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Abstract – The paper discusses the main challenges in multi-

version system design. Most of the current techniques for 
design diversity rely on a system life cycle within a single 
design concept, so it is not possible to make a system robust to 
the defects that are common to each version since widely used 
Computer Aided Design (CAD) tools usually have only 
standard algorithms and conventional logic implemented. In 
this work, we give a solution to the problem of achieving the 
least correlation level within the multi-version projects by 
using different approaches to system design. Focusing on the 
non-classical design based on the genetic algorithms (GAs), we 
represent the metrics to assess a diversity level in multi-
version digital systems and suggest several methods to estimate 
the reliability of such systems. We prove those by an example 
of heating controller for AN-70 plane as well. 

Index Terms – Fault Tolerance, Multi-Version Systems, 
Design Diversity, Genetic Algorithms, Digital Automata.  

I. INTRODUCTION 
ield experience with so-called critical systems such as 
airborn control systems or atomic power plants safety 
systems shows that they are quite sensitive to the faults 

caused by design and physical defects [1-3]. This problem 
can be tagged as an increasingly challenging issue for the 
industry as a whole, mostly because of the tendency to 
develop critical applications as complex System on Chip 
(SoC) designs. To reduce the overall number of defects, the 
multi-version approach to system design can be 
successfully used. It means developing several versions of 
the same system which must be as different as possible [4-
8]. For this reason, several sufficient methods for SoC-
oriented architectures use standard Computer Aided Design 
(CAD) tools to diversify the design [5, 6]. Nevertheless, 
despite the effectiveness of these methods most of those 
manage the life cycle diversity within a single design 
concept, so it is not possible to make a system robust to the 
defects that are common to each version since widely used 
CAD tools usually have only standard algorithms and 
conventional logic implemented. Code inaccessibility and 
unavailability make it impossible to predict a behavior of 
CAD tool and prevent an occurrence of the defects. To 
avoid such a difficulty, the application of non-classical 
                                                           
Vyacheslav Kharchenko is with the National Aerospace University named 
after N.E. Zhukovsky “KhAI”, Kharkiv, Ukraine (e-mail: 
V.Kharchenko@khai.edu) 
Nataliya Yakymets is with the National Aerospace University named after 
N.E. Zhukovsky “KhAI”, Kharkiv, Ukraine (e-mail: 
nataliya.yakymets@informatik.uni-stuttgart.de) 
 

design is suggested in order to develop non-conventional 
digital systems [9, 10, 11, 12]. It exploits the ideas from 
nature and human way of thinking instead of the apparatus 
of integral and differential calculus. Nowadays, evolvable 
hardware applications are maturing and seeing deployment 
into the real-world as fielded applications. In [9, 10],  
development of digital systems as an artificial neural 
network has been described, some other works discuss the 
utilization of the genetic algorithms (GAs) in digital [12, 
13] and analog [14] system design, robotics [15] and even 
in the domestic life [16]. In [17], it has been pointed out 
that one of the most effective ways to develop a multi-
version fault tolerant system is to combine classical design 
based on using CAD tools with non-classical ones in order 
to significantly increase a possibility of receiving the least 
correlated versions. Nevertheless, the actual problem is how 
to elaborate the strategy which allows obtaining the highest 
diversity level in a multi-version project.  

