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Abstract. The paper presents a stochastic model of a
quasi-stationary non-isothermal mode of transport and
distribution of natural gas in gas transportation systems
with multilinear linear sections of pipeline and a lot of
craft compressor stations. A method for calculating the
statistical properties of the dependent variables of the
model from the statistical properties of the independent
variables.
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INTRODUCTION

At present, considerable experience has been gained
in mathematical modeling and optimization of transport
and distribution modes of natural gas in gas transportation
systems (GTS) [1, 2, 3]. However, the optimal solutions
obtained with their help correspond to absolutely accurate
values of all parameters of mathematical models of
technological equipment GTS and absolutely exact, the
values of the boundary conditions and are, as a rule, on
the boundary of the admissible region. In practice, this
leads to the fact that even minor variations in the
parameters of models or boundary conditions lead not
only to a significant change in the optimal solution, but
also to its derivation from the permissible region.
Naturally, such "optimal" solutions are unacceptable in
the operational dispatch management of the operating
modes of the GTS.

In this article we give a general stochastic model of
quasi-stationary non-isothermal mode of transport and
distribution of natural gas in the GTS with multithread
linear sections (MLS) and multi-station compressor
stations (CS). This model explicitly takes into account
both the internal uncertainty of the technological elements
parameters of the GTS, and external uncertainty
parameters of the natural gas consumption processes by
various categories of consumers. We consider the method
of constructing the equivalent deterministic of stochastic
model of a quasi-stationary non-isothermal mode of
transport and distribution of natural gas in the GTS and
the approximate solutions obtained by system of
nonlinear and linear algebraic equations defined on a
graph reflecting the structure of the GTS; and the method
for calculating the statistical properties of the model's
dependent variables from the statistical properties of the
independent variables.

THE ANALYSIS OF RECENT RESEARCHES AND
PUBLICATIONS

Fundamental studies of models and methods for
calculating the pipeline systems operation modes are
presented in [1, 2, 3]. In recent years, a large number of
articles are devoted to the actual problem of stochastic
modeling of pipeline systems operation modes [4-8]. The
second pressing problem that considered in the articles is
the problem of pipeline systems optimal control [9-15].

Solution of the problem of analysis and optimization
the actual of gas transportation systems (GTS) operation
modes is associated with the development of
mathematical models that more adequately and in a wider
range describe the actual modes in the GTS. One such
model is a quasi-stationary non-isothermal mode of
transport and distribution of natural gas in gas
transportation systems with multithread linear sections
(MLS), and many craft compressor stations (CS) [16-21].

MATHEMATICAL MODELING OF STOCHASTIC
QUASI-STATIONARY MODE OF NATURAL GAS
TRANSPORTATION IN GTS

To build a general stochastic model of a quasi-
stationary non-isothermal mode of transport and
distribution of natural gas in the GTS with MLS and
many CS will use the results obtained in [1]: stochastic
models of the quasi-stationary mode of transport of
natural gas pipeline and the stochastic model mode gas-
pumping unit (GPU). As a model of the structure of the
GTS will use oriented connected graph G(V,E) [2],
which is supplemented by a zero vertex and dummy arcs
connecting this vertex with all inputs and outputs of the
GTS, where: V ()V|=m) - a set of vertices, E - the set

of arcs (|E|=n). Choose a tree graph G(V, E) so that its

branches have become real and fake parts of the arc
corresponding to the input of GTS. Then the set of arcs of
the graph E represented as a union of disjoint subsets of
the following: the real sections M ; fictitious sections on
the network inputs L ; fictitious sections on the network
output K, fictitious sections, connecting the input of the
active elements with the zero point (fictitious additional
network input) T ; real tree branches M,; real tree

