
 

  
Abstract — The method of synthesis and implementation into 

FPGAs (Field Programmable Gate Arrays) of Mealy FSMs 
(Finite State Machines) is proposed. Synthesis is based on the 
architectural decomposition and the multiple encoding. A set of 
states is divided into subsets based on a current state or a 
executed microinstruction. Then, states are encoded separately in 
each subset. The state is decoded in the second-level circuit based 
on the multiple code and the code of a current state or the code of 
a executed microinstruction. It leads to implementation of an 
FSM in double-level structure where utilization of both, LUTs 
(Look-Up Tables) and embedded memory blocks, is applied. It 
leads to balanced usage of hardware resources of an FPGA 
device. 
 

Index Terms — Circuit synthesis, Field programmable gate 
arrays, Finite state machines, Logic design 
 

I. INTRODUCTION 
INITE state machines (FSMs) with Mealy’s outputs [1] 
are one of the most popular model used in designing 

control units (CUs) of digital systems. Nowadays field 
programmable gate arrays (FPGAs) are used very often for 
implementation of such digital systems [6]. One of the main 
features of FPGAs is existence of logic elements with 
restricted number of inputs that are named look-up tables 
(LUTs) [4]. From another side, logic functions of FSMs 
(called p-functions) have much more arguments (up to 200) 
than typical LUTs have inputs (up to 6). This imbalance leads 
to need of a functional decomposition of Boolean functions 
describing the behavior of an FSM [5]. The negative result of 
functional decomposition is increasing a number of levels of 
the logic circuit of an FSM and increasing a number of 
required LUTs for a implementation. 

On the other hand, new FPGAs are equipped in embedded 
memory blocks [9]. These blocks can be also used for 
realization of combinational circuits. The problem is that 
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implementation only with memory blocks also utilize a big 
number of such blocks and very often exceed the number of 
available blocks in an FPGA device. 

One of methods of decreasing a number of p-functions 
depending on a big number of arguments is an architectural 
decomposition of an FSM [2]. Such methods apply encoding 
of some parameters of an FSM. It leads to implementation of 
an FSM in a double-level structure where a reduced number of 
p-functions is realized in the circuit of first level, this circuit is 
implemented with LUTs, and the circuit of second level 
operates as a decoder and it is implemented with memory 
blocks. 

The proposed in this article method of synthesis is based on 
the encoding of internal states divided into subsets based on a 
current state or a currently executed microinstruction [3]. This 
encoding allows to decrease a number of p-functions 
implemented by the combinational circuit of an FSM. The 
state is decoded in the second level circuit based on the 
multiple code and the code of a current state or the code of a 
currently executed microinstruction. Because this system is 
regular it can be implemented with embedded memory blocks. 
It leads to decrease a number of LUT elements required for 
implementation of a logic circuit of an FSM and balanced 
usage of different resources of an FPGA device. 

 

II. FINITE STATE MACHINE DEFINITION 
A finite state machine is a mathematical model of behavior 

composed of a finite set of input symbols, a finite nonempty 
set of states, a finite set of output symbols, transitions and 
actions [1], [2]. This model can be represented as six tuple: 
 ωδ ,,,,, 1aAYXS = , (1) 
where: 
• X  is a finite set of input Boolean variables, 

{ }LxxX ,,1 K= ; 
• Y  is a finite set of output Boolean variables, called 

microoperations (µO), { }NyyY ,,1 K= ; 
• A  is a finite, nonempty set of states, 

{ }MaaA ,,1 K= ; 
• 1a  is the initial state of the FSM, Aa ∈1 ; 
• δ  is a transition function, defined as a function of a state 

and affirmation or negation of some input variables: 
 AXA →×:δ ; (2) 
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• ω  is a output function, and in case of Mealy model it is 
defined as a function of a state and affirmation or 
negation of some input variables: 

 YXA →×:ω . (3) 
In case of Moore model it is defined only as a function 
of a state: 

