

Abstract — The method of synthesis and implementation into

FPGAs (Field Programmable Gate Arrays) of Mealy FSMs
(Finite State Machines) is proposed. Synthesis is based on the
architectural decomposition and the multiple encoding. A set of
states is divided into subsets based on a current state or a
executed microinstruction. Then, states are encoded separately in
each subset. The state is decoded in the second-level circuit based
on the multiple code and the code of a current state or the code of
a executed microinstruction. It leads to implementation of an
FSM in double-level structure where utilization of both, LUTs
(Look-Up Tables) and embedded memory blocks, is applied. It
leads to balanced usage of hardware resources of an FPGA
device.

Index Terms — Circuit synthesis, Field programmable gate
arrays, Finite state machines, Logic design

I. INTRODUCTION
INITE state machines (FSMs) with Mealy’s outputs [1]
are one of the most popular model used in designing

control units (CUs) of digital systems. Nowadays field
programmable gate arrays (FPGAs) are used very often for
implementation of such digital systems [6]. One of the main
features of FPGAs is existence of logic elements with
restricted number of inputs that are named look-up tables
(LUTs) [4]. From another side, logic functions of FSMs
(called p-functions) have much more arguments (up to 200)
than typical LUTs have inputs (up to 6). This imbalance leads
to need of a functional decomposition of Boolean functions
describing the behavior of an FSM [5]. The negative result of
functional decomposition is increasing a number of levels of
the logic circuit of an FSM and increasing a number of
required LUTs for a implementation.

On the other hand, new FPGAs are equipped in embedded
memory blocks [9]. These blocks can be also used for
realization of combinational circuits. The problem is that

Manuscript received December 22, 2008.
A. Bukowiec is with the Institute of Computer Engineering

and Electronics, University of Zielona Góra, Podgórna 50, 65-246
Zielona Góra, Poland (phone: +48 68 328 2304; fax: +48 68 324 4733;
e-mail: a.bukowiec@iie.uz.zgora.pl).

A. Barkalov is with the Institute of Computer Engineering and Electronics,
University of Zielona Góra, Podgórna 50, 65-246 Zielona Góra, Poland
(e-mail: a.barkalov@ iie.uz.zgora.pl).

L. Titarenko is with the Institute of Computer Engineering and Electronics,
University of Zielona Góra, Podgórna 50, 65-246 Zielona Góra, Poland
(e-mail: l.titarenko@ iie.uz.zgora.pl).

implementation only with memory blocks also utilize a big
number of such blocks and very often exceed the number of
available blocks in an FPGA device.

One of methods of decreasing a number of p-functions
depending on a big number of arguments is an architectural
decomposition of an FSM [2]. Such methods apply encoding
of some parameters of an FSM. It leads to implementation of
an FSM in a double-level structure where a reduced number of
p-functions is realized in the circuit of first level, this circuit is
implemented with LUTs, and the circuit of second level
operates as a decoder and it is implemented with memory
blocks.

The proposed in this article method of synthesis is based on
the encoding of internal states divided into subsets based on a
current state or a currently executed microinstruction [3]. This
encoding allows to decrease a number of p-functions
implemented by the combinational circuit of an FSM. The
state is decoded in the second level circuit based on the
multiple code and the code of a current state or the code of a
currently executed microinstruction. Because this system is
regular it can be implemented with embedded memory blocks.
It leads to decrease a number of LUT elements required for
implementation of a logic circuit of an FSM and balanced
usage of different resources of an FPGA device.

II. FINITE STATE MACHINE DEFINITION
A finite state machine is a mathematical model of behavior

composed of a finite set of input symbols, a finite nonempty
set of states, a finite set of output symbols, transitions and
actions [1], [2]. This model can be represented as six tuple:
 ωδ ,,,,, 1aAYXS = , (1)
where:
• X is a finite set of input Boolean variables,

{ }LxxX ,,1 K= ;
• Y is a finite set of output Boolean variables, called

microoperations (µO), { }NyyY ,,1 K= ;
• A is a finite, nonempty set of states,

{ }MaaA ,,1 K= ;
• 1a is the initial state of the FSM, Aa ∈1 ;
• δ is a transition function, defined as a function of a state

and affirmation or negation of some input variables:
 AXA →×:δ ; (2)

State Machines Synthesis and Implementation
into FPGAs with Multiple Encoding of States