branches, which correspond to passive M,, and active
M,, elements; real chords of the graph M, ; real chords
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of the graph which correspond to passive M,, and active
M,, elements; fictitious branches of a tree, which
correspond to inputs L, ; branches of a tree on the inputs
of the network with a preset flow L, pressure L, and
temperature L, ; chords of the graph, which correspond to
inputs L, ; chords of the graph of the network inputs with
the preset flow L, , pressure L,,, temperature L, ;
fictitious chords which correspond to outputs
K, (K, =K); fictitious chords on the outputs of the
network with a preset flow K, pressure K,,,
temperature  K,,; fictitious chords of the graph,

corresponding to fictitious additional network input (arcs
connecting the input of the active elements with the zero
point) with a preset flow T,, . The quantity is considered
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preset if it is a normally distributed random variable with
known expectation and variance.

We introduce the following notation: the number of
nodes, in which pressure is preset

ml=|L, UL,, UK, UK,,|, number of branches, in

which flow is preset nl=|L, UL, UK, UK,], the

number of nodes, in which temperature is preset — the
number of branches with active elements -
gl:|M12 Y M22| -

Given quantities are random variables with normal
distribution law and represented by their mathematical
expectations and variances.

Then the stochastic model of quasi-stationary non-
isothermal mode of transport and distribution of natural
gas in the GTS can be represented as the following
expressions:

{ﬂ @F @)+ Y b @6 @+ X b, {c (w)(q. (-2 ) (wga’)j
(@) u 12 (1)
w
[ (“’”4&(@)_1]” )H i
—M {a,@)(q, (w)—wj { 2 s ]P @+ Y bufi (@)’ (@) +
® 2¢r () Cr(w) ieMy
(2)
- bi (@) P, (@) bi (@) 2 _
+i2%:,2 by {C' (w)(qi () - .(a)) J { i(@)+——— 4 () 1]Psi (w)}} =0, reM,,
f { P?r (0)) Z blrll)f? (60) Z blrIPfJIrZ + Z blnﬂ (w)q| (0)) +
) bi ()P E(u) - i (@) ©
~ w w w
":%}2 by x{c. (w)[qi (0)— 2 (0) J ( i(0)+—=—— 1% () —1}1” ( )H re Ly,
fr = '\(ﬁl {_P:rz - Z blril)f? (a)) __Z blrinJirz + z blriﬂi (C())in (a)) +
( 6()Ef:() N bi (o) “
~ i(@)P,(w i(@ .| .
+ie%:,2 by X{C'(w)[qi (w)_T(a))J [ i(w)+ 45 (o) 1}” ( )}} €Ly,
fr = '\(ﬁl {Psr (w)Z - Z blril)f? (CO) __Z blrinJirz +_Z blriﬁi (a))qi2 (w) +
) bi (w)P, (El; Enb() ©)
~ )P, (o (@ ) B .
+iE%:,2 by, {C' (w)[qi () - .(a)) J [ i(@)+——— CI( ) ljpsi (w)}} =0, € Ky,

{P+2 mePZ(a)) mepffz + Z by (a))%z(a))"‘

iely; iely,

+ by, {c (w)(qi OF

ieMy,

ieMy;

bi ()P, (w)J
2Ci ()

(6)
ai(@) + f(“’))—lJ 2 )}}=o, rek,,

C|60



THE STOCHASTIC MODEL OF QUASI-STATIONARY NON-ISOTHERMAL MODE ...123
f = { Py (@) = 2 b P (@)= 2 by Pt + D b (0)gf (@) +

= .

ANEIE qi(w)—%f;)(@ —[ (@ )+bl((‘2) 1]13;(@)}}0, ret,,
V {reM 2 ba @)+ > b - } (8)
= Tf (@) =Ty (T4 (@) =Ty )@ } =0, re My UM, 9)
M{T (@) =T, (@) (P, (@)/P, (w))%}o, reM, UM, , (10)
- {T @Xa@-X q.(w)r,.(w)}:o, rev (11)
I\(ﬁI{Tar(a)) Ty +[ (T, (@) ~T,) [0, (@)L|@-e ")} =0, reM;; UM, (12)
WP (@)~ Pi@)- . @ @) -0, remum, 13)
f,=hg{izr(co) (@) P} (0) (0P, (@)6,(0) ¢, @ @) =0, reM, UM, (14)

where: P

¢, 6, — the set of elements on which the gas comes
into the j -th node, and is bled from it, respectively;

b, — cyclomatic matrix element, located at the
intersection of the r-th row and the i-th column;