 YA →:ω . (4) 
Such defined a Mealy FSM can be set up by a direct 

structural table (DST) [1] with columns: ma , ( )maK , sa , 
( )saK , hX , hY , hΦ , h . Here ma  is a current state of an 

FSM, Aam ∈ ; ( )maK  is a binary code of the state ma  with 

⎡ ⎤MR 2log=  bits, the internal Boolean variables 
{ }Rr qqQq ,,1 K=∈  are used to encode states ma ; sa  is the 

next state, Aas ∈ ; ( )saK  is a code of the state sa , 
( ) ( )ms aKaK =  for ms = ; hX  is a condition of transition 

sm aa , , it consists from conjunction of affirmation or 

negation of some logic elements from the set X ; hY  is the 
microinstruction (µI) which is formed during the transition 

sm aa , , YYh ⊆ ; hΦ  is the set of memory excitation 

functions that are equal to 1 to switch an FSM from ( )maK  to 
( )saK , { }Rh DD ,,1 K=Φ⊆Φ  as a rule D flip-flops are used 

to form a memory; h  is a number of the DST line, 
Hh ,,1K= . 

 

III. BASE STRUCTURES OF FSM LOGIC CIRCUIT 
The DST table is used as the base to form the system of 

functions: 

 
( )
( ).,

,,
XQ

XQYY
Φ=Φ

=
 (5) 

This systems corresponds to functions (3) and (2) and it 
describes a single-level circuit of Mealy FSM (Fig. 1). This 
structure is called P Mealy FSM. Here the circuit P 
implements system of functions (5), the register RG represents 
the memory of FSM. One of the drawbacks of the structure P 
is a big number of p-functions: 
 ( ) RNnp +=P . (6) 

One of the known methods of decreasing this parameter is 
an encoding of microinstructions [2]. Let DST contain T  
different microinstructions YYt ⊆ . Assign to each set tY  the 
binary code ( )tYK  with ⎡ ⎤TR 21 log=  bits ( Tt ,,1K= ). Use 

variables { }
1

,,1 Rr zzZz K=∈  for representation of these 
codes. In this case a Mealy FSM can be implemented as 
double-level circuit (Fig. 2) named as PY Mealy FSM [2]. The 
register RG is exactly the same as in previous structure. The 
circuit Y implements the system of functions: 
 ( )ZYY =  (7) 
and transforms the code ( )tYK , represented by variables rz , 
into the microinstruction tY , built from microoperations ny . 
This circuit can be implemented using embedded memory 
blocks. Now the circuit P implements systems: 

 
( )
( ),,

,,
XQ
XQZZ

Φ=Φ
=

 (8) 

and the number of p-functions is decreased to: 
 ( ) 1PY RNn p += . (9) 
But this number is still relatively big. It means that such a 
structure needs still relatively big number of LUTs for 
implementation of the circuit P. It makes that application of 
this structure in a process of an FPGA implementation is not 
grateful. 

 

IV. MAIN IDEA OF METHODS 
The idea of further improvement is to encode also the next 

state (internal state) using the code of a microinstruction or the 
code of a current state as partial code [3]. 

A. Multiple Encoding with use of Microinstruction Code 
Let divide set of internal states into subsets based on a 

currently executed microinstruction tY . It leads into existence 
of T  subsets ( ) AYA t ⊆  and state ( )ts YAa ∈  iff it is the state 
of a transition when the microinstruction tY  is executed. Let 

( )tt YAB =  and ( )TBBB ,,max 10 K= . Encode internal states 

sa  from each subset ( )tYA  separately by the binary code 
( )st aK  with ⎡ ⎤022 log BR =  bits. This code is represented by 

variables { }
2

,,1 Rr τττ K=Τ∈ . In this case the code of the 

internal state ( )saK  is represented by the concatenation of 
multiple code of the internal state ( )st aK  and the code of the 
microinstruction ( )tYK : 
 ( ) ( ) ( )tsts YKaKaK ∗= . (10) 

