Motto: "Make Progress, Face Challenges, Get Solutions"

World Congress on Medical Physics & Biomedical Engineering

June 3–8, 2018 Prague, Czech Republic

Book of Abstracts

World Congress on Medical Physics & Biomedical Engineering June 3–8, 2018, Prague, Czech Republic, www.iupesm2018.org

CONTENTS

Preface	
Committees	
Abstracts	
Plenary Speakers	
Special Sessions	
Educational Sessions	
MT1 - Diagnostic Imaging	
MT2 - Image Processing	
MT3 - Information Technology in Healthcare	278
MT4 - Modelling and Simulation	319
MT5 - BME and MP Education, Training and Professional Development	405
MT6 - Patient Safety	436
MT7 - Accreditation and Certification	458
MT8 - Health Technology Assessment	464
MT9 - Biosignals Processing	481
MT10 - Biomechanics, Rehabilitation and Prosthetics	568
MT11 - Minimum Invasive Surgery, Robotics, Image Guided Therapies, Endoscopy	631
MT12 - Diagnostic and Therapeutic Instrumentation	637
MT13 - Micro- and Nanosystems, Active Implants, Biosensors	701
MT14 - Neuroengineering, Neural Systems	701
MT15 - Biomaterials, Cellular and Tissue Engineering, Artificial Organs	730
MT16 - Assistive Technologies	
MT17 - Biological Effects of Electromagnetic Fields	777
MT18 - Clinical Engineering	
MT19 - Radiation Oncology Physics and Systems	828
MT20 - Dosimetry and Radiation Protection	
MT21 - Advanced Technologies in Cancer Research and Treatment	1010
MT22 - Biological Effects of Ionizing Radiation	
MT23 - Nuclear Medicine and Molecular Imaging	
Partners	

World Congress on Medical Physics & Biomedical Engineering

based coatings was homogeneous throughout the surface; whereas the surface morphology of TCP coated magnesium samples contained some irregularities that may be due to a wide size distribution of initial powder. The measured Ca/P ratio values were 1.96 ± 0.09 and 1.98 ± 0.12 for initial HA and TCP powders, respectively. The measured Ca/P ratio values for powders were found to be greater as compared with those specified in literature for stoichiometric HA (1.67) and TCP (1.50); they correspond to the Ca/P ratio value of tetra-calcium phosphate (TTCP – 2.00). On the other hand, the Ca/P ratio values for the coatings ZrO2/HA "mixture", ZrO2/HA "sandwich", HA and TCP were calculated as 1.83 ± 0.21 , 1.76 ± 0.10 , 1.84 ± 0.22 and 1.67 ± 0.07 , respectively. In conclusion, the developed and utilized GDD method is highly promising to obtain bioactive coatings on magnesium to control its degradation.

Acknowledgements: This work was supported by IP@Leibniz Program as well as Ulderup Foundation.

Contribution ID: 795

15. Biomaterials, Cellular and Tissue Engineering, Artificial Organs 15.02. Artificial skin, bones, joints, teeth and related biomaterials

Fabrication of electrospun fiber mats with defined geometry and load profile

Michael Bode¹, Dominik de Cassan², Henning Menzel², Birgit Glasmacher¹

¹Institute for Multiphase Processes, Leibniz Universität Hannover, Hannover, Germany

²Institute for Technical Chemistry, Technische Universiät Braunschweig, Brunswick, Germany

The general feasibility to manufacture a model-based implant for the muscle-tendon transition at the rotator cuff is focused in this research. The idea to replace the native tendon with an electrospun fiber mat based is based on biodegradable polycaprolactone (PCL). The fiber mats will exhibit graded mechanical and geometric properties as well as a defined load profile. The detailed aim is to mimic the mechanical properties of the collagen structure of the native tendon.

Therefore two different fiber morphologies are needed. On the one hand aligned fibers who assimilate the full mechanical load. On the other hand non-aligned fibers are needed to act as scaffold for cell migration. The main task is to combine aligned and not aligned fiber mats within one fiber mat.

Commonly used dynamic rotation drum collectors generate increased alignment in dependence of increased circumferential speed. However, with this technique, it is merely possible to either get aligned or non-aligned fibers. In contrast, the gap spinning effect combines both in a static setup. To quantify these results, the orientation degree was measured. The lower the range, the higher the orientation. The gap spinning shows highly aligned fibers (<15°) between two collectors and non-aligned fibers (~100°) at the surface of the collector.