Arkadiusz Bukowiec, Alexander Barkalov, and Larysa Titarenko

F

R&I, 2008, No4 43

• ω is a output function, and in case of Mealy model it is
defined as a function of a state and affirmation or
negation of some input variables:

 YXA →×:ω . (3)
In case of Moore model it is defined only as a function
of a state:

 YA →:ω . (4)
Such defined a Mealy FSM can be set up by a direct

structural table (DST) [1] with columns: ma , ()maK , sa ,
()saK , hX , hY , hΦ , h . Here ma is a current state of an

FSM, Aam ∈ ; ()maK is a binary code of the state ma with

⎡ ⎤MR 2log= bits, the internal Boolean variables
{ }Rr qqQq ,,1 K=∈ are used to encode states ma ; sa is the

next state, Aas ∈ ; ()saK is a code of the state sa ,
() ()ms aKaK = for ms = ; hX is a condition of transition

sm aa , , it consists from conjunction of affirmation or

negation of some logic elements from the set X ; hY is the
microinstruction (µI) which is formed during the transition

sm aa , , YYh ⊆ ; hΦ is the set of memory excitation

functions that are equal to 1 to switch an FSM from ()maK to
()saK , { }Rh DD ,,1 K=Φ⊆Φ as a rule D flip-flops are used

to form a memory; h is a number of the DST line,
Hh ,,1K= .

III. BASE STRUCTURES OF FSM LOGIC CIRCUIT
The DST table is used as the base to form the system of

functions:

()
().,

,,
XQ

XQYY
Φ=Φ

=
 (5)

This systems corresponds to functions (3) and (2) and it
describes a single-level circuit of Mealy FSM (Fig. 1). This
structure is called P Mealy FSM. Here the circuit P
implements system of functions (5), the register RG represents
the memory of FSM. One of the drawbacks of the structure P
is a big number of p-functions:
 () RNnp +=P . (6)

One of the known methods of decreasing this parameter is
an encoding of microinstructions [2]. Let DST contain T
different microinstructions YYt ⊆ . Assign to each set tY the
binary code ()tYK with ⎡ ⎤TR 21 log= bits (Tt ,,1K=). Use

variables { }
1

,,1 Rr zzZz K=∈ for representation of these
codes. In this case a Mealy FSM can be implemented as
double-level circuit (Fig. 2) named as PY Mealy FSM [2]. The
register RG is exactly the same as in previous structure. The
circuit Y implements the system of functions:
 ()ZYY = (7)
and transforms the code ()tYK , represented by variables rz ,
into the microinstruction tY , built from microoperations ny .
This circuit can be implemented using embedded memory
blocks. Now the circuit P implements systems:

()
(),,

,,
XQ
XQZZ

Φ=Φ
=

 (8)

and the number of p-functions is decreased to:
 () 1PY RNn p += . (9)
But this number is still relatively big. It means that such a
structure needs still relatively big number of LUTs for
implementation of the circuit P. It makes that application of
this structure in a process of an FPGA implementation is not
grateful.

IV. MAIN IDEA OF METHODS
The idea of further improvement is to encode also the next

state (internal state) using the code of a microinstruction or the
code of a current state as partial code [3].

A. Multiple Encoding with use of Microinstruction Code
Let divide set of internal states into subsets based on a

currently executed microinstruction tY . It leads into existence
of T subsets () AYA t ⊆ and state ()ts YAa ∈ iff it is the state
of a transition when the microinstruction tY is executed. Let

()tt YAB = and ()TBBB ,,max 10 K= . Encode internal states

sa from each subset ()tYA separately by the binary code
()st aK with ⎡ ⎤022 log BR = bits. This code is represented by

variables { }
2

,,1 Rr τττ K=Τ∈ . In this case the code of the

internal state ()saK is represented by the concatenation of
multiple code of the internal state ()st aK and the code of the
microinstruction ()tYK :
 () () ()tsts YKaKaK ∗= . (10)

Fig. 1. Structural diagram of P Mealy FSM

P

RG
Φ

Y

Fig. 2. Structural diagram of PY Mealy FSM

44 R&I, 2008, No4

A digital circuit of an FSM with such an encoding can be
implemented as a double-level circuit named as PYY Mealy
FSM (Fig. 3). The circuit Y implements the same system (7)
like for PY Mealy FSM. The circuit P implements system:

()
(),,

,,
XQ
XQZZ

Τ=Τ
=

 (11)

in this case. There is used additional circuit CC in this
structure. It is used for decoding internal state and it
implements the system:
 ()ΤΦ=Φ ,Z . (12)
Because this circuit has regular structure it can be
implemented using embedded memory blocks.