In this paper, we focus on GAs as an alternative to the 
classical design because they are targeted for finding exact 
or approximate solution to problems connected with digital 
system design. Often GA gives only approximate solution 
by producing versions (individuals), which have correct 
output states only for a subset of the input data set. In this 
case, the common practice is to gather these partially 
correct versions in the majority architectures [18]. One of 
the serious disadvantages of such an approach is that it does 
not take into account known information about the 
correctness of each individual. So, very often a redundant 
number of partially correct individuals (or partially correct 
automata, PCA) is involved resulting in growing the system 
complexity. In our previous works [19], we discussed a 
dependency between the complexity of system logic and 
time required to develop a digital system with GA. We 
suggested “Sliding Testing” technique to reduce time 
consumptions that meant testing only a part of input and 
output data while calculating the fitness of individuals in a 
population. In this case the evolved versions will be 
partially definite (partially definite automata, PDA), so they 
have to be gathered in the redundant architectures to 
provide the full definiteness of a system. At the same time, 
as we know information about the definiteness and 
correctness of every version beforehand, we can manage a 
reliability level for the systems implemented with PDA and 
PCA by adding new automata with definite and correct 
output data that corresponds to the certain input data.  
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In this paper, we develop a strategy of project 
diversification for digital systems with SoC architecture and 
suggest several methods to estimate reliability of such 
systems evolved with GA.  

The remainder of the paper is organized as follows. 
Section 2 elaborates the strategy to achieve the least 
correlation level within a multi-version project. In section 3, 
we continue with the case study describing the development 
of fault tolerant systems with PDA and PCA. We estimate 
the reliability of such systems in section 4. Finally, we 
prove our methods in section 5 by the example of heating 
controller for AN-70 plane. 

II. EXTERNAL AND INTERNAL DESIGN DIVERSITY 
The application of multi-version approach to the system 

design assumes obtaining version redundancy by varying 
the set of resources used in design process to receive the 
most alternate versions of the same project. For example, 
several CAD packages or several developer groups can be 
involved into the design flow. In order to get an n-version 
project, it is necessary to isolate n subsets of resources that 
allow implementing the same functionality. The versions 
obtained from the different subsets will be less correlated 
than those that are received by varying characteristics 
within the only one subset. For example, the lesser 
correlation level can be achieved with several CAD tools 
rather than with different characteristics of a single CAD 
package. So, the design diversity can be observed from the 
several levels of system design (Fig. 1). So-called internal 
design diversity assumes obtaining alternative versions 
from only one isolated subset of resources used in design. 
The external one means the application of several sets of 
resources.  

In fact, the major challenges in multi-version system 
design are: 

1) isolation of the subsets with the maximum cardinality; 
2) selection of the diversity metrics, which allow 

comparing system versions; 
3) risk analysis while estimating the compatibility of 

versions received with the different subsets of resources. 
  

 

Fig. 1. External and internal design diversity 

At this point, it seems that one of the effective ways to 
obtain the most diversified project is to exploit the external 
design diversity based on the different approaches to system 

design and use several non-classical approaches such as 
GAs or neural networks along with the classical one.  

 

 

  
Fig. 2. Internal diversity that uses different design approaches 

In this work, we are concerning GA as an alternative to 
the classical system design, mainly because of the 
possibility to get non-conventional solutions in system 
design and going towards the reliability of digital systems 
developed with GA. Thus, if standard CAD tools are used 
the different versions can be obtained at the following 
phases: hardware selection, project entrance, compilation, 
testing and verification. In case of the GA application, the 
project diversity can be achieved at the phases of GA 
presetting, selection, crossover, mutation and inversion of 
individuals. Combination of CAD-based and GA-based 
approaches allows considering cases where both internal 
and external design diversities are possible (Fig. 2-3). 
Moreover, version implementation for a single chip or for a 
number of chips gives an additional opportunity to utilize 
spatial diversity in system design. 

 

 

 

Fig. 3. External diversity that uses different design approaches 
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Versions evolved with GA can be even used to control 
the functionality of a multi-version system developed with 
the standard tools (Fig. 4).  

 

 

Fig. 4. Using versions obtained with GA as the control ones in a multi-
version project 

To assess a diversity of such multi-version projects we 
suggest comparing them at two levels. At the logical level, 
a digital system with SoC architecture can be represented as 
a graph G={L, N}, which is constituted by N logic cells and 
a set of cell interconnections, L. Therefore, the degree of 
distinction for graph nodes allocation (set of nodes N1 and 
N2) can be used as a diversity metrics  (Fig. 5): 

2
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where |N1|, |N2|, |N1∩N2| are the capacities of 
correspondent sets. 
 

