УДК 616.5 - 004.1

ИССЛЕДОВАНИЕ ПАРАМЕТРОВ ГИДРАТАЦИИ И ПОВЕРХНОСТНОГО НАТЯЖЕНИЯ ПЛАЗМЫ КРОВИ БОЛЬНЫХ ОГРАНИЧЕННОЙ СКЛЕРОДЕРМИЕЙ

Э.Н. Солошенко¹, Г.М. Беляев¹, А.К. Кондакова¹, В.Г. Колесников², Н.В. Хмель², З.М. Шевченко¹, Т.П. Ярмак¹

¹ГУ «Институт дерматологии и венерологии НАМН Украины»

²Институт радиофизики и электроники им. А.Я. Усикова НАН Украины

Резюме. Исследование гидратации и поверхностного натяжения плазмы крови больных ограниченной склеродермией в КВЧ-диапазоне радиоволн ($f=35,6\div37,7$ ГГц) проведено в области дисперсии диэлектрической проницаемости свободной воды. Рассчитан индекс реакции относительно наличия аутоантител к ДНК с помощью иммуноферментной тест-системы «Антитела к ДНК — ИФА». При анализе параметров реальной части комплексной диэлектрической проницаемости (ε) показал уменьшение гидратации в образцах плазмы крови с более выраженным индексом реакции ДНК (контроль — H_2O , ε ' H_2O при $t=24\,^{\circ}C-23,2$). Корреляция полученных экспериментальных данных по двум методикам (r=0,73) предполагает возможность адаптации метода КВЧ-диэлектрометрии для диагностики ограниченной склеродермии в клинических условиях.

Ключевые слова: плазма крови, КВЧ-диэлектрометрия, ограниченная склеродермия.

ВВЕДЕНИЕ

Адаптация биофизических подходов, как дополнительных к иммунологическим методам, в исследовании патогенетических механизмов аутоиммунных заболеваний становится все более актуальной. Это связано с эффективностью регистрации электромагнитного сигнала в широком диапазоне частот (α -, β -, γ -дисперсии), и основано на высокочувствительных откликах биосистем на клеточном и субклеточном уровнях вплоть до специфических мембранных структур и

отдельных реакций. Электрические свойства клеток достоверно характеризуют их биологическую полноценность, и находятся в непосредственной связи с целостностью физико-химической структуры клеточной оболочки, ответственной за её поляризационные свойства [3].

Патогенез ограниченной склеродермии (ОСД) достаточно сложен [5]; среди множества гипотез, в основном, предполагают сосудистые, обменные, иммунные нарушения, которые, в первом случае, являются следствием дефекта функций клеточных мем-

бран и накоплением ионов кальция и магния в разных клетках больных ОСД и усиленным синтезом фибробластов [1], в остальных — повышенный уровень коллагеновых белков является источником сильной антигенной стимуляции, при этом активно запускаются механизмы аутореактивности. В патогенезе ОСД, также как и при хронической красной волчанке [2], основная роль принадлежит антителам к ДНК, которые образуют с антигенами иммунные комплексы, что сопровождается изменением интегральной гидратации макромолекул.

Обнаружение антинуклеарных антител в крови пациентов с ОСД с помощью тестов непрямой иммунофлуоресценции и иммуноферментного анализа являются не только диагностическими маркерами, но и помогают определить степень активности болезни и ее прогноз. Определение антител с помощью терагерцовой спектроскопии, в аспекте изучения диэлектрических свойств иммуноглобулинов, актуально ввиду того, что вибрационные моды, характеризующие изменения сети внутримолекулярных водородных связей, ассоциированы с третичной структурой антител и лежат в дальнем инфра-красном или терагерцовом диапазоне частотного спектра [6].

КВЧ-диэлектрометрия является неинвазивной и достаточно чувствительным методом в исследовании связанной воды, которая является одним из основных элементов пространственной организации белковой молекулы, определяющей структуру макромолекулы и отвечающей за её формирование, конформационную подвижность и динамические характеристики [4, 7].

Цель работы - исследование параметров гидратации и поверхностного натяжения плазмы крови больных ограниченной склеродермией с возможной адаптацией метода КВЧ-диэлектрометрии в диагностике аутоиммунных заболеваний.

