемом токовых каналов, и передачи энергии в прилегающие области не происходит. В этом случае первым слагаемым в правой части (1), которое описывает рассеяние мощности в структуре полупроводникового прибора в результате теплопроводности, можно пренебречь. Тогда зависимость мощности *P*<sub>n</sub> от длительности импульса электрической перегрузки имеет вид:

$$P_{n}/S = B_{2}(T_{n}-T_{n}) t^{1}$$
(4)

где  $B_2$  также определяется характеристиками полупроводника.

В режиме длинноимпульсных электрических перегрузок происходит относительно медленный разогрев всего объема полупроводника в результате теплообмена между его отдельными областями, т.е. наблюдается режим, близкий к стационарному. При этом в уравнении (1) можно пренебречь выражением в левой части и получить зависимость для  $P_n$  в виде  $P_n/S = B_3(T_n - T_n) t^0$ , (5)

т.е. мощность повреждений не зависит от длительности импульса. Константа  $B_3$  в выражении (5) представляет собой плотность потока мощности, необходимой для разогрева структуры на 1° С. На рис. 1 приведена качественная зависимость пороговой мощности электрической перегрузки, при которой возникают деградации, от длительности импульса, построенная на основании выражений (2), (4) и (5) [2].

Построив качественную зависимость пороговой энергии импульсных электрических перегрузок, приводящей к деградации полупроводниковых приборов,  $W_n = P_n t$ , можно видеть, что минимальные значения пороговой энергии располагаются в короткоимпульсной области  $t<10^{-7}$  с (рис.2). В классической тепловой модели зависимость (2) наблюдается при двух противоположных значениях полярности напряжения импульсной электрической перегрузки. При этом причины возникновения нештатного режима функционирования прибора и электрические





процессы установления тока перегрузки не рассматриваются.

На рис. 3, а приведена типовая структура диффузионного p-n перехода. Области  $[X_I, x_p]$  и  $[x_n, X_2]$ соответствуют квазинейтральным областям полупроводникового кристалла,  $[x_p, x_n]$  — обедненная область полупроводника. Эквивалентную электрическую схему такой структуры можно представить в виде рис. 3, б, где  $R_b$  — сопротивление квазинейтральной области,  $R_i$  — сопротивление области обеднения.

При приложении импульса электрической перегрузки положительной полярности относительно области *p* переход смещается в прямом направлении и соотношение между величинами сопротивления имеет вид  $R_b >> R_j$ , поэтому диссипация энергии происходит в квазинейтральной области.

В случае отрицательной полярности электрической перегрузки относительно области p переход смещается в обратном направлении (запирается) и выполняется неравенство  $R_b << R_j$ . Через переход



протекает малый обратный ток, величина которого не зависит от приложенного напряжения и существенно зависит от температуры полупроводника. При этом в отсутствие теплоотвода и теплообмена с окружающей средой происходит относительно медленный разогрев полупроводника до температуры  $T_n$ . Максимальная температура достигается в области x=0. Данный режим характерен для диапазона длинноимпульсных перегрузок (рис. 1, 2), в котором пороговая мощность, приводящая к деградациям, не зависит от времени и описывается соотношением (5).

При значительных напряжениях обратной полярности на переходе происходит лавинный пробой вследствие ударной ионизации в обедненной области, сопротивление которой резко падает, что приводит к увеличению тока через переход, и процесс энерговыделения происходит аналогично прямосмещенному p-n переходу. В режиме двуполярной электрической перегрузки происходит детектирование входного тока [6]. Результирующий ток представляет собой последовательность униполярных импульсов, соответствующих временным интервалам, в течение которых переход смещен в прямом направлении.

В общем случае выражение для мгновенной мощности, поглощенной полупроводниковым кристаллом, можно представить как

$$P(t) = i(t)U_j + i^2(t)R_b,,$$
 (6)  
где  $U_i$  – напряжение на обедненной области.

В модели W-B учет температурной зависимости теплопроводности полупроводника заключается во введении в полученные выражения усредненной величины теплопроводности. При этом постоянная

повреждений оказывается зависящей только от раз-

#### 2.2. Объемная тепловая молель

ности температур ( $T_n$ - $T_n$ ).