 
Fig. 1.  Structural diagram of P Mealy FSM 

P

RG
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Y

 
Fig. 2.  Structural diagram of PY Mealy FSM 
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A digital circuit of an FSM with such an encoding can be 
implemented as a double-level circuit named as PYY Mealy 
FSM (Fig. 3). The circuit Y implements the same system (7) 
like for PY Mealy FSM. The circuit P implements system: 

 
( )
( ),,

,,
XQ
XQZZ

Τ=Τ
=

 (11) 

in this case. There is used additional circuit CC in this 
structure. It is used for decoding internal state and it 
implements the system: 
 ( )ΤΦ=Φ ,Z . (12) 
Because this circuit has regular structure it can be 
implemented using embedded memory blocks. 

This structure permits further reduction of the number of p-
functions to: 
 ( ) 12PYY RRnp +=  (13) 
in comparison with the PY Mealy FSM. It makes that also a 
number of LUTs required for implementation of the circuit P 
is reduced and both decoders Y and CC can be implemented 
with memory blocks what makes that FPGA resources are 
used in balanced way. 

B. Multiple Encoding with use of State Code 
The method where the code of a current state is used as the 

partial code of a internal state is very similar to the previous 
one. In this case the set of internal states is divided into 
subsets based on a current state ma . It leads into existence of 
M  subsets ( ) AaA m ⊆  and the state ( )ms aAa ∈  iff it is the 
state of the transition from the state ma . Now, by analogy to 

the previous method, ( )mm aAC =  and ( )MCCC ,,max 10 K=  

and internal states are encoded by the binary code ( )sm aK  
with ⎡ ⎤023 log CR =  bits. In this case the code is represented 

by variables { }
3

,,1 Rr τττ K=Τ∈  and the code of the internal 

state ( )saK  is represented be the concatenation of the 
multiple code of the internal state ( )sm aK  and the code of the 
current state ( )maK : 
 ( ) ( ) ( )msms aKaKaK ∗= . (14) 

Digital circuit of FSM with this encoding can be 
implemented as a double-level circuit named as PAY Mealy 
FSM (Fig. 4). In this structure only the circuit CC implements 
the different system: 

 ( )ΤΦ=Φ ,Q  (15) 
in comparison with PYY Mealy FSM. The circuit P 
implements system (11), like for the structure PYY, and the 
circuit Y implements system (7), like for structures PY and 
PYY. 

This structure also permits reduction of the number of p-
functions to: 
 ( ) 13PAY RRnp +=  (16) 
in comparison with the PY Mealy FSM. The rule of 
realization in FPGA structure is the same as for the structure 
PYY – the combinational circuit P is implemented with LUTs 
and both decoders CC and Y are implemented with use of 
embedded memory blocks. 

It is very hard to calculate relation between ( )PYYpn  and 

( )PAYpn  because values of these parameters are strongly 
connected with FSM parameters (like number of states, 
number of microinstructions, etc.) of implemented control 
algorithm and it means that the structure should be selected 
individually for each case. 

 

V. METHOD OF SYNTHESIS AND IMPLEMENTATION 
The special method of synthesis for designed structures 

(Figs. 3 and 4) is proposed. This method includes following 
steps: 
1) Creation and encoding of microinstructions. This step is 

based on a trivial way of binary encoding. Each 
microinstruction is assigned a binary code with a value 
corresponding to the value of its index decreased by 1. 
So, values of codes are from 0 to 1−T . 

2) Division of the set of internal states. The set of internal 
states is divided into T  or M  subsets. Each subset 
contains only states that are states of a transition during 
executing the t-th microinstruction or from the m-th state. 

3) Multiple encoding of internal states. Internal states are 
binary encoded separately in each subset. So, values of 
codes are from 0 to 10 −B  or from 0 to 10 −C . Each state 

sa  can be assigned several different codes, one in each 
subset ( )tYA  or ( )maA . 