МАТЕРИАЛЫ И МЕТОДЫ

Материалом для исследования послужила плазма крови 16 больных ОСД. Уро-

вень гидратации плазмы крови определяли с помощью аппаратурно-регистрирующего комплекса, позволяющего на частотах дисдиэлектрической проницаемости персии свободной воды ($f = 10 \div 50 \Gamma \Gamma \mu$) анализировать характер конформационных изменений белковых структур через ориентационную поляризацию молекул воды. Относительное изменение количества свободной (расстояние ~ 5 Å и более от центра гидратации молекулы) и связанной (расстояние менее 5 Å) с белковыми структурами воды определялось по параметру ε' с точностью $\Delta = \pm 1$ %; точность измерений по абсолютным значениям составила $\pm 3.5 \%$.

Измерение коэффициента поверхностного натяжения плазмы крови (σ) прямо пропорционального медианной частоте $(F_{\text{медианная}})$, проводилось с помощью кюветы, размещенной на пьезо-платформе, и помещенной в раскрыв 8-мм волновода при скрининге («sweep»-режим) звуковых частот $(f=20 \div 60 \ \Gamma\text{ц})$, входящих в область собственных колебаний системы пьезо-платформа — кювета. Температурная коррекция приводилась к $t=24\ \text{C}$ °.

Частотный анализ проводился с помощью специально разработанного программного обеспечения с помощью быстрого Фурье-преобразования (БФП), при этом объем звукового файла не превышал $0.5~\Gamma$ б; длительность не более 120~ сек. Точность измерений, с учетом погрешности дозатора, не более $\pm 0.05~\Gamma$ ц.

Определение антител в плазме крови контрольных и опытных образцов осуществлялось с применением иммуноферментной тест-системы «Антитела к ДНК - ИФА». Для оценки выраженности положительной реакции рассчитывали индекс реакции (ИР): оптическую плотность каждого исследуемого образца соотносили к среднему значению оптической плотности отрицательного контроля (антитела к ДНК/ отрицательный контроль) Статистическую обработку результатов проводили с использованием пакета статических программ Microsoft Excel 2003.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Выявлена зависимость значения ИР к наличию антител к ДНК плазмы крови от ε' (табл. 1); оказалось что, чем более выражена положительная реакция относительно наличия антител к ДНК нативная, тем выше значение реальной части комплексной диэ-

лектрической проницаемости. Вероятно увеличение количества свободной воды в даной биологической системе сопровождается уменьшением гидратации макромолекул, при этом увеличивается количество свободных водородных связей ДНК за счет образования дополнительных положительно заряженых СН, и NH, групп.

Таблица 1 Значения индекса реакции , уровня диэлектрической проницаемости и медианной частоты при ограниченной склеродермии

	Индекс реакции				
No	Антитела к ДНК _{нативная} / отр.контроль	Антитела к ДНК _{денатур} / отр.контроль	Антитела к ДНК _{формализ} / отр.контроль	$F_{_{ m Meduahhaa}}$, Гц	arepsilon'
1	2,2	2,5	1,2	37,7	20,3
2	1,5	2,5	1,2	38,2	19,8
3	1,0	1,0	1,1	37,9	19,6
4	1,7	2,8	1,1	37,7	20,1
5	1,6	1,5	1,8	38,5	19,9
6	1,5	2,8	2,2	38,3	19,0
7	1,8	1,8	1,7	37,8	19,7
8	1,3	1,8	1,2	38,1	19,8
9	1,2	1,5	1,0	37,7	19,7
10	1,0	2,1	1,4	37,4	19,7
11	1,1	1,0	1,2	37,54	19,7
12	1,2	1,0	1,1	37,42	19,9
13	3,4	4,0	4,5	37,6	20,2
14	2,0	2,5	2,2	38,5	20,1
15	2,3	3,1	1,4	37,8	19,7
16	1,4	2,4	1,6	37,9	19,4

Измерения ε' в KBЧ-диапазоне (f=37,7 ГГц) позволило получить качественную оценку изменения интегральной гидратации биологической системы плазмы крови, что может служить, наряду с иммцунологическими параметрами, информативным маркером.

На рис. 1 приведен частотный анализ 3-х исследуемых образцов плазмы крови больных ОСД с различным значением ИР для определения медианных частот 1-го мода колебаний.