This structure permits further reduction of the number of p-
functions to:
 () 12PYY RRnp += (13)
in comparison with the PY Mealy FSM. It makes that also a
number of LUTs required for implementation of the circuit P
is reduced and both decoders Y and CC can be implemented
with memory blocks what makes that FPGA resources are
used in balanced way.

B. Multiple Encoding with use of State Code
The method where the code of a current state is used as the

partial code of a internal state is very similar to the previous
one. In this case the set of internal states is divided into
subsets based on a current state ma . It leads into existence of
M subsets () AaA m ⊆ and the state ()ms aAa ∈ iff it is the
state of the transition from the state ma . Now, by analogy to

the previous method, ()mm aAC = and ()MCCC ,,max 10 K=

and internal states are encoded by the binary code ()sm aK
with ⎡ ⎤023 log CR = bits. In this case the code is represented

by variables { }
3

,,1 Rr τττ K=Τ∈ and the code of the internal

state ()saK is represented be the concatenation of the
multiple code of the internal state ()sm aK and the code of the
current state ()maK :
 () () ()msms aKaKaK ∗= . (14)

Digital circuit of FSM with this encoding can be
implemented as a double-level circuit named as PAY Mealy
FSM (Fig. 4). In this structure only the circuit CC implements
the different system:

 ()ΤΦ=Φ ,Q (15)
in comparison with PYY Mealy FSM. The circuit P
implements system (11), like for the structure PYY, and the
circuit Y implements system (7), like for structures PY and
PYY.

This structure also permits reduction of the number of p-
functions to:
 () 13PAY RRnp += (16)
in comparison with the PY Mealy FSM. The rule of
realization in FPGA structure is the same as for the structure
PYY – the combinational circuit P is implemented with LUTs
and both decoders CC and Y are implemented with use of
embedded memory blocks.

It is very hard to calculate relation between ()PYYpn and

()PAYpn because values of these parameters are strongly
connected with FSM parameters (like number of states,
number of microinstructions, etc.) of implemented control
algorithm and it means that the structure should be selected
individually for each case.

V. METHOD OF SYNTHESIS AND IMPLEMENTATION
The special method of synthesis for designed structures

(Figs. 3 and 4) is proposed. This method includes following
steps:
1) Creation and encoding of microinstructions. This step is

based on a trivial way of binary encoding. Each
microinstruction is assigned a binary code with a value
corresponding to the value of its index decreased by 1.
So, values of codes are from 0 to 1−T .

2) Division of the set of internal states. The set of internal
states is divided into T or M subsets. Each subset
contains only states that are states of a transition during
executing the t-th microinstruction or from the m-th state.

3) Multiple encoding of internal states. Internal states are
binary encoded separately in each subset. So, values of
codes are from 0 to 10 −B or from 0 to 10 −C . Each state

sa can be assigned several different codes, one in each
subset ()tYA or ()maA .

4) Formation of DST of PAY Mealy FSM or PYY Mealy
FSM. This table is formed from the original DST by
replacing the column hY with the column hZ and

Fig. 3. Structural diagram of PYY Mealy FSM

Fig. 4. Structural diagram of PAY Mealy FSM

R&I, 2008, No4 45

columns ()saK and hΦ with columns ()st aK (()sm aK)
and hΤ . The column hZ contains variables rz that are
equal to 1 in the code ()tYK . The column ()st aK
(()sm aK) contains the multiple code of the internal state.
The column hΤ contains variables rτ that are equal to 1
in the code ()st aK (()sm aK).

5) Formation of microoperations decoder table. This table
contains columns ()tYK , tY , t . The column ()tYK
contains the binary code of the microinstruction from the
column tY . The column tY should be written in a binary
format. The column t is a number of the line, Tt ,,1K= .

6) Formation of internal state code converter table. This
table contains columns ()st aK (()sm aK), ()tYK
(()maK), ()saK , i . The column ()st aK (()sm aK)
contains the multiple code of the internal state sa for the
t-th microinstruction (the m-th state). The t-th
microinstruction (the m-th state) is represented by the
code from the column ()tYK (()maK) and the internal

state sa is represented by the code from column ()saK .

The column i is a number of the line, ∑
=

=
T

t
tBi

1
,,1K

(∑
=

=
M

m
mCi

1
,,1K).