P, (w), P, (@) — random variables, characterizing the
pressure at the beginning and the end of the i-th arc;

T, (w), T (w) — random variables, characterizing the
temperature at the beginning and the end of the i-th arc;

g; (w) —random variable characterizing the commercial
flow of i-th arc;

S (w) —random variable characterizing the assessment
ratio of hydraulic resistance of pipeline [22]:

P: TS, T ,q, — marks the preset quantities;

si?

- A@)LT, (0)-Z, (@)
pi (@)= T ai2¢5|2 Ei2 (w) Di5'2

l

A(w) — random variable characterizing the assessment
ratio of the relative density of natural gas in the air,
T, (@), Z, (w) — random variable characterizing the
estimation of the average temperature and average density
of natural gas of i-th arc, E; (@) — random variable
characterizing the assessment of effectiveness ratio i-th
pipeline;

6 (w) — random variable defined by the expression
[22]:

6,() =62.6K; () Dy, /10°q, () A() B(a),
Ky, (@) — random variable characterizing the estimate of

the average values of the coefficient of heat transfer from
the gas in the ground on the i-th section of the pipeline,
B(w)— a random variable characterizing the estimate of

the coefficient of the specific heat of natural gas;
ai (@), bi(w), ¢i(w) — random variable characterizing

the approximation estimates for the coefficients describe
the degree of compression of GPU from the commercial
flow for GPU-owned i-th arc:

ai () = ay, (@), (15)

bi (@) = by, () - W , (16)
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ay; (@), by (), ¢, (@) and &, (), by (@), ¢; () — random
variables characterizing the estimates of coefficients of
approximation polynomials of the compression degree

GPA first and second degree, respectively, at [1] =1,
N J,

n' (@) — random variables characterizing the above
assessment of the relative speed drive of i-th GPA:

ni(w) = [n} (o )—

4 ()
t(w)-1

Z,RT,
Z(@)R,Ty(e)

w@=HD @l @

where: 7, (@) - random variable characterizing the

assessment polytropic efficiency in form of the following
expression:

Npaii (@) = dy; (@) +d;; (0)Qy (@) + 1)
+0, (0)Q2 (@) +dy (0)QE (@)

Qg (@) —random variable characterizing the performance

evaluation of the reduced volume of i-th GPA by
expression:

n

fy, Z(@RT, () ()
n

Yo 1440 P, (w)

The stochastic model of quasi-stationary non-
isothermal mode of transport and distribution of natural
gas in GTS (1)—(14) takes into account almost all sources
of internal and external uncertainties operation modes
and allows enough to adequately analyze and simulate a
wide class of quasi-stationary modes of the GTS. Of
greatest interest, this model is to optimize the planned
modes GTS. In this case the optimal plan of GTS at a
given time interval is represented as mathematical
expectations and variances of parameters of flows of
natural gas (pressure, flow, temperature) on the inputs and
outputs of the GTS, expectations and variances of
operational parameters (speed drives) GPU. To calculate

Qd|( o) = (22)
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the mathematical expectation of flow parameters of
natural gas for each real portion, and at every entrance
and exit of the GTS is necessary to construct a
deterministic equivalent stochastic model of a quasi-
stationary non-isothermal mode of transport and
distribution of natural gas in GTS (1)—(14).

