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Introductory Words from the Editorial Board 

 

 

The International Society for Bioelectromagnetism (ISBEM) was founded in 1996 in order to offer an 

exchange platform for researchers from all over the world regarding advances in bioelectromagnetism. 

Therefore, the society sponsors the biennially organised international congresses on bioelectromagnetism, 

starting from 1996. The first International Conference on Bioelectromagnetism (ICBEM) has been held in 

Tampere, Finland in 1996, After that, the ICBEM conference took place in Melbourne (1998), Bled (2000), 

Montreal (2002), Minneapolis (2005), Aizu (2007), Rome (2009), Banff (2011), Geneva (2013) and Tallinn 

(2015). Following the fundamental idea of the ISBEM, the ICBEM provides a platform for researchers all 

over the world to share their experience regarding their work in the broad field of bioelectromagnetism, 

which includes: 

 The behavior of excitable tissue (the sources) 

 The electric currents and potentials in the volume conductor 

 The magnetic field at and beyond the body 

 The response of excitable cells to electric and magnetic field stimulation 

 The intrinsic electric and magnetic properties of the tissue. 

 

This year, we are very happy to welcome all participants to the 11th International Conference on Bioelectro-

magnetism in Aachen, Germany. In 2018, the ICBEM will be jointly held together with the 13th Russian-

German Conference on Biomedical Engineering (RGC) hosted by the Philips Chair for Medical Information 

Technology (MedIT) at RWTH Aachen University. As regarding for the editorial board, we would like to 

thank all participants contributing to ICBEM & RGC 2018 with their research and hope the conference to 

be a great experience for all participants. 

 

 

The Editorial Board: 

 

 

____________________ ____________________ ____________________ 

Prof. Kazuo Yana   Prof. Jaakko Malmivuo   Prof. Steffen Leonhardt 
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Introduction 

Topical are the problems associated with the prediction 

and evaluation of the functional results of endonasal sur-

gery, which, in the case of respiratory and olfactory dis-

orders [1-3], are the condition of air passage through the 

superior nasal passage and the restoration of olfactory 

sensitivity. 

Changing the direction of the main air stream with nasal 

breathing leads to constant irritation of certain sections of 

the mucous membrane (for example, a portion of the mu-

cosa of the nasal cavity that contains olfactory receptors, 

the so-called olfactory zone), which will subsequently 

lead to cellular infiltration in this region and then to hy-

pertrophy of the mucosa shell. Therefore, it is necessary 

to study the distribution of velocities and pressures in the 

nasal cavity under different respiration regimes. 

Materials and Methods 

An important characteristic of nasal breathing is the dis-

tribution of air flow rates along the sections of the nasal 

cavity. When analyzing the existing approaches, it was 

determined that the main method of studying the aerody-

namics of the nasal cavity is rhinomanometry. However, 

there is not always a clear correlation between anatomical 

and functional indicators, as well as subjective feelings of 

the patient and rhinomanometric data [4-9]. Numerical 

modeling of air passage through the nasal cavity is also 

used with the help of special applications that allow one 

to observe animated and static flow patterns on the com-

puter screen, as well as integral air flow indicators, updat-

ed after each global iteration (changes in the flow struc-

ture as a function of time). The most famous and func-

tional software packages are CFX (Canada, Great Britain, 

Germany), Ansys, Flotran module, (USA), STAR-CD 

(Great Britain), Fluent (USA), Numeca (Belgium), Flow-

ER (Ukraine), Flow Vision (Russia). 

Calculation of gas flow in modern software products is 

performed by numerically solving a system of equations 

describing the most general case of motion of a liquid 

medium. These are the Navier-Stokes equations and con-

tinuity. The boundary conditions, as a rule, are conditions 

for the flow velocity to be zero on the walls of the cavity, 

the distribution of velocity components in the input sec-

tion and the zero of the first derivatives (in the direction 

of flow) of the velocity components in the outlet section, 

it is also possible to specify the average flow velocity or 

flow rate The output parameters are not specified. The 

pressure enters the equation only in the form of the first 

derivatives, and its value is indicated only at one point in 

the computational domain. The most frequent phenomena 

in biological objects are turbulent currents. Direct simula-

tion of turbulent flows by numerical solution of the Na-

vier-Stokes equations written for instantaneous velocities 

is still extremely difficult, and, as a rule, not instantane-

ous, but averaged values of the velocities are of practical 

interest. Often, for the analysis of turbulent flows, instead 

of equations, the Reynolds equations and various models 

of turbulence are used. 