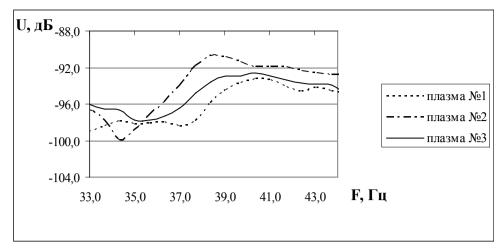


Рисунок 1. Пример частотного анализа 3-х образцов плазмы крови для определения поверхностного натяжения и медианных частот в области 1-го мода колебаний при «sweep»-режиме: кривая мелким пунктиром –плазма отрицательная (ИР = 1,0); кривая крупным пунктиром –плазма слабоположительная (ИР = 1,5); кривая сплошной линией –плазма положительная (ИР = 3,4)

Частотный анализ плазмы крови (рис. 1) определяет ход электромагнитного отклика $(U, \, \mathsf{д}\mathsf{Б})$, а также поверхностного натяжения исследуемых образцов. На частотах дисперсии диэлектрической проницаемости свободной воды, плазма крови с положительным ИР и слабоположительным ИР характеризуются более высокими значениями электромагнитного отклика и, следовательно, меньшими значениями поверхностного натяжения данной биологической системы.

ЛИТЕРАТУРА

- 1. Болотная Л. А.Новое в патогенезе и терапии ограниченной склеродермии / Л. А. Болотная, Ф. Б. Шахова., И. М. Сербина // Вестник дерматологии и венерологии.— 2004.— № 2.— С. 31-34.
- 2. Савенкова В.В. Характеристика імунного статусу хворих на червоний вовчак залежно від стадії захворювання / В.В. Савенкова, Е.М. Солошенко, О.П. Білозоров // Дерматологія та венерологія.— 2013.— №3(61).— С. 77-83.
- 3. Седунов Б. И. Диэлектрическая проницаемость биологических веществ / Б. И. Седунов, Д. А. Франк-Каменецкий // Успехи

ВЫВОДЫ

Достаточный уровень корреляции полученных экспериментальных данных по двум методикам (КВЧ-диэлектрометрии и иммуноферментного анализа) позволяет рекомендовать использовать измерение показателей гидратации и поверхностного натяжения плазмы крови для повышения эффективности диагностики и оценки проводимой терапии ОСД.

REFERENCES

- 1. Bolotnaya L.A., Shakhova F.B., Serbina I.M. Novoe v patogenese i terapii ogranichennoj sklerodermii // Vestnik dermatologii i venerologii. 2004. № 2. S. 31-34. (in Russian).
- 2. Savenkova V.V., Soloshenko E.N., Bilozorov O.P. Kharakterystyka imunnogo statusu khvoryh na chervonyj vovchak zalezhno vid stadii zakhvoryuvannya // Dermatologiy ta venerologiya.— 2013.— №3(61).— S. 77-83. (in Russian).
- 3. Sedunov B.I., Frank-Kamenetskiy D.A. Dielektricheskaya pronizaemost biologicheskih veshchestv // Uspekhi fizicheskikh nauk. 1963. T.79. Vyp. 4. S. 617-639. (in Russian).

физических наук. – 1963.- Т.79. – Вып. 4, – С. 617-639

- 4. Asami K. Characterization of heterogeneous systems by dielectric spectroscopy / K. Asami // Prog. Polym. Sci. 2002. Vol. 27. P. 1617-1659.
- 5. Laxer R. Localized scleroderma / R. Laxer, F. Zulian // Curr. Opin. Rheumatol.—2006.—Vol.18.— P. 606 613.
- 6. Sun Y. Investigating Antibody Interactions with a Polar Liquid Using Terahertz Pulsed Spectroscopy / Y. Sun, Y. Zhang, E. Pickwell-MacPherson // Biophysical Journal.— 2011.— Vol. 100.— P. 225-231.
- 7. Yardley J. E. On-line, real-time measurements of cellular biomass using dielectric spectroscopy / J.E. Yardley, D.B. Kell, C.L. Davey // Biotechnol. Genet. Eng. Rev.— 2000.— Vol. 17.—P. 3-35.