Дальнейшее развитие модели W-В для трехмерного случая осуществлено в работах [7, 8]. Прирост температуры в полупроводниковом кристалле с характерными размерами *a*, *b*, *c* описывается с применением функции Грина  $G_0$ , которая для трехмерного уравнения теплопроводности (1) имеет следующий вид:

$$G_0(r, r', t, \tau) = \frac{1}{\left[4\pi a(t-\tau)\right]^{3/2}} \exp\left[-\frac{(r-r')^2}{4a(t-\tau)}\right].$$
 (7)

Здесь *r*'- координаты мгновенного точечного источника тепла вида  $\delta(t,r)$ , действующего в момент времени t; *r*, *t*-соответственно координаты точки и время определения температуры;  $a=k_T/C_p\rho$ -коэф-фициент температуропроводности полупроводника (коэффициент тепловой диффузии).

Расчет критической температуры, при которой возникают деградации, в случае произвольной временной зависимости входной мощности *P(t)* осуществляется на основании интеграла Дюамеля:

$$T(t) = T_{H} + \frac{1}{C_{p}\rho} \int_{0}^{t} P(\tau) \frac{d}{d(t-\tau)} \Big[ H(t-\tau) \Big] d\tau \,. \tag{8}$$

Функция H(x) имеет смысл переходной характеристики и представляет собой температурную реакцию полупроводника на действие источника электрической перегрузки, мощность которого описывается единичной функцией Хевисайда I(x). Таким образом, функции  $G_0$  и H связаны соотношением

$$H(t) = \int_{0}^{t} G_{0}(r, v) dv .$$
 (9)

Для перегрузки в виде прямоугольного импульса мощности длительностью т получаем временную зависимость температуры:

$$T(t) = T_{H} + P_0 [H(r,t) - H(r,t-\tau)].$$
(10)

Длительность электрической перегрузки  $t_f$ , при которой возникают деградации (например, расплавление полупроводника при достижении температуры  $T_n$ ), можно определить следующими критериями. В первом случае из (10) имеем

$$T(t_f) = T_n = T_H + P_0 H(r, t_f) .$$
 (11)

Подставляя (11) в (8), приходим к выражению для нормализованной температуры в произвольный момент времени *t*:

$$f(t) = \frac{T(t) - T_{H}}{T_{n} - T_{H}} = \int_{0}^{t} P(\tau) \frac{d}{d(t - \tau)} \left[ \frac{1}{P_{0}(t - \tau)} \right] d\tau \quad (12)$$

Здесь  $P_0(x)$  представляет временную зависимость пороговой мощности деградаций при действии электрической перегрузки в виде прямоугольного импульса. В частности, используя выражения (2) и (3) модели W-B, получаем

$$f(t) = \int_{0}^{t_{f}} P(\tau) \frac{d}{d(t_{f} - \tau)} \left[ \frac{1}{P_{0}(t_{f} - \tau)} \right] d\tau = = \frac{1}{2Sw_{B}} \int_{0}^{t_{f}} P(\tau) \frac{1}{\sqrt{t_{f} - \tau}} d\tau \quad .$$
(13)

Подставляя в (13) критическую температуру, определяем критерий W-В оценки времени *t*<sub>f</sub>, необходимого для реализации тепловой перегрузки:

$$\frac{1}{2Sw_B} \int_{0}^{t_f} P(\tau) \frac{1}{\sqrt{t_f - \tau}} d\tau = 1.$$
 (14)

Другой критерий определения величины *t*<sub>f</sub>получается из уравнения

$$\frac{df(t_f)}{dt} = 0.$$
(15)

При этом необходимо выполнение условия  $\max\{f(t)\} \ge 1$ . Подставляя значение  $t_f$  в (15), получаем выражение для максимального тока электрической перегрузки.

Типичные зависимости нормализованной температуры f(t) для импульсов тока электрической пере-

грузки равной энергии  $E_u = \int_{0}^{\tau_u} i^2(t) dt$  прямоугольной – 1, экспоненциальной с постоянной времени  $\tau/5-2$ , синусоидальной – 3 и треугольной – 4 форм приведены на рис. 4, 5.