DEVELOPMENT OF THE STOCHASTIC MODEL
FOR NATURAL GAS TRANSPORTATION AND
DISTRIBUTION IN GTS

To build a deterministic equivalent stochastic model
of a quasi-stationary non-isothermal mode of transport
and distribution of natural gas in GTS it is necessary to
replace all the random quantities in the system of
equations (1)—(14) by their assessments in the form of
conditional expectations. Because of the nonlinearity of
the system of equations (1)—(14), such replacement will
result in the right side of this equations will take the form
of non-zero residuals, the sign and magnitude of which,
according to Jensen's inequality [3, 16], will determine by
the degree of convexity (concavity) of implicit functions
from the variables defining the system of equations (1)-
(14). As shown by our studies, the numerical value of
these residuals is comparable with the magnitude of error
in the numerical solution of equations (1)—(14).
Therefore, without loss of generality, by residuals of the
deterministic equivalent stochastic model of a quasi-
stationary non-isothermal mode of transportation and
distribution of natural gas in (1)—(14) may be neglected.

In work [3] was shown that in this case the
deterministic equivalent stochastic model of a quasi-
stationary non-isothermal mode of transport and
distribution of natural gas in the transmission system
(1)—(14) will coincide with the steady-state model of the
flow of gas pipeline networks with active elements, in
which the boundary conditions and unknown parameters
are represented by their conditional expectations. A
numerical algorithm for solving systems of equations of
the deterministic equivalent stochastic model of a quasi-
stationary non-isothermal mode of transport and
distribution of natural gas transportation systems also is
given in [3].

The formulas given below are a deterministic analog
of equations (1)-(14):
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where the parameters marked feature of the above are
estimates in the form of mathematical expectation of the
random variables model presented in next section.

ASSESSING THE RELATIONSHIP OF STATISTICAL
PROPERTIES OF THE DEPENDENT AND THE
INDEPENDENT VARIABLES IN THE STOCHASTIC
MODEL

Formal statement of the problem of assessing the
statistical properties of the dependent variables in the
stochastic model of the quasi-stationary non-isothermal
natural gas transportation mode in the GTS, is the
necessity to determine the numerical characteristics of
random variables, which are the solution of the
deterministic analogue of the functional relationships (1)—
(14) supplemented by equations (15)—(22):

(23)

and the vector of mdependent variables as:

My, ~F(M M, .M, M,

V:(Pl' B m1lq1aqzr 7qn1’ 2l "TI1' E, KT):

:(P vq 1|T 'E+v KT)
Then the solution takes on the following form:
X, = FI(P;,P; ----- qu,qf,q;,-.,q;1,Tl+,T2+,--,T|I, E", K;)} (24)
i=LN

where: N — number of calculated parameters in the
general case equal to N =(2n+5m+7gl—4ml-nl1-11),

and N2=(ml+nl+I1+2) — number of the preset

parameters.

Since the system (24) is given implicitly, and the
conditions of the theorem "on the existence and
differentiability of the implicit functions determined by a
system of functional equations" [17, 18] hold, we assume
that there exists a functional dependence between random
variables that are system's dependent and independent
parameters, which is defined by the model (1)—(22).

As a result of applying the method of linearizing the
function of several random variables [17, 18], as well as
the subsequent applying the properties of the numerical
characteristics of functions of random variables to the
resulting expression, we obtain the following
dependencies of the statistical characteristics (excluding
random variables correlation):

Mo MM T =1N (25)
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N2

2
O-Xi ~Z
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where the parameters marked feature of the above are
estimates in the form of mathematical expectation of the
random variables model presented in next section.

To determine the values of the expectations (25) we need
to solve the system of equations (23), relative to the
variables — the random varieties

at the point, corresponding to the expectations of gas flow
parameters in the network.

To find the variance (26) it is necessary to calculate
the partial derivatives used in dependencies. Since the
system (24) is implicit, and therefore it is impossible to
find its general analytical
calculating the partial derivatives for a system of
implicitly defined functions follows.