 

Figure 5. Graphs that show cell localization in a chip 

At the physical level, a digital system with SoC 
architecture can be represented as a spatial configuration, 
which is constituted by N logic cells on a chip. A set of 
logic cells corresponds to set N

1ii}s{S == , where si are the 
coordinates of the i-th cell. At this level, a degree of 
distinction for logic cell topology in a chip can be selected 
as a diversity metrics (Fig. 6): 
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where |S1|, |S2|, |S1∩ S2| - are the capacities of 
correspondent sets. 

 

Fig. 6. Topology of logic cells in a chip  

III. PARTIALLY DEFINITE AND PARTIALLY CORRECT 
AUTOMATA 

In this section, we classify versions (automata) that can 
be evolved with GAs, and investigate the ways to develop 
fully correct and definite system. 

The digital automaton can be described with its level of 
definiteness and correctness. The correctness shows how 
the functionality of automaton fits to its specifications. The 
definiteness means a level of preliminary awareness about 
the correctness of automaton. Thus, digital automata can be 
fully or partially correct and fully or partially definite  [19]. 

Partially correct automaton (PCA) is an automaton where 
at least one input state хi in the set of input data X does not 
correspond to required output state уi in the set of correct 
output data Yc, i.e. ∃xi∈ X: xi→ yi, yi∉Yc ⊂ Y, where xi –
current input state; X – set of input data; yi –current output 
state that corresponds to xi; Yc – set of correct output data; 
Y – total set of output data. 

Partially definite automaton (PDA) is an automaton 
where at least one input state хi in the set of input data X 
corresponds to such an output state уi where information 
about its correctness (whether уi is in Yc or not) is not 
known beforehand, i.e. ∃  xi ∈ X: xi→ yi, yi ∉ Ys, Ys ⊂ Y, 
where Ys – set of definite (specified) output data. 

In fact, the fully correct system can be composed of the 
several PCA or/and PDA in such a way that the total set of 
correct and definite output states of automata covers the 
total set of input data.  

IV. RELIABILITY OF DIGITAL SYSTEMS IMPLEMENTED WITH 
PARTIALLY DEFINITE AND PARTIALLY CORRECT AUTOMATA 

The architecture of digital systems implemented with the 
PDA and PCA allows estimation of their reliability using 
the apparatus of structural reliability theory.  

The analysis of reliability for such systems includes the 
following steps:  

1) dividing a set of input and output data of automata into 
groups as shown in Fig.7;  

2) estimating the influence of automata failures on entire 
system;  

3) selecting a primitive object to be used in the reliability 
analysis: the primitive objects can be automata, groups of 
definite and correct output data, automata and groups of 
definite and correct output data;   

4) developing a reliability block diagram (RBD); 

R&I, 2008, No4 27



5) forming the equations to estimate system reliability 
with regard to its RBD.  

 

 

Fig. 7. Allocating the groups within the set of input and output data if a 
system consists of the several PDA and/or PCA 

If a digital system consists of one fully definite and fully 
correct version, its reliability is the same as the reliability of 
a non-redundant non-recoverable system. If a digital system 
is composed of several PDA or/and PCA it can be 
considered as a non-recoverable system with passive 
redundancy. To estimate the reliability of such systems, the 
additional analysis of their functionality must be performed 
to prove the choice of the primitive object and develop 
RBD more precisely.  
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Fig. 8. RBD for a system consisted of four automata if primitive objects are 
automata 

If the primitive objects of RBD are automata, we assume 
that the failure of every automaton results in an overall loss 
of its functionality. Such an assumption is reasonable for a 
few automata as the process of RBD development is quite 
complicated and non-conventional for each particular 
system. So, RBD is formed according to already known 
information about the automata behavior. The example in 
Fig. 8 shows that the system fails if Automaton 1 fails or 
Automaton 3 fails or Automaton 2 and Automaton 4 fail. 
The probability of no-failure for such a system is calculated 
with the following formula: P(t)=p1(t)×p3(t)×(1-(1-
p4(t))×(1-p2(t)))×pK(t), where pi is a probability of no-failure 
for automaton i; pК(t) is a probability of no-failure for the 
subsystem that implements switching between automata. 