Такие формы импульсов рассматриваются при анализе процессов импульсной теплопроводности [9]. Мгновенная мощность рассчитывалась согласно (6) при  $Uj = 100I_0R_b$  (рис. 4), что соответствует режиму обратно смещенного p-n перехода и при  $Uj=I_0R_b$  (рис. 5), что характеризует переход, смещенный в прямом направлении. Для прямоугольного импульса функция *f*(*t*) является монотонной и максимальная температура достигается в конце импульса, в то время как при неоднородном разогреве импульсами сложной формы максимум температуры может достигаться в начале либо в середине импуль-





са. В случае экспоненциального импульса, основная энергия которого сосредоточена вблизи переднего фронта, темп разогрева в начале значительно выше, чем при других формах импульса, однако достижение высоких температур ограничено быстрым спадом импульсной мощности с течением времени. В режиме прямого смещения достигаются более высокие температуры, максимум температуры достигается раньше и, кроме того, темп разогрева и охлаждения (кривые 2, 3, 4) также более высок.

Для области короткоимпульсных электрических перегрузок t ≤ 10<sup>-8</sup> с ядро в выражении для нормализованной температуры (12) рассчитывается на основании (4). При этом для обобщенной температуры получаем

$$f(t) = A \int_{0}^{t} P(\tau) d\tau , \qquad (16)$$

где  $A = \frac{1}{SB_2(T_n - T_H)}$  — постоянная величина. Таким

образом, темпёратура эквивалентна энергии импульса электрической перегрузки. Отме-

тим, что при короткоимпульсных перегрузках из (16) следует, что максимальная температура всегда достигается на заднем фронте импульса, что является результатом адиабатического процесса разогрева (рис. 6 построен для режима обратного смещения p-n перехода).

#### 2.3. Модель повреждений слоистых структур

Моделирование повреждений многослойных полупроводниковых структур имеет важное значение в



первую очередь потому, что слоистые структуры типа p-i-n диодов являются элементами входных трактов CBЧ аппаратуры и наиболее часто подвергаются воздействию электромагнитных перегрузок. Кроме того, слоистые МДП и МОП структуры характеризуются достаточно низкими критериальными уровнями повреждений. В [10, 11] приведен анализ процесса разогрева многослойных полупроводниковых структур при протекании непрерывных и импульсных СВЧ токов. Использована теория развития



теплового процесса в слоистой структуре (рис.7), в которой распространяется поток тепла P(t) в положительном направлении оси x [11]. Предполагается, что торцевые поверхности образца металлизированы, поэтому температура этих поверхностей постоянна и равна  $T_{n}$ , теплообмен через боковую поверхность образца отсутствует, распространение тепла происходит в направлении оси y. В зависимости от смещения на p-i-n диоде функция источников тепловой мощности предполагается либо равномерной, либо синусоидальной вдоль оси x.

Получены выражения для определения максимального перегрева полупроводниковой структуры и предельной СВЧ мощности, рассеиваемой в приборе, в непрерывном

$$T_{MH} = \frac{1}{8} \frac{1}{k_T} \frac{d}{S} P_{MH}$$
(17)

и импульсно-периодическом режиме:

$${}_{Mu} = \sum_{m=1}^{\infty} \frac{4d^2}{\pi^3 (2m-1)^3} \frac{P_{Mu}}{Sd} \frac{1}{C_p k_T} \left\{ \frac{1 - \exp\left[\frac{\pi^2 (2m-1)2a\tau}{d^2}\right]}{1 - \exp\left[\frac{\pi^2 (2m-1)2a\theta}{d^2}\right]} \right\} \sin(2m-1)\frac{\pi}{2} . (18)$$

Здесь обозначено: d, S — толщина и площадь структуры соответственно;  $\theta$  — период повторения импульсов; m — целое число.

Выражение для мощности при этом имеет вид

$$P_{MU} = P_{MH} \frac{1 - \exp(-q\xi)}{1 - \exp(-\xi)},$$
 (19)

где  $\xi = \tau / \tau_T -$ относительная длительность импульса;

$$q$$
 – скважность импульсов;  $P_{MH} = \frac{\pi^3}{8} \frac{k_T S T_{MAK} c}{d}$ . Для

кремния  $P_{MH} = 2,67T_{MAK} \$  [BT].

Величина т<sub>Т</sub>называется постоянной времени тепловой релаксации и зависит от теплофизических констант материала и характерных размеров *d* области энерговыделения:

$$\tau_T = (d / \pi)^2 C_p \rho / k_T \,. \tag{20}$$

Таким образом, постоянная времени  $\tau_T$  связана с постоянной W-B соотношением

$$w_B = k_T \sqrt{\pi \tau_T} \left( T_\kappa - T_{\mu} \right) / d \; .$$

Характерный размер области энерговыделения d при  $\tau_T = 10^{-8}$  с для кремния составляет ~ 3,4 мкм. В цилиндрической системе, когда рассматривается перенос тепла в радиальном направлении в результате действия источника, расположенного параллельно оси цилиндра, величина d соответствует радиусу области энерговыделения.