The choice of the software package FlowVision for nu-

merical modeling of aerodynamic processes in the nasal 

cavity is due to its availability in the Ukrainian software 

market, as well as the dissemination of its non-

commercial versions (using an unlimited demo version of 

FlowVision 2 with a limited grid capacity of 15,000 

cells). 

However, the software product FlowVision does not have 

an embedded preprocessor (its own development tools for 

creating geometric objects), but it allows one to import 

the geometric configuration of the investigated structures 

(cavities) from many modern CAD-systems, for example, 

SolidWorks, Compass 3D, AutoCAD. Also, the package 

has a convenient interface that allows one to visualize the 

imported calculation area, specify the boundary condi-

tions, environment properties, and the parameters to be 

examined. The FlowVision package uses a rectangular 

(Cartesian) design grid with the ability to adaptively se-

lect cell sizes and an approach to discretizing the equa-

tions of a mathematical model based on the finite volume 

method that provides the law of conservation of integral 

quantities (flow, momentum) in each of the computational 

grid cells. In this case, a certain closed region of gas flow 

is selected for which the fields of macroscopic quantities 

(for example, pressure drop, velocity, flow) are searched, 

describing the state of the medium in time and satisfying 

certain physical laws. 

Convenient post-processing tools allow one to watch an-

imated and static flow patterns on the screen, as well as 

integral flow indicators that are updated after each global 

iteration (changing the flow structure as a function of 

time). The set of available visualization tools includes 

standard two-dimensional graphics, vector fields, isolines 

and isosurfaces of the specified parameters, color filling 

of regions depending on the values of the parameter being 

studied, and animation of the motion of the fluid particles. 

After loading in the software package of the geometric 

model of the upper respiratory tract in * .STL format, the 

following parameters were specified: 
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1. Setting of the properties of the calculation area and 

parameters of the medium 

2. Setting of boundary conditions (the value of the pres-

sure differential on the nasal cavity (0.3, 1.0, 2.0, 5.0 

and 10 kPa) 

3. Introduction of flow through the nasal cavity (0.3, 0.6, 

1, 2 and 4 s-1), velocity at the wall equal to zero), type 

and additional parameters of the computational model. 

Results 

For a laminar regime in a section with radius a, we obtain 

a parabolic dependence of the velocities W on the distance 

from the center r: 

 
𝑊 = 2𝑊 (1 −

𝑟2

𝑎2
) ( 1 ) 

where W is the average speed, r is the distance from the 

center, and a is the radius 

For the turbulent regime, the velocity is defined as fol-

lows: 

 
𝑈 = 𝑈𝑚𝑎𝑥 (

𝑟

𝑎
)
0.9√𝜆

 ( 2 ) 

where Umax is the maximum speed, λ is the loss factor. 

Numerical data on the distribution of airflow velocities 

with an accuracy of 15% coincide with the analytical so-

lutions obtained by equations (1, 2). 

Whatever the law of velocity distribution in the section of 

the turbulent flow, the speed near the wall is 0, increasing 

to the axis of the flow. Consequently, there should be a 

low-speed layer, the thickness of which depends on 

Reynolds number Re, and the velocity increases from 0 to 

90% of the velocity of the core of the flow (fig. 1) [4-6]. 

 

 
 

Figure 1: Schematic representation of the turbulent core 

of the stream (blue) and laminar boundary layer (red col-

or) (dr – is the hydraulic diameter, 𝛿 – the thickness of 

the laminar boundary layer, l –length of section) 

With an increase in airflow velocity (with forced breath-

ing-physical load, narrowing of the nasal passage), the 

thickness of the laminar boundary layer will decrease, the 

mucosa will be exposed to high-speed turbulent flow. 

Turbulization of the air flow will promote drying of indi-

vidual areas of the mucous membrane of the nasal cavity, 

and as a result traumatization of the mucosa with subse-

quent morphological rearrangement of individual areas. 

In the laminar regime, the highest velocity is observed in 

the central regions of the general and inferior nasal pas-

sages. In the turbulent regime, the velocity is also con-

stant over a larger cross-sectional area and the velocity in 

the near-wall region is sharply reduced. 

