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based coatings was homogeneous throughout the surface; whereas the surface morphology of 
TCP coated magnesium samples contained some irregularities that may be due to a wide size 
distribution of initial powder. The measured Ca/P ratio values were 1.96±0.09 and 1.98±0.12 for 
initial HA and TCP powders, respectively. The measured Ca/P ratio values for powders were found 
to be greater as compared with those specified in literature for stoichiometric HA (1.67) and TCP 
(1.50); they correspond to the Ca/P ratio value of tetra-calcium phosphate (TTCP – 2.00). On the 
other hand, the Ca/P ratio values for the coatings ZrO2/HA “mixture”, ZrO2/HA “sandwich”, HA and 
TCP were calculated as 1.83±0.21, 1.76±0.10, 1.84±0.22 and 1.67±0.07, respectively. In 
conclusion, the developed and utilized GDD method is highly promising to obtain bioactive 
coatings on magnesium to control its degradation. 
Acknowledgements: This work was supported by IP@Leibniz Program as well as Ulderup 
Foundation. 
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The general feasibility to manufacture a model-based implant for the muscle-tendon transition at 
the rotator cuff is focused in this research. The idea to replace the native tendon with an 
electrospun fiber mat based is based on biodegradable polycaprolactone (PCL). The fiber mats will 
exhibit graded mechanical and geometric properties as well as a defined load profile. The detailed 
aim is to mimic the mechanical properties of the collagen structure of the native tendon. 
Therefore two different fiber morphologies are needed. On the one hand aligned fibers who 
assimilate the full mechanical load. On the other hand non-aligned fibers are needed to act as 
scaffold for cell migration. The main task is to combine aligned and not aligned fiber mats within 
one fiber mat.  
Commonly used dynamic rotation drum collectors generate increased alignment in dependence of 
increased circumferential speed. However, with this technique, it is merely possible to either get 
aligned or non-aligned fibers. In contrast, the gap spinning effect combines both in a static setup. 
To quantify these results, the orientation degree was measured. The lower the range, the higher 
the orientation. The gap spinning shows highly aligned fibers (<15°) between two collectors and 
non-aligned fibers (~100°) at the surface of the collector. 
Acknowledgements: This research is funded by FOR2180 by Deutsche Forschungsgemeinschaft 
(DFG). 
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In neural tissue engineering polymers are being investigated as potential scaffolds for supporting 
nerve regeneration processes. Electrospun piezoelectric scaffolds from polyvinylidene-fluoride 
(PVDF) with introduction of alginate encapsulated cells and growth factors are very promising to 
stimulate and accelerate nerve cells ingrowth. In previous studies, the biocompatibility of the 
scaffolds has been proved and their morphological, mechanical and electric properties have been 
investigated. This study reports developing a 3D-printing strategy for generation adjustable cross-
linked alginate structures for engineering of PVDF-scaffolds. 
A hand-made 3D-printer and a coaxial nozzle have been designed and constructed to produce 
cross-linked alginate structures. Alginate (1.5%, w/v) was pumped at different flow rates through 
the needle (outer diameter 0.4 mm). The printing speed (0.5-4.5 mm/s) was controlled using 
developed software. The size of generated structures was analyzed using a Zeiss SteREO 
Discovery.V12 microscope. The amnion multipotent stromal cells (3×106 cells/ml) were used to 
print alginate structures with encapsulated cells. The viability of cells was analysed using Calcein 
AM/EthD-1 live-dead viability and visualized using a fluorescent microscope Zeis Axiovert 200M. 
Preliminary experiments using the hand-made 3D-printer have shown that size of cross-linked 
alginate structures can be precisely controlled (100-1000 µm) by a range of process parameters, 
such as printing speed, alginate flow rate as well as nozzle diameter. As expected, the viability of 
cells entrapped into printed alginate structures analysed using a Calcein AM / Ethidium Homodimer 
live-dead viability assay was not significantly lower (87.3 ± 3.2%) as compared to initially viable 
cells (90.1 ± 2.4%). 
Taken together, the experiments prove a great potential of a 3D-printing strategy to develop 
multistructural tissue-engineered PVDF scaffolds with an application of alginate encapsulated cells 
and growth factors to develop an effective method for replacement and regeneration of damaged 
nerves of a peripheral nervous system (PNS). 
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In this study, two scaffolds (PLCL and collagen) were subjected to deformation under uniaxial 
compression. The corresponding changes in the scaffold bulk characteristics were observed 
through micro computed tomographic imaging. Calculated parameters for both samples were 
porosities, material thickness and pore thickness of analysed volumes. The results show an 
expected decrease in porosity with increasing deformation. Especially in sandwich constructs of 
collagen-PLA it was evident that different materials can be affected differently which may be of 
significance in certain applications. The results of this study are a step towards understanding the 
changes in the structure of these scaffolds under expected operation. 
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