Переходя к пределу при  $q \to \infty$  в выражении для импульсной мощности (19), получаем, что в случае одиночного импульса пороговая мощность дефектообразования описывается выражением

$$P_{u1} = P_{Mu} \frac{1}{1 - \exp(-\xi)}$$

график которого приведен на рис. 8.

Раскладывая функцию  $P_{u1}$  в ряд при  $\xi < 1$ , приходим к выражению  $P_{u1} = P_{Mu}/\xi^{-1}$ , аналогичному (4) модели W-B, т.е. постоянная времени  $t_T$ дает оценку верхней границы короткоимпульсной области, в которой справедлива аппроксимация (4). Кроме того, из рис. 8 видно, что при  $\xi > 1$  пороговая мощность практически не зависит от х, т.е. имеет место режим стационарного разогрева, соответствующий зависимости (5) модели W-B (ср. рис. 1).

Подставим t<sub>T</sub> в выражение для пороговой мощности повреждений (2); получим

$$P_n = k_T \sqrt{\pi S} \left( T_\kappa - T_H \right) \left( \frac{t}{\tau_T} \right)^{-0.5}$$

т.е. мощность, необходимая для возникновения повреждения в области W-B, равна  $P_{WB} = 1300\sqrt{S}$  [мкВт], где площадь *S* выражена в мм<sup>2</sup>.

## 2.4. Метод эквивалентной линии

Метод эквивалентной линии основан на сходстве процессов распространения тепла в изотропной среде и распространения волны напряжения в RC длинной линии (рис. 9) [12, 13]. В идеальном случае предполагается, что скорость распространения волны в линии и скорость распространения тепла в среде равны ∞. Уравнение для напряжения в линии имеет вид

$$\frac{\partial U(x,t)}{\partial t} = \frac{1}{RC} \frac{\partial^2 U(x,t)}{\partial x^2} + F_0, \qquad (21)$$

аналогичный одномерному уравнению теплопроводности, которое можно получить из (1).

Между величинами, входящими в (21) и (1), имеет место следующее соответствие: напряжение  $U \leftrightarrow$  температура *T*; погонное сопротивление  $R \leftrightarrow$  тепло-



вое сопротивление  $R_T = \frac{1}{k_T} \frac{l}{S}$ , равное величине, обратной плотности теплового потока, который создается в среде перепадом температуры в 1К; погон-

ная емкость  $C \leftrightarrow$  тепловая емкость  $C_T = C_P \frac{m}{l^2}$ , равная теплоемкости образца массой *m*, имеющего характерный линейный размер *l*; постоянная времени  $RC \leftrightarrow$  температуропроводность среды *a*.

# 2.5. Моделирование повреждений пленочных элементов

Пленочные технологии широко используются при создании полупроводниковых и гибридных ИС, а также элементов и функциональных узлов малогабаритной, в частности, бортовой РЭА. Так, в полупроводниковых ИС средней степени интеграции только общая площадь металлизации (т.е. проводящей металлической пленки) составляет до 30% общей площади кристалла, поэтому анализ процессов в пленочных элементах микроэлектроники широко освещен в литературе (см., например, [12, 14, 15]).

Пробой диэлектрических пленок обусловлен рядом элементарных электрических процессов, которые происходят в пленках в сильных электрических полях.

1. Эмиссия электронов из катода в диэлектрик с вершин микроострий при напряженности электрического поля на микроостриях ~ 10<sup>7</sup> - 10<sup>8</sup> MB/см. Типичная вольт-амперная характеристика (BAX) тонкопленочной структуры Al-SiO-Al имеет три участка. На первом (в области сравнительно слабых полей) BAX совпадает с законом, рассчитанным по формуле Фаулера-Нордгейма для автоэлектронной эмиссии в результате туннелирования электронов в диэлектрик под действием сильного поля вблизи острия.

2. Размножение электронов в диэлектрике в результате ударной ионизации. При этом рост результирующего тока несколько снижается за счет снижения коэффициента ударной ионизации диэлектрика.