4) Formation of DST of PAY Mealy FSM or PYY Mealy 
FSM. This table is formed from the original DST by 
replacing the column hY  with the column hZ  and 

 
Fig. 3.  Structural diagram of PYY Mealy FSM 

 
Fig. 4.  Structural diagram of PAY Mealy FSM 

R&I, 2008, No4 45



 

columns ( )saK  and hΦ  with columns ( )st aK  ( ( )sm aK ) 
and hΤ . The column hZ  contains variables rz  that are 
equal to 1 in the code ( )tYK . The column ( )st aK  
( ( )sm aK ) contains the multiple code of the internal state. 
The column hΤ  contains variables rτ  that are equal to 1 
in the code ( )st aK  ( ( )sm aK ). 

5) Formation of microoperations decoder table. This table 
contains columns ( )tYK , tY , t . The column ( )tYK  
contains the binary code of the microinstruction from the 
column tY . The column tY  should be written in a binary 
format. The column t  is a number of the line, Tt ,,1K= . 

6) Formation of internal state code converter table. This 
table contains columns ( )st aK  ( ( )sm aK ), ( )tYK  
( ( )maK ), ( )saK , i . The column ( )st aK  ( ( )sm aK ) 
contains the multiple code of the internal state sa  for the 
t-th microinstruction (the m-th state). The t-th 
microinstruction (the m-th state) is represented by the 
code from the column ( )tYK  ( ( )maK ) and the internal 

state sa  is represented by the code from column ( )saK . 

The column i  is a number of the line, ∑
=

=
T

t
tBi

1
,,1K  

( ∑
=

=
M

m
mCi

1
,,1K ). 

7) Formation of logic equations of the circuit P. These 
equations form systems Z and Τ . They are formed 
basing on the DST of PAY Mealy FSM or PYY Mealy 
FSM. 

8) Implementation of the logic circuit of PAY Mealy FSM 
or PYY Mealy FSM. The combinational circuit P and the 
register RG are implemented with CLBs of an FPGA – 
the circuit P with LUTs and the register RG with D flip-
flops. 
The circuit Y is implemented with memory blocks, where 

( )tYK  is an address and tY  is a word from this address. 
The contents of this memory is described by the 
microoperations decoder table.  
The circuit CC is also implemented with memory blocks 
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Fig. 5.  Schematic diagram of PYY Mealy FSM 
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Fig. 6.  Schematic diagram of PAY Mealy FSM 
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where an address is formed as concatenation of ( )st aK  
and ( )tYK  (or ( )sm aK  and ( )maK ) and the value of a 
word for this address is ( )saK . The contents of this 
memory is described by the internal state code converter 
table. 
Schematic diagrams of the PYY Mealy FSM logic circuit 
(Fig. 5) and the PAY Mealy FSM logic circuit (Fig. 6) are 
based on the architecture of Xilinx Virtex FPGAs [9] but 
they can be easy adopted to FPGAs of other vendors 
because all logic elements, especially LUTs and memory 
blocks, and their connections are very similar.  
The clock signal for memory blocks is the same as for the 
register but memory blocks are trigged by opposite edge 
(in this case falling edge). It cause that data are ready to 
read after one cycle and there is no need to wait one clock 
cycle until data are stable. It is especially important when 
an internal state is encoded. It also means that memory 
blocks also works as an output register in case when 
microoperations are encoded. 

 

VI. AUTOMATA SYNTHESIS SYSTEM 
There was created the Automata Synthesis (A♠S) System 

[12] to perform the logic synthesis of FSMs with use of 
designed structures. The software was created in Borland C++ 
Builder and it works in batch mode under Windows XP 
operating system. 