If the primitive objects of RBD are groups of definite and 
correct output data, the assumption is that the failure of an 
automaton does not result in the overall loss of its 
functionality and it can produce correct output data for 
some input terms. In contrast to the previous assumption, 
this one is reasonable in case a significant number of 

automata constitute a whole system. Nevertheless, there is 
one serious disadvantage: during the synthesizing with GA, 
a digital system is considered as a “black box” with certain 
inputs and outputs without any information about its 
internal structure. Therefore, very often information about 
the nature and consequences of the automaton’s failure is 
not available. The probability of no-failure for such a 
system is calculated with the following formula: 

∏ ∏
= =

×−−=
n

1i
K

m

0j
ij )t(p])]t(p1[1[)t(P ,                  (3) 

where pij(t) is a probability of no-failure for automaton j 
within the group of correct and definite output data i; n is a 
number of groups of correct and definite output data; m is a 
number of automata that have correct and definite output 
data within the group of correct and definite output data i.  

For the example in Fig. 9, P(t) = p11(t)×p23(t)×(1-(1- 
p33(t)) × (1- p34(t))) × (1-(1- p42(t)) × (1- p44(t))) ×pK(t). 

 

 

Fig. 9. RBD for a system consisted of four automata if primitive objects are 
groups of output data 

By assuming the primitive objects of RBD to be 
automata and groups of definite and correct output data, we 
mean that the failure of an automaton might result in either 
the overall or partial loss of its functionality with the certain 
probability. The probability of no-failure for such a system 
is calculated using the following formula: 

),t(p))))t(q1(1(()t(P
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where Р'(t) is a probability of no-failure for those parts of 
automata which incorrect functioning results in an overall 
functionality loss of the appropriate automaton; Р'(t) is 
calculated as if the primitive objects are automata, but in 
equation (6) )t(p j′  is used instead of )t(p j  that is the 

probability of no-failure for those part of automaton j those 
incorrect operating results in an overall functionality loss of 
this automaton; Р''(t) is the probability of no-failure for 
those parts of automata which incorrect work results in a 
functionality loss of the appropriate automaton in the 
appropriate groups; )t(qij  is the probability of no-failure 

for automaton j within group i in case of no-failure 
operation of its part which fault results in the overall 
functionality loss of automaton j. 
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The example in Fig. 10 shows how the probability of no-
failure is calculated for such systems: P(t) = p'1(t) × p'3(t) × 
× (1-(1-p'4(t))×(1-p'2(t))) × q11(t) × q23(t) × (1 - (1 - q33(t)) × 
× (1- q34(t))) × (1 - (1 - q42(t)) × (1 - q44(t)))×pK(t). 

 

 

Fig. 10. RBD for a system consisted of four automata if primitive objects 
are both automata and groups of output data 

V. EXPERIMENTAL RESULTS 
We have verified our approach using the example of the 

digital heating controller developed by means of the 
standard CAD tool, and currently used in AN-70 plane. We 
have implemented this project using C++, AHDL languages 
and Quartus II tool on a Pentium IV with 1500 Mhz clock 
and 1 GB RAM. 

We have used a simple GA with a population size of 50, 
GA cycles of 1000, crossover probability of 0.75 and 
mutation probability of 0.25. We have also determined the 
modeling area as 4×4 array of logic cells of programmable 
logic device (PLD). We have chosen versions by estimating 
their diversity at the logical level according to (1).  

Input data for the heating controller: 1-st bit determines a 
sign, 2-7 bits determine a value of the temperature (°С). 
Output data for the heating controller: '01' – the temperature 
is lower than 15°С, '10' – the temperature from 15°С up to 
35 °С, '11' – the temperature is higher than 35°С. 