3. Образование и разрушение области отрицательного объемного заряда (ООЗ). Образование ООЗ обусловлено наличием многочисленных энергетических уровней в запрещенной зоне диэлектрика в результате разупорядочения кристаллической структуры, являющихся ловушками для свободных носителей заряда. Такие уровни способны образовывать целые зоны, в которых концентрация ловушек изменяется в пределах  $10^{14}$ - $10^{20}$  см<sup>-3</sup>. Электроны, захваченные ловушками, образуют в прикатодном слое диэлектрика толщиной не более  $10^{-5}$  см область ООЗ, которая оказывает экранирующее действие на микроострия, уменьшая напряженность поля вблизи них. Тем самым ограничивается рост тока на ВАХ тонкопленочной структуры (участок 2).

Дальнейшее увеличение напряженности поля приводит к разрушению ООЗ вблизи острий и образованию ООЗ в более глубоких слоях диэлектрика. При этом экранирующее действие ООЗ снижается, что приводит к более сильному росту тока на ВАХ структуры (участок 3) [13].

Приведенные рассуждения отражают сценарий образования источника начального тока, протекание которого через диэлектрик приводит к интенсивному энерговыделению и возникновению тепловой деградации.

По электрической проводимости пленки можно разделить на 3 группы:

 проводящие (все элементы металлизации, межсоединения, контактные площадки и др.);

– резистивные (интегральные резисторы);

- изолирующие (защитные покрытия, изолирующие слои, подложки и др.).

Деградационные эффекты, вызванные тепловыми процессами в первых двух группах, обусловлены превышением предельных допустимых величин плотí î **ñòè òi êà**  $J_{np}$ , либо мощности рассеяния  $P_{don}$ , которые связаны соотношением

$$P_{\partial o n} = J_{np}^2 a^2 R = P_0 S_R$$

где a — сечение пленки; R — сопротивление пленочного элемента;  $P_0$  — удельная мощность рассеяния материала пленки;  $S_R$  — площадь поверхности пленочного элемента.

Если повреждение пленочного элемента вызвано электрической перегрузкой в результате электромагнитного воздействия [5], то критическая напряженность электрического поля, приводящего к возникновению деградационного эффекта, связана с величинами  $P_{don}$  и  $J_{np}$  соотношением

$$E_{\kappa p} = J_{np} a R K_{np}$$

где *К<sub>пр</sub>* – коэффициент преобразования электрического поля, который зависит от геометрии элемента и определяется, исходя из его антенной модели.

В [12] на основании анализа уравнения теплопроводности построена модель процесса неоднородного разогрева пленок SiO<sub>2</sub>. Показано, что локализация тепла в узком канале протекающего тока приводит к возникновению тепловой неустойчивости, аналогичной режиму с обострением [16, 17]. При этом вольт-амперные характеристики канала пробоя имеют *S*-образную форму с участком отрицательной проводимости. Получены выражения и оценки величин времени задержки пробоя:

$$\tau_D = \frac{\rho C \alpha}{\sigma_0 E_b^2} \left[ \frac{\exp(\alpha/T)}{\alpha/T} - Ei \left( \frac{\alpha}{T} \right) \right],$$

где  $\alpha = (\varepsilon - \beta E_b)/2k$ ; є,  $\beta$  — параметры материала пленки;  $E_b$  — напряженность приложенного электрического поля;  $s_0$  — удельная электрическая проводимость материала; Ei(x) — интегральная показательная функция; k — постоянная Больцмана.

Оценка времени переключения, т.е. времени перехода из непроводящего состояния в состояние с высокой проводимостью составляет  $t_g \simeq 10^{-9}$  с.

# 2.6. Моделирование процессов деградации сложных структур

Применение тепловой модели позволяет анализировать деградационные процессы в сложных структурах [18]. Рассмотрим структуру металлический проводник сечением S— контактная площадка металлизации толщиной  $h_1$  на поверхности диэлектрика (SiO<sub>2</sub>), имеющего толщину  $h_2$ . Через структуру протекает импульс тока i(t) длительностью  $\tau$  (рис.10). Отметим, что такие структуры в ИС малой и средней степени интеграции располагаются по периферии кристаллов и занимают значительную часть их поверхности, т.е. располагаются именно в тех областях, в которых деградационные эффекты проявляются наиболее часто [5].