Air flow rates corresponded to 0.2, 1 and 2 L/s (calm, 

strengthened and forced - with physical exertion). The 

values of the distribution of the pressure difference were 

in the range 0.1-5 kPa - the upper limit characterizes the 

regime of forced breathing.  The air flow rates were de-

pendent on the nasal cavity sections in the range from 

0.04 to 3 m/s, with maximum velocities observed in the 

nasal valve region and in the anatomical narrowing of the 

canal. With pronounced local resistances, the results of 

numerical simulation clearly showed areas of increased 

turbulence and swirl up to the reverse flow. These pro-

cesses, leading to difficulty in nasal breathing, were clear-

ly visualized with an aerodynamic drag coefficient greater 

than 1.5 kPa l/s. 

The Reynolds numbers (fig. 2 c, d and fig. 3 c, d) depend 

essentially on the degree of forced breathing, and on the 

equivalent diameter and area of the nasal cavity and, in 

fact, mirror the distributions of the corresponding parame-

ters. With quiet breathing (flow rate 0.5 l/s), the Reynolds 

numbers are small for almost all the cases under consider-

ation (fig. 2 c, d and fig. 3 c, d) and sharply increase to 

10,000 or more with forced respiration (at a flow rate of 2 

l/s) and have extremes in generalized, or local narrowing 

of the nasal canals. Increased Reynolds numbers indicate 

an increase in turbulence in the corresponding areas of the 

nasal cavity. 

 

    
 

             a) b) 

 
 

             c) d) 

Figure 2: Images of characteristic axial SCT sections: a) 

without disturbance of nasal breathing; b) when the nasal 

septum is curved to the right; and the corresponding dis-

tributions for the right nasal passage: c), d) Reynolds 

numbers along the length of the nasal cavity at costs of 

0.5 (1), 1.0 (2) and 2.0 (3) l/s (n - numbers of the frontal 

sections of the nasal cavity) 
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             a) b) 

 
 

             c) d) 

Figure 3: Images of characteristic axial SCT sections: a) 

in chronic rhinosinusitis, b) with S-shaped wavy curvature 

of the nasal septum; and the corresponding distributions 

for the right nasal passage c), d) of the Reynolds numbers 

along the length of the nasal cavity at flow rates of 0.5 

(1), 1.0 (2) and 2.0 (3) l / s (n - numbers of the frontal sec-

tions of the nasal cavity) 

Discussion 

Spatial mapping of the model of air passage through the 

nasal cavity, shown in fig. 4, allows one to visually esti-

mate the air flow rate in the density of streamlines and in 

the animation mode to estimate the airflow velocity in dif-

ferent parts of the upper respiratory tract. The visualiza-

tion of data on the pressure drop along the length of the 

nasal cavity is shown in fig. 5 - the pressure values will be 

constant across sections, which are isobaric planes. The 

errors of the averaged analytical and numerical method 

with respect to the calculation of the pressure in the sec-

tions of the nasal cavity are within 10%. 

 

Figure 4: An illustration of the velocity field along the 

nasal passage (by the density of the airflow lines) from 

the data of the numerical experiment in the FlowVision 

package 

 
 

             a) b) 

Figure 5: The distribution of pressure drop along the 

length of the nasal passage according to the data of the 

numerical experiment in the FlowVision package: a - 

along the sagittal section of the nasal passage; b - in one 

of the characteristic sections (AA) of the nasal passage 

(halftones illustrate the change in pressure drop) 

Conclusions 

Thus, the three-dimensional modeling of the air flow 

through the nasal cavity allows to map the nasal passages 

along the parameters studied and to study their local val-

ues, which is important for the planning of minimally in-

vasive surgical interventions. However, the numerical 

modeling of the air flow in the nasal cavity with the help 

of software packages requires a large time (up to several 

working days), which is associated with a rather cumber-

some stage of preparing the initial data. This includes in-

teractive segmentation of anatomical objects, tracing con-

tours of airborne structures, forming a three-dimensional 

model nasal moves and its subsequent loading into the 

simulation environment, eliminating model geometry er-

rors, often resulting in repeated iterative implementation 

of the pre-stages and direct modeling stage, during which 

an aerodynamic and a large number of imaging parame-

ters. 

Analytical decisions are rather simplistic, but in most cas-

es allow to adequately assessing the degree of nasal aero-

dynamics disturbance. In fact, this is an extended model 

of a one-dimensional flow of air in a channel in a com-

plex form, in which the geometric characteristics of the 

nasal cavity are taken into account by the hydraulic diam-

eter. Preparation for the construction and analysis of the 

numerical model is a much more labor-intensive process, 

but allows you to visualize detailed spatial patterns of the 

distribution of aerodynamic parameters (3d fields of ve-

locities and pressure drops), which allows you to visualize 

reverse currents. 
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