Designing fault tolerant digital systems with the PDA 
and PCA includes two phases. The initial data for the first 
phase is a truth table of the required system as well as a 
type of automata that should be proved depending on the 
system complexity, cost and time constraints. During the 
design flow, several partially definite and partially correct 
versions of the heating controller, which are sufficient to 
form a fully definite and correct model, have been evolved 
with GA. Each version represents a digital system at the 
gate level coding a single variant of mapping and providing 
information about the interconnections between logic cells 
in PLD and their internal functions (Fig. 5). The received 
model of heating controller involves 9 logic cells of 
modeling area and includes two partially correct automata 
evolved in 405 and 789 populations (Fig. 11).  

 

Fig. 11. The scheme of term overlapping in the heating controller model 
implemented with partially correct automata 

We assume that each cell can realize one of the following 
internal functions: AND, OR, XOR, and it has one output 
and four inputs connected either to one of a global inputs 
(input variables from the truth table given for a system) or 
to an output of any cell. The fitness fit has been calculated 
for each version (individual) by comparing its output data 
to the existing project specifications (truth table). It equals a 
ratio between the number of correct terms of the individual 
and the overall number of terms from the truth table:  

n
r

i 2
%100Xfit ×

= ,                            (5) 

where i is a number of individual in a population; Xr is the 
total number of input terms that corresponds to the correct 
output data; n is a number of inputs. 

In the second phase, a special block is developed in order 
to implement switching between automata and achieve full 
correctness of a system. The initial data for this phase is a 
number of automata utilized in the model and information 
about their behavior.  

We have implemented the model in Fig. 11 to FPGA 
EP1K10TC144-3 (family ACEX 1K) using the CAD tool 
Quartus II v.6.0 and have compared it with the existing 
prototype. The scheme that allows switching automata has 
been designed according to Table 1 and Fig. 11.  

To translate the model into the acceptable format in order 
to exploit the standard CAD tool, each automaton has been 
described in AHDL language as follows. The codes of the 
internal functions of each cell have been extracted from 
binary string that describes the behavior of automata as well 
as codes that show cell interconnections. Then we have 
defined the appropriate variable for each cell to implement 
its internal function and set the connections between these 
variables, inputs and outputs of automaton. We have 
received a hierarchical project by applying such a technique 
to every automaton included in the model: on the top level, 
there are a switching block and automata represented as 
“include files”. 

TABLE 1 
SWITCHING LOGIC FOR TWO AUTOMATA 

 Information about current behavior of automata 
A - Automaton А1 = А2 А1 ≠ А2 
A1 and A2 have 
definite and correct 
output 

«OK», Switch 
to А1 or A2 

«Fail» 

A1 has definite and 
correct output 

«Risk», Switch 
to А1 

«OK», Switch 
to А1 
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A2 has definite and 
correct output 

«Risk», Switch 
to А2 

«OK», Switch 
to А2 
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To estimate the reliability of the developed project, we 
have chosen two parameters: 

1) the probability of no-failure; 
2) the probability of keeping system operating state. 
The first parameter has been calculated for chip failure 

rate λ=10-7 1/hour, 1pK = , time intervals t={101, 102, 103, 
104, 105} hours and overall number of logic cells N=256. 
Time till the PLD fault has been given by the exponential 
distribution. 

If the primitive objects are automata, the probability of 
no-failure is calculated with the following formula: 
P(t)=p1(t)×p2(t)×pK(t). We have assumed that p1(t)=p2(t), so 
P(t)=p(t)2×pK(t). The probability of no-failure for a single 
automaton is equal to λa= (λ×Na)/N, where Na is a number 
of logic cells that constitute single automaton. Na=Ns/h, 
where Ns is a number of cells allocated for the whole system 
and h is a number of automata. Therefore, the probability of 
no-failure for the whole system is the following: 