Если пренебречь потерями тепла через боковую поверхность проводника и считать, что потери энергии в контактной площадке происходят вглубь диэлектрика, то энергия, рассеиваемая в проводнике, будет равна

$$w_n = \int_0^\tau i^2(t) R_n dt$$

где  $R_n = \frac{1}{\sigma_n} \frac{l}{S}$  — сопротивление проводника длиной *l*, удельная проводимость которого равна s<sub>n</sub>.

Считая, что эта энергия затрачивается на разогрев проводника до температуры плавления  $T_{na}$  от начальной температуры  $T_{0}$ , получим выражение для квадрата действующего значения тока:

$$I^{2} = \frac{C_{n}\rho_{n}\Delta T_{n}S^{2}\sigma_{n}}{\tau}.$$
 (22)

Здесь  $\Delta T_n = T_{nn} - T_{0}$ . – перегрев проводника;  $C_n$  и  $\rho_n$  – теплоемкость и плотность материала проводника соответственно.

Рассуждая аналогично относительно энергии, отводимой в диэлектрик толщиной  $h_2$  из контактной площадки размерами ab за счет теплопроводности, получим следующее выражение:

$$I^2 = k_{T\partial} \frac{\Delta T_2 \sigma_\kappa}{h_2} b^2 h_1, \qquad (23)$$

где  $k_{T\partial}$  — теплопроводность диэлектрика;  $\Delta T_{\partial}$  — разность температур на границах слоя диэлектрика.

Из сравнения (14) и (15) находим критическую длительность импульса, при которой происходит деградационный эффект:

$$\tau_{\kappa p} = \tau_{Tn} \frac{k_{Tn}}{k_{T\partial}} \frac{\Delta T_n}{\Delta T_\partial} \frac{\sigma_n}{\sigma_\kappa} \frac{Sh_2}{b^2 h_1}.$$
 (24)

Здесь  $\rho_n$  – плотность материала проводника;

 $\tau_{Tn} = \frac{C_n \rho_n S}{k_{Tn}} -$ постоянная времени тепловой релак-

сации проводника. Если длительность импульса  $\tau > \tau_{\kappa p}$ , то происходит расплавление проводника, если  $\tau < \tau_{\kappa p}$ , то вначале происходит расплавление площад-



ки. При одинаковых материалах проводника и контатктной площадки получаем из (16)

$$\tau_{\kappa p} = \tau_{Tn} \frac{k_{Tn}}{k_{T\partial}} \frac{Sh_2}{b^2 h_1}$$

#### 3. Заключение

Проведенный анализ теплового механизма повреждений полупроводниковых приборов показывает, что линейная тепловая модель достаточно точно описывает временные зависимости температуры и мошности повреждений. Критериальными параметрами являются постоянная W-В и время тепловой релаксации полупроводникового кристалла τ<sub>T</sub>, которые зависят от макроскопических характеристик полупроводника (теплоемкость, теплопроводность, плотность). При укорочении длительности воздействия характер временной зависимости мощности  $P_n(t)$  определяется уменьшением эффективных размеров области энерговыделения, что приводит к уменьшению пороговой энергии повреждений. Показано, что при одинаковых уровнях энергии импульсные перегрузки являются более опасными для функционирования РЭА, чем квазистационарные.

Исходными причинами, которые приводят к возникновению тепловых перегрузок, как правило, являются быстропротекающие процессы электрического пробоя, которые не рассматриваются в классических моделях, что ограничивает использование тепловых моделей в области малых времен. В ряде случаев деградационные эффекты в полупроводниковых элементах могут возникать на стадии развития электрического процесса, еще до наступления тепловых перегрузок. Подобные эффекты рассмотрены в [5] при анализе воздействий короткоимпульсных электромагнитных излучений на изделия электронной техники. Показано, что подпороговые воздействия приводят к отклонению параметров полупроводниковых приборов от номинальнах значений и интерпретируются как степень деградации II.

Физическая картина процессов дефектообразования в полупроводниковых приборах при воздействии импульсов перегрузки ультракороткой длительности может быть выяснена в рамках теории электрических процессов в полупроводниках, характерные времена которых значительно меньше времени тепловой релаксации т<sub>Т.</sub>

Дальнейшее уточнение сценария теплового процесса дефектообразования заключается в анализе нелинейного уравнения теплопроводности, аналогичного (1), с учетом температурных зависимостей тепло- и электрофизических параметров полупроводника [16, 19].