The input for the A♠S System is an FSM described in a 
KISS2 format [8]. As output there is generated the set of files. 
These files represent the structural description of a selected 
type of an FSM in Verilog HDL [7]. The combinational 
circuit is described by the set of logic equations using the 
assign statement. The content of memories is described 
using the case statement. Because it should by synthesized as 
synchronous ROM memory this statement is placed in the 
always block with the falling edge of the CLK signal on the 
sensitivity list. The address is placed as a selector of the case 
statement and the content of the memory is described by 
choices of the case statement. To ensure that such described 
module will be synthesized as a memory block there is 
required to set a value of special synthesis attribute bram_map 
to “YES” [10]. This is synthesis attribute of Xilinx devices and 
it is ignored in case of synthesis into FPGA devices from 
other vendors, But each vendor supplies similar attributes or 
directives, e.g. the romstyle synthesis attribute for Altera 

FPGAs [11]. Then these files can be the entry point for further 
synthesis and implementation into selected FPGA device 
(Fig. 7). 

The system also generate a report file where the number of 
logic functions and the size of memory is calculated. The 
macro to run third party synthesis (at this version of A♠S only 
Xilinix XST is supported) can be also generated. 

The implemented methods of synthesis were tested using 
benchmarks from the LGSynth91 library [8]. The results of 
synthesis for selected FSMs are presented in Table 1. It can be 
saw that one of proposed methods of synthesis (PAY or PYY) 

 
Fig. 7.  Design flow for FPGAs with A♠S 

TABLE I 
SYNTHESIS RESULTS 

Structure Benchmark Type of 
resources P PY PAY PYY 

Slices 20 16 9 10
LUTs 36 29 16 18
FFs 4 4 4 4

ex4 

BRAMs 0 1 2 2
Slices 29 19 24 15
LUTs 52 34 43 27
FFs 3 3 3 3ex6 

BRAMs 0 1 2 2
Slices 51 56 37 49
LUTs 90 99 65 86
FFs 5 5 5 5keyb 

BRAMs 0 1 2 2
Slices 22 16 14 9
LUTs 39 29 24 16
FFs 4 4 4 4opus 

BRAMs 0 1 2 2
Slices 141 90 64 75
LUTs 248 155 113 131
FFs 6 6 6 6planet 

BRAMs 0 2 3 5
Slices 529 628 238 398
LUTs 951 1143 433 719
FFs 19 26 13 19s298 

BRAMs 0 1 5 3
Slices 113 115 89 84
LUTs 199 205 156 148
FFs 5 5 5 5sand 

BRAMs 0 1 2 2
Slices 112 109 87 90
LUTs 199 192 155 160
FFs 5 5 5 5styr 

BRAMs 0 1 2 2
Slices 55 46 26 26
LUTs 97 80 45 45
FFs 5 5 5 5tma 

BRAMs 0 1 2 2
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always gives better results (in bold) that standard ones (P and 
PY). The analysis of all benchmarks shown that the 
application of the structure PAY reduce the number of 
required LUTs by 33% in comparison with the structure P and 
by 30% in comparison with the structure PY in average. The 
gain for the structure PYY is 19 and 16% respectively. 
Obtained results show that PAY Mealy FSM gives rather 
better results than PYY Mealy FSM but in some cases 
implementation of PYY structure gives more benefits. Which 
method is better depends only on characteristic of currently 
implemented control algorithm. 

Proposed methods required more memory bits than PY 
Mealy FSM. But new FPGA devices has embedded memory 
blocks with huge capacity and these blocks can be used for 
implementation of Y and CC circuits. 

 

VII. CONCLUSION 
The proposed in this article methods of synthesis and 

implementation of Mealy FSMs with the multiple encoding of 
internal states based on a current state or a currently executed 
microinstruction permit to decrease the number of logic 
elements required for implementation of the combinational 
circuit of an FSM. The realization of decoders with use of 
memory blocks allows to utilize different kind of resources 
that are available in new FPGA devices. It leads to balanced 
utilization of device resources in a synthesis process of a 
control units. 

There was created the Automata Synthesis System for 
verification of proposed methods of synthesis. The obtained 
results shows that designed methods reduce the number of 
LUTs required for implementation of the combinational 
circuit of an FSM. Analyzed benchmarks shown that these 
methods are better than the standard ones. The gain very 
strong depends on parameters of considered control algorithm 
and the selection of a structure should be made individually 
for each control algorithm. 
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