P(t)
[ ] t××

×
= 256

9/2102-
-7

e . 
If the primitive objects are groups of definite and correct 

output data, the probability of no-failure is calculated as 
P(t)=p11(t)×(1-(1- p12(t) ×(1- p22(t)) × p23 (t) × p14(t) ×pK(t). 
We have assumed that all probabilities p(t) are equal, so 
P(t)=p(t)3×(1-(1- p(t)2)×pK(t). The probability of no-failure 
for a single group of correct and definite data of automaton 
equals  p(t)= tge λ− , where λg is a failure rate of automaton for 
a group g. λg is calculated as λg= (λ×Ng)/N, where Ng 
=Ns/(h×n) and n is a number of groups. Therefore, the 
probability of no-failure for the whole system is the 

following:  P(t) ))e1(1(e 2256
42
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To compare the developed project of heating controller 

with the prototype, we assume prototype to be a single fully 
definite fully correct automaton. Thus, P(t)=

tpe λ−
, where 

λp is a failure rate of the prototype. λp is equal λg= (λ×Ns)/N, 
so the probability of no-failure for the prototype is 

t
256

7410-
7

eP(t)
×−

= . 
The values of P(t) for the obtained project and its 

prototype are given in Table 2. The gain in reducing the 
probability of no-failure for both projects is shown in Table 
3. 

To analyse the reliability for the obtained heating 
controller, we have also used a PLD fault simulator [21] 
and assessed the probability of keeping system operating 
state for the several fault configurations. We have received 
the values of the probability of keeping system operating 
state by the serial experiments where different 
configurations of faults were generated. The experimental 
results given in Table 4 show that the system is able to keep 
its operating state even though there is a significant number 
of failed cells in the chip. The reason is the compactness of 
the developed project: it uses only 27 logic cells (Fig. 12), 

whereas in the heating controller that is currently used in 
AN-70 plane, the overall number of cells involved is 74. 

 
TABLE  2 
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TABLE  3 

THE GAIN IN REDUCING THE PROBABILITY OF NO-FAILURE FOR HEATING 
CONTROLLER COMPARING TO ITS PROTOTYPE 

Primitive Object Time, hour 
- 10 102 103 104 105 

Automata 

8,
25

89
27

38
 

8,
21

19
90

97
 

8,
22

12
26

46
 

8,
22

10
92

43
 

8,
21

17
86
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24
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TABLE  4 

THE PROBABILITY OF KEEPING SYSTEM OPERATING STATE WITH THE 
SEVERAL NUMBERS OF FAULTY CELLS 

Faulty Cells 1 
Cell 

2 
Cells

3 
Cells 

5% 
of 

Chip  

10% 
of 

Chip 

25% 
of 

Chip 

50% 
of 

Chip 

75% 
of 

Chip 

GA-project 0.958 0.951 0.943 0.865 0.810 0.663 0.398 0.080

Prototype 0,870 0,797 0,745 0,480 0,343 0,050 0 0 
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Fig. 12. Physical location of the heating controller projects in the FPGA 
EP1K10TC144-3 and their representation in the PLD fault simulator 

In fact, both prototype and project evolved with GA can 
be gathered to duplex architecture as it is shown in Fig. 3 to 
constitute a multi-version project of the heating controller. 
Another way is to use the obtained project as a control 
module for the prototype (see Fig. 4). 

VI. CONCLUSION 
In this work, we have elaborated the overall strategy that 

allows a developer to manage the level of design diversity 
while developing multi-version projects of digital systems 
with SoC architecture. We have found out that one of the 
most efficient ways to obtain a high level of system 
diversity is to use different approaches to the system design. 
Focusing on the design with GA, we have suggested several 
methods to estimate reliability of systems evolved with GA 
that consider information about the definiteness and 
correctness of each system version. We have illustrated 
them by estimating the reliability of heating controller 
evolved with GA and by comparing it to its prototype. 
Further research can focus on the issues of version selection 
to minimize probability of common mode failure and its 
assessment taking into account implementation of design 
into a chip. Besides, we are planning to develop tools for 
support of design decision making.  
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