THE METHOD OF CALCULATING THE
PARTIAL DERIVATIVES OF IMPLICITLY
DEFINED FUNCTIONS

Since for the system of implicitly defined functions
being considered (24), at points, which correspond to
optimal and average values of the network parameters, the
conditions of the theorem "On the existence and
differentiability of the implicit functions determined by a
system of functional equations" hold, then the partial
derivatives % i=LN, j=LN2 can be found,

j
according to the general form of the partial derivative of
implicitly defined function:
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matrix obtained from (27) by replacing the j-th column
with the derivatives of the corresponding functions f;

with respect to the variable Y,, i =L N, j=1,N2.

Lets denote a couple more classes of functions, as the
dependences (15) — (22) are included in the system (23) in
exactly that form.
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MODELING RESULTS

Let us consider the following example. Well perform
the hydraulic calculation for a section of the gas transport
system in the form of a main gas pipeline, which includes
compressor section with five gas pumping units. Figure 1
shows the corresponding computational graph, consisting
of 16 nodes and 21 branches, 5 of which are active (arcs
14 — 18). Length of pipes: L, =102 km, L,y =34 km,
L3 19=0.3 km, the diameters d, =d,; =14 m,

d3_1g =1.02 m.

Fig. 1. Graph of GTS fragment

Suppose the maximum deviations of preset parameters
are as follows:

— commercial flow — oq =q*8y, where 65 =1% -
relative error in measuring commercial flow;

— for pressure — op =P*8p, where &p =1% —
relative error of pressure measurements;

— for  temperature - o7 =T*dr, where
61 =0.35% —  relative  error of  temperature
measurements;

— for efficiency factor — og =E*8g, where
dg =0.35% - relative error of measurements;

— for the average coefficient of the gas -

— * = 0 — i
OKT =K SKT , where SKT =0.35% — relative error

of measurements.
As the mathematical expectations of random variables
at the inputs the following parameters: My =313K,

Mpy =8.3MIla, My, =102 min m°/day, were taken.

Next, we determined g2 = 1.02 minm®/day,

opr = 0.083MIla, ot1= 1.0955K, as a result of the
calculations the expectations (13)-(16), were obtained,
among which the study of random variables T4, Pjg, 01

is of a special interest. That is, the calculated parameters
for nodes 1 and 16 in Fig.1: My =283.425K,

Mpsg = 6.07MITa, Mgy =102 minm®/day.
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To establish the dependence between the variances of
random variables Tg, Pig, 0; and variances T;, P, 0y, of

parameters we used the method presented in Section 3.
Below are the charts of some of them— each such chart
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Fig. 2. Dependence between the variances of output
pressure P and variances input pressure P;

TP1E
1-"*...

F e
0.004 -

L ’}fr’

L __r"/
0.003 r /’

i _//
o002} ',,»’

[ ,//
0.001 - -~

//f
[~
il 1 1 1 I L
2 4 6 ] 10 I
Fig. 3. Dependence between the variances of output
pressure P and variances input temperature T,
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Fig. 4. Dependence between the variances of output pressure
P, and variances output commercial flow q,;

shows two dependencies: in the first case partial
derivatives were calculated analytically (dashed line), as
described in Section 4, while in the second case —
numerically (solid line).

oTis

Fig. 5. Dependence between the variances of output
temperature T,; and variances input pressure P,

o1

4 [ 3 10

Fig. 6. Dependence between the variances of output
temperature T, and variances input temperature T,

Fig. 7. Dependence between the variances of output
temperature T, and variances input pressure 0y
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CONCLUSIONS

1. This paper addresses the problem of mathematical
modeling of stationary non-isothermal modes of the
natural gas transportation with the multithread LS and
multishop CS. The novelty of this work lies in the fact
that for the first time the problem of mathematical
modeling of stochastic quasi-stationary non-isothermal
mode of natural gas transportation over the network with
multithread LS and multishop CS, and the problem of
assessing the relation between the statistical properties of
the dependent and independent variables in presented
model was solved.

2. Practical significance is that these models provide
upper and lower bounds for ranges of gas flow parameters
at any GTS node for a given level of external stochastic
disturbances.
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