Acknowledgements: This research is funded by FOR2180 by Deutsche Forschungsgemeinschaft (DFG).

Contribution ID: 803

15. Biomaterials, Cellular and Tissue Engineering, Artificial Organs 15.02. Artificial skin, bones, joints, teeth and related biomaterials

Cross-linked alginate structures for engineering of scaffolds for neural tissue engineering

Birgit Glasmacher¹, Fedaa AL Halabi¹, Oleksandr Gryshkov¹, Arevik Avakian², Oleg Avrunin² ¹Institute for Multiphase Processes, Leibniz Universität Hannover, Hannover, Germany ²Department of Biomedical Engineering, Kharkiv National University of Radio Electronics, Kharkiv, Ukraine

World Congress on Medical Physics & Biomedical Engineering

June 3–8, 2018, Prague, Czech Republic, www.iupesm2018.org

In neural tissue engineering polymers are being investigated as potential scaffolds for supporting nerve regeneration processes. Electrospun piezoelectric scaffolds from polyvinylidene-fluoride (PVDF) with introduction of alginate encapsulated cells and growth factors are very promising to stimulate and accelerate nerve cells ingrowth. In previous studies, the biocompatibility of the scaffolds has been proved and their morphological, mechanical and electric properties have been investigated. This study reports developing a 3D-printing strategy for generation adjustable cross-linked alginate structures for engineering of PVDF-scaffolds.

A hand-made 3D-printer and a coaxial nozzle have been designed and constructed to produce cross-linked alginate structures. Alginate (1.5%, w/v) was pumped at different flow rates through the needle (outer diameter 0.4 mm). The printing speed (0.5-4.5 mm/s) was controlled using developed software. The size of generated structures was analyzed using a Zeiss SteREO Discovery.V12 microscope. The amnion multipotent stromal cells (3×106 cells/ml) were used to print alginate structures with encapsulated cells. The viability of cells was analysed using Calcein AM/EthD-1 live-dead viability and visualized using a fluorescent microscope Zeis Axiovert 200M.

Preliminary experiments using the hand-made 3D-printer have shown that size of cross-linked alginate structures can be precisely controlled (100-1000 μ m) by a range of process parameters, such as printing speed, alginate flow rate as well as nozzle diameter. As expected, the viability of cells entrapped into printed alginate structures analysed using a Calcein AM / Ethidium Homodimer live-dead viability assay was not significantly lower (87.3 ± 3.2%) as compared to initially viable cells (90.1 ± 2.4%).

Taken together, the experiments prove a great potential of a 3D-printing strategy to develop multistructural tissue-engineered PVDF scaffolds with an application of alginate encapsulated cells and growth factors to develop an effective method for replacement and regeneration of damaged nerves of a peripheral nervous system (PNS).

Contribution ID: 807

15. Biomaterials, Cellular and Tissue Engineering, Artificial Organs 15.02. Artificial skin, bones, joints, teeth and related biomaterials

μCT based characterization of biomaterial scaffold microstructure under compression

Markus Hannula, Nathaniel Narra, Jari A. K. Hyttinen

BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland

In this study, two scaffolds (PLCL and collagen) were subjected to deformation under uniaxial compression. The corresponding changes in the scaffold bulk characteristics were observed through micro computed tomographic imaging. Calculated parameters for both samples were porosities, material thickness and pore thickness of analysed volumes. The results show an expected decrease in porosity with increasing deformation. Especially in sandwich constructs of collagen-PLA it was evident that different materials can be affected differently which may be of significance in certain applications. The results of this study are a step towards understanding the changes in the structure of these scaffolds under expected operation.

Contribution ID: 845

15. Biomaterials, Cellular and Tissue Engineering, Artificial Organs 15.02. Artificial skin, bones, joints, teeth and related biomaterials

Fabrication of a multi-layered human breast cancer tissue model for clinical evaluation of photothermal therapy

Ki-Hwan Nam

SPONSORS & PARTNERS

Supported by

Gold Sponsors

Selekta Varian

Silver Sponsor