**JINTEPATYPA.** 1. Wunsch D.S., Bell R.R. Determination of threshold failure level of semiconductors diodes and transistors due to pulse voltage // IEEE Trans. on Nuclear

Sci., 1968. Vol.15, N6. P.244-259. 2. R.J. Antinone. How to prevent circuit zapping // IEEE Spectrum. 1987, Vol.4, N24. P.34-38. 3. A comparison of DC and RF pulse susceptibilities of UHF transistors // IEEE Trans. on Electromagnetic Compatibility, 1977. Vol.19, N9. P.49-56. 4. Мырова Л.О., Чепиженко А.З. Обеспечение стойкости аппаратуры связи к ионизирующим и электромагнитным излучениям. М.: Радио и связь, 1988. 296с. 5. Блудов С.Б., Гадецкий Н.П., Магда И.И. и др. Генерирование мощных СВЧимпульсов ультракороткой длительности и их воздействие на изделия электронной техники // Физика плазмы, 1994. Т.20. Вып.7,8. С.712-717. 6 Бригидин А.М., Листопад Н.И., Титович Н.А., Ясюля Г.И. Исследование восприимчивости полупроводниковых приборов и интегральных схем к воздействию ВЧ и СВЧ помех // Радиотехника и электроника. Минск.: Вышэйшая школа. 1990. Вып.19. С.115-119. 7. Dwyer V.M., Franklin A.J., Campbell D.S. Thermal failure in semiconductor devices // Solid State Electronics. 1990. Vol.33. P.553-560. 8. Dwyer V.M., Franklin A.J., Campbell D.S. Electromagnetic discharge thermal failure in semiconductor devices // IEEE Trans. on Electr. Dev. 1990. Vol.37, N11. P.2381-2387. 9. Камья Ф.М. Импульсная теория теплопроводности: Пер. с франц./ Под ред. А.В. Лыкова. М.: Энергия. 1972. 272с. 10. СВЧ устройства на полупроводниковых диодах. Проектирование и расчет / Под ред. И.В. Мальского и Б.В. Сестрорецкого. М.: Сов. радио, 1969. 580с. 11. Mortenson K.K. Analysis of the temperature rise in PIN diodes caused by microwave pulse dissipation // IEEE Trans. on Electr. Dev., 1966. Vol.13, N3. P.305-313. 12. Shousha A.H.M. Negative differential conductivity due to electrothermal instabilities in thin amorphous films // J.Appl.Phys. 1971. Vol.42, N12. P.5131-5236. 13. Lange T.J., Hjellen G.A. A comparison of test and model-predicted RF-pulse susceptibilities of UHF transistors // IEEE Trans. on Electromagnetic Compatibility. 1978. Vol.20, N.4. P.513-514. 14. Воробьев Г.А., Мухачев В.А. Пробой тонких диэлектрических пленек. М.:Сов. радио. 1977.72c. 15. Wong K.L. Effects of electromagnetic interference for electromagnetic pulses incident on microstrip circuits / IEE Proceedings. 1990. Vol.137, N1. P.75-77. 16. Вирченко Ю.П., Водяницкий А.А., Ковтун Г.П. Локализация тепла и становление структуры теплового пробоя. Обзор: Харьков, ХФТИ, 1992. 32с. (препринт). 17. Галактионов В.А., Курдюмов С.П., Посашков С.А., Самарский А.А. Квазилинейное параболическое уравнение со сложным спектром неограниченных автомодельных решений. В кн.: Математическое моделирование. Процессы в нелинейных средах. М.: Наука, 1986. С.142-182. 18. Smith J.S. Electrical overstress failure analysis in microcircuits // 16 Annual Proceedings Reliability Physics. IEEE Proceedings Reliability Physics. 1978. P.41-46. 19. Маллер Р., Кеймингс Т. Элементы интегральных схем: Пер. с англ. М.: Мир, 1989.630 c.

#### Поступила в редколлегию 05.05.99

Рецензент: д-р техн. наук Шокало В.М.

**Чумаков Владимир Иванович**, канд. физ.-мат. наук, доцент кафедры ОРТ ХТУРЭ. Научные интересы: генерации мощных электромагнитных излучений и их применение. Адрес: Украина, 61726, Харьков, пр. Ленина, 14, тел.: (0572) 47-29-55.