7) Formation of logic equations of the circuit P. These
equations form systems Z and Τ . They are formed
basing on the DST of PAY Mealy FSM or PYY Mealy
FSM.

8) Implementation of the logic circuit of PAY Mealy FSM
or PYY Mealy FSM. The combinational circuit P and the
register RG are implemented with CLBs of an FPGA –
the circuit P with LUTs and the register RG with D flip-
flops.
The circuit Y is implemented with memory blocks, where

()tYK is an address and tY is a word from this address.
The contents of this memory is described by the
microoperations decoder table.
The circuit CC is also implemented with memory blocks

OI

LUTs P

RG

X

RST

Y

Φ

CLK
EN
RST
WE

DO
DI
ADDR BRAMs
Y

Z

Q

VCC

GND

CLK
EN
RST
WE

DO
DI
ADDR

BRAMs

CCVCC

GND

Q

Q
SET

CLR

D
CLK

{ τ,Z }

Fig. 5. Schematic diagram of PYY Mealy FSM

O I
LUTs

P

RG

X

RST

Y

Φ

CLK
EN
RST
WE

DO
DI ADDR BRAMs Y

Z

Q

VCC

GND

τ

CLK
EN
RST
WE

DO
DI
ADDR

BRAMs

CC
VCC

GND

Q

Q
SET

CLR

D
CLK

Fig. 6. Schematic diagram of PAY Mealy FSM

46 R&I, 2008, No4

where an address is formed as concatenation of ()st aK
and ()tYK (or ()sm aK and ()maK) and the value of a
word for this address is ()saK . The contents of this
memory is described by the internal state code converter
table.
Schematic diagrams of the PYY Mealy FSM logic circuit
(Fig. 5) and the PAY Mealy FSM logic circuit (Fig. 6) are
based on the architecture of Xilinx Virtex FPGAs [9] but
they can be easy adopted to FPGAs of other vendors
because all logic elements, especially LUTs and memory
blocks, and their connections are very similar.
The clock signal for memory blocks is the same as for the
register but memory blocks are trigged by opposite edge
(in this case falling edge). It cause that data are ready to
read after one cycle and there is no need to wait one clock
cycle until data are stable. It is especially important when
an internal state is encoded. It also means that memory
blocks also works as an output register in case when
microoperations are encoded.

VI. AUTOMATA SYNTHESIS SYSTEM
There was created the Automata Synthesis (A♠S) System

[12] to perform the logic synthesis of FSMs with use of
designed structures. The software was created in Borland C++
Builder and it works in batch mode under Windows XP
operating system.

The input for the A♠S System is an FSM described in a
KISS2 format [8]. As output there is generated the set of files.
These files represent the structural description of a selected
type of an FSM in Verilog HDL [7]. The combinational
circuit is described by the set of logic equations using the
assign statement. The content of memories is described
using the case statement. Because it should by synthesized as
synchronous ROM memory this statement is placed in the
always block with the falling edge of the CLK signal on the
sensitivity list. The address is placed as a selector of the case
statement and the content of the memory is described by
choices of the case statement. To ensure that such described
module will be synthesized as a memory block there is
required to set a value of special synthesis attribute bram_map
to “YES” [10]. This is synthesis attribute of Xilinx devices and
it is ignored in case of synthesis into FPGA devices from
other vendors, But each vendor supplies similar attributes or
directives, e.g. the romstyle synthesis attribute for Altera

FPGAs [11]. Then these files can be the entry point for further
synthesis and implementation into selected FPGA device
(Fig. 7).

The system also generate a report file where the number of
logic functions and the size of memory is calculated. The
macro to run third party synthesis (at this version of A♠S only
Xilinix XST is supported) can be also generated.

The implemented methods of synthesis were tested using
benchmarks from the LGSynth91 library [8]. The results of
synthesis for selected FSMs are presented in Table 1. It can be
saw that one of proposed methods of synthesis (PAY or PYY)