ДОСЛІДЖЕННЯ
ПАРАМЕТРІВ ГІДРАТАЦІЇ
ТА ПОВЕРХНЕВОГО
НАТЯГУ ПЛАЗМИ КРОВІ
ХВОРИХ НА ОБМЕЖЕНУ
СКЛЕРОДЕРМІЮ

Солошенко Е.М.¹, Бєляєв Г.М.¹, Кондакова Г.К.¹, Колесніков В.Г.², Хміль Н.В.², Шевченко З.М.¹, Ярмак Т.П.¹

¹ДУ «Інститут дерматології та венерології НАМН України»

²Інститут радіофізики та електроніки ім. О.Я. Усикова НАН України

Резюме. Дослідження гідратації та поверхневого натягу плазми крові хворих на обмежену склеродермію в НВЧ-діапазоні радіохвиль ($f = 35,6 \div 37,7 \Gamma \Gamma \mu$) проведено в області дисперсії діелектричної проникності вільної води, а також зроблено розрахунки

- 4. Asami K. Characterization of heterogeneous systems by dielectric spectroscopy // Prog. Polym. Sci. 2002. Vol. 27. P. 1617-1659.
- 5. Laxer R., Zulian F. Localized scleroderma // Curr. Opin. Rheumatol.— 2006.—Vol.18.— P. 606 613.
- 6. Sun Y., Zhang Y., Pickwell-MacPherson E. Investigating Antibody Interactions with a Polar Liquid Using Terahertz Pulsed Spectroscopy // Biophysical Journal.—2011.—Vol. 100.—P. 225-231.
- 7. Yardley J. E., Kell D.B., Davey C.L. Online, real-time measurements of cellular biomass using dielectric spectroscopy // Biotechnol. Genet. Eng. Rev. 2000. Vol. 17. P. 3-35.

INVESTIGATION
OF HYDRATION
PARAMETERS AND
SURFACE TENSION OF
SERUM AT LOCALIZED
SCLERODERMA

Soloshenko E.N.¹, Belyaev G.M.¹, Kondakova A.K.¹, Kolesnikov V.G.², Khmel N.V.², Shevchenko Z.M.¹, Yarmak T.P.¹

¹SE «Institute of Dermatology and Venerology of NAMS of Ukraine»

²O. Ya. Usikov Institute for Radiophysics and Electronics of NAS of Ukraine

Abstract. The investigation of serum hydration and surface tension concerning localized scleroderma in EHF-range of radiowaves ($f = 35,6 \div 37,7$ GHz) in the field of free water permittivity was carried out. The index reaction concerning presence autoantibodies to DNA by

індексу реакції відносно присутності аутоантитіл до ЛНК за допомогою імуноферментної тест-системи «Антитіла до ДНК – ІФА». Аналіз параметру реальної частини комплексної діелектричної проникності (є') показав зменшення гідратації в зразках плазми крові з більш вираженим індексом реакції ДНК нативна (контроль – H,O, $\varepsilon' H$,O при t = 24°C - 23,2). Кореляція отриманих експериментальних даних за двома методиками (r=0,73) припускає можливість адаптації методу НВЧ-діелектрометрії для діагностики обмеженої склеродермії в клінічних умовах.

Ключові слова: плазма крові, НВЧдіелектрометрія, обмежена склеродермія. means of immuno-enzymatic test systems «Antibodies to DNA - IEA» was also calculated. The analysis of parameters of real part of complex permittivity (ε ') has shown the dencrease of hydration level of serum samples with more marked index reaction DNA_{nature} (the control is H_2O , ε ' H_2O at t=24°C -23,2). The correlation of the received experimental data by two techniques (r=0,73) assumes possibility of adaptation of EHF-dielectrometry for localized scleroderma diagnostics in clinical conditions.

Key words: *serum, EHF-dielectrometry, localized scleroderma.*

Об авторах:

Солошенко Эльвира Николаевна – доктор мед. наук, професор, зав. лаб. аллергологии ГУ «Інститут дерматологии и венерологии НАМН Украины».

Беляев Георгий Митрофанович — доктор мед. наук, врач-консультант поликлиники ГУ «Институт дерматологии и венерологии НАМН Украины».

Кондакова Анна Константиновна – кандидат биол. наук, зам. директора по научной работе ГУ «Інститут дерматологи и венерологи НАМН Украины».

Колесников Владимир Григорьевич, – старший научный сотрудник, кандидат физ.-мат. наук, старший научный сотрудник отдела прикладной биофизики Института радиофизики и электроники им. А.Я. Усикова. НАН Украины. kolesnik@ire.kharkov.ua.

Хмель Наталья Владимировна — кандидат биол. наук, научный сотрудник отдела прикладной биофизики Института радиофизики и электроники им А.Я. Усикова НАН Украины.

Шевченко Зоя Михайловна – младший научн. сотрудник лаборатории аллергологии ГУ «Институт дерматологии и венерологии НАМН Украины».

Ярмак Татьяна Павловна – младший научн. сотрудник лаборатории аллергологии ГУ «Институт дерматологии и венерологии НАМН Украины».