Fig. 7. Design flow for FPGAs with A♠S

TABLE I
SYNTHESIS RESULTS

Structure Benchmark Type of
resources P PY PAY PYY

Slices 20 16 9 10
LUTs 36 29 16 18
FFs 4 4 4 4

ex4

BRAMs 0 1 2 2
Slices 29 19 24 15
LUTs 52 34 43 27
FFs 3 3 3 3ex6

BRAMs 0 1 2 2
Slices 51 56 37 49
LUTs 90 99 65 86
FFs 5 5 5 5keyb

BRAMs 0 1 2 2
Slices 22 16 14 9
LUTs 39 29 24 16
FFs 4 4 4 4opus

BRAMs 0 1 2 2
Slices 141 90 64 75
LUTs 248 155 113 131
FFs 6 6 6 6planet

BRAMs 0 2 3 5
Slices 529 628 238 398
LUTs 951 1143 433 719
FFs 19 26 13 19s298

BRAMs 0 1 5 3
Slices 113 115 89 84
LUTs 199 205 156 148
FFs 5 5 5 5sand

BRAMs 0 1 2 2
Slices 112 109 87 90
LUTs 199 192 155 160
FFs 5 5 5 5styr

BRAMs 0 1 2 2
Slices 55 46 26 26
LUTs 97 80 45 45
FFs 5 5 5 5tma

BRAMs 0 1 2 2

R&I, 2008, No4 47

always gives better results (in bold) that standard ones (P and
PY). The analysis of all benchmarks shown that the
application of the structure PAY reduce the number of
required LUTs by 33% in comparison with the structure P and
by 30% in comparison with the structure PY in average. The
gain for the structure PYY is 19 and 16% respectively.
Obtained results show that PAY Mealy FSM gives rather
better results than PYY Mealy FSM but in some cases
implementation of PYY structure gives more benefits. Which
method is better depends only on characteristic of currently
implemented control algorithm.

Proposed methods required more memory bits than PY
Mealy FSM. But new FPGA devices has embedded memory
blocks with huge capacity and these blocks can be used for
implementation of Y and CC circuits.

VII. CONCLUSION
The proposed in this article methods of synthesis and

implementation of Mealy FSMs with the multiple encoding of
internal states based on a current state or a currently executed
microinstruction permit to decrease the number of logic
elements required for implementation of the combinational
circuit of an FSM. The realization of decoders with use of
memory blocks allows to utilize different kind of resources
that are available in new FPGA devices. It leads to balanced
utilization of device resources in a synthesis process of a
control units.

There was created the Automata Synthesis System for
verification of proposed methods of synthesis. The obtained
results shows that designed methods reduce the number of
LUTs required for implementation of the combinational
circuit of an FSM. Analyzed benchmarks shown that these
methods are better than the standard ones. The gain very
strong depends on parameters of considered control algorithm
and the selection of a structure should be made individually
for each control algorithm.

REFERENCES
[1] S. Baranov, Logic Synthesis for Control Automat. Boston: Kluwer

Academic Publisher, 1994.
[2] A. Barkalov, and M. Węgrzyn, Design of Control Units with

Programmable Logic. Zielona Góra: University of Zielona Góra Press,
2006.

[3] A. Bukowiec, A. Barkalov, and L. Titarenko, “FSMs implementation
into FPGAs with multiple encoding of states” in Proc. IEEE East-West
Design & Test Symposium, Lviv, Ukraine, 2008, pp. 72-75.

[4] J. Jenkins, Designing with FPGAs and CPLDs. New Jersy: Prentice
Hall, 1994.

[5] T. Łuba, M. Rawski, and Z. Jachna “Functional decomposition as a
universal method of logic synthesis for digital circuits” in Proc. 9th Int.
Conf. Mixed Design of Integrated Circuits and Systems,Wrocław,
Poland, 2002, pp. 285-290.

[6] Z. Salcic, VHDL and FPLDs in Digital Systems Design, Prototyping and
Customization. Boston: Kluwer Academic Publishers, 1998.

[7] D. Thomas, and P. Moorby, The Verilog Hardware Description
Language. Norwell: Kluwer Academic Publishers, 2002.

[8] S. Yang, “Logic Synthesis and Optimization Benchmarks User Guide.
version 3.0,” Microelectronics Center of North Carolina, Tech. Rep.
1991-IWLS-UG-Saeyang, Jan. 1991.

[9] Virtex 2.5V Filed Programmable Gate Arrays Data Sheet, Xilinx, San
Jose, 2001.

[10] XST User Guide (8.1i), Xilinx, San Jose, 2005.
[11] Design and Synthesis vol. 1 of Quartus II Development Software

Handbook (v8.0), Altera, San Jose, 2008.
[12] A. Bukowiec. (2008, May). Automata Synthesis System [Online].

Available: http://willow.iie.uz.zgora.pl/~abukowie/AS/as.htm

48 R&I, 2008, No4

