
Multi-version Digital Systems Evolved with Genetic
Algorithms: Designing and Estimating Fault Tolerance

Vyacheslav Kharchenko, Nataliya Yakymets

1
Abstract – The paper discusses the main challenges in multi-

version system design. Most of the current techniques for
design diversity rely on a system life cycle within a single
design concept, so it is not possible to make a system robust to
the defects that are common to each version since widely used
Computer Aided Design (CAD) tools usually have only
standard algorithms and conventional logic implemented. In
this work, we give a solution to the problem of achieving the
least correlation level within the multi-version projects by
using different approaches to system design. Focusing on the
non-classical design based on the genetic algorithms (GAs), we
represent the metrics to assess a diversity level in multi-
version digital systems and suggest several methods to estimate
the reliability of such systems. We prove those by an example
of heating controller for AN-70 plane as well.

Index Terms – Fault Tolerance, Multi-Version Systems,
Design Diversity, Genetic Algorithms, Digital Automata.

I. INTRODUCTION
ield experience with so-called critical systems such as
airborn control systems or atomic power plants safety
systems shows that they are quite sensitive to the faults

caused by design and physical defects [1-3]. This problem
can be tagged as an increasingly challenging issue for the
industry as a whole, mostly because of the tendency to
develop critical applications as complex System on Chip
(SoC) designs. To reduce the overall number of defects, the
multi-version approach to system design can be
successfully used. It means developing several versions of
the same system which must be as different as possible [4-
8]. For this reason, several sufficient methods for SoC-
oriented architectures use standard Computer Aided Design
(CAD) tools to diversify the design [5, 6]. Nevertheless,
despite the effectiveness of these methods most of those
manage the life cycle diversity within a single design
concept, so it is not possible to make a system robust to the
defects that are common to each version since widely used
CAD tools usually have only standard algorithms and
conventional logic implemented. Code inaccessibility and
unavailability make it impossible to predict a behavior of
CAD tool and prevent an occurrence of the defects. To
avoid such a difficulty, the application of non-classical

Vyacheslav Kharchenko is with the National Aerospace University named
after N.E. Zhukovsky “KhAI”, Kharkiv, Ukraine (e-mail:
V.Kharchenko@khai.edu)
Nataliya Yakymets is with the National Aerospace University named after
N.E. Zhukovsky “KhAI”, Kharkiv, Ukraine (e-mail:
nataliya.yakymets@informatik.uni-stuttgart.de)

design is suggested in order to develop non-conventional
digital systems [9, 10, 11, 12]. It exploits the ideas from
nature and human way of thinking instead of the apparatus
of integral and differential calculus. Nowadays, evolvable
hardware applications are maturing and seeing deployment
into the real-world as fielded applications. In [9, 10],
development of digital systems as an artificial neural
network has been described, some other works discuss the
utilization of the genetic algorithms (GAs) in digital [12,
13] and analog [14] system design, robotics [15] and even
in the domestic life [16]. In [17], it has been pointed out
that one of the most effective ways to develop a multi-
version fault tolerant system is to combine classical design
based on using CAD tools with non-classical ones in order
to significantly increase a possibility of receiving the least
correlated versions. Nevertheless, the actual problem is how
to elaborate the strategy which allows obtaining the highest
diversity level in a multi-version project.

In this paper, we focus on GAs as an alternative to the
classical design because they are targeted for finding exact
or approximate solution to problems connected with digital
system design. Often GA gives only approximate solution
by producing versions (individuals), which have correct
output states only for a subset of the input data set. In this
case, the common practice is to gather these partially
correct versions in the majority architectures [18]. One of
the serious disadvantages of such an approach is that it does
not take into account known information about the
correctness of each individual. So, very often a redundant
number of partially correct individuals (or partially correct
automata, PCA) is involved resulting in growing the system
complexity. In our previous works [19], we discussed a
dependency between the complexity of system logic and
time required to develop a digital system with GA. We
suggested “Sliding Testing” technique to reduce time
consumptions that meant testing only a part of input and
output data while calculating the fitness of individuals in a
population. In this case the evolved versions will be
partially definite (partially definite automata, PDA), so they
have to be gathered in the redundant architectures to
provide the full definiteness of a system. At the same time,
as we know information about the definiteness and
correctness of every version beforehand, we can manage a
reliability level for the systems implemented with PDA and
PCA by adding new automata with definite and correct
output data that corresponds to the certain input data.

F

R&I, 2008, No4 25

In this paper, we develop a strategy of project
diversification for digital systems with SoC architecture and
suggest several methods to estimate reliability of such
systems evolved with GA.

The remainder of the paper is organized as follows.
Section 2 elaborates the strategy to achieve the least
correlation level within a multi-version project. In section 3,
we continue with the case study describing the development
of fault tolerant systems with PDA and PCA. We estimate
the reliability of such systems in section 4. Finally, we
prove our methods in section 5 by the example of heating
controller for AN-70 plane.

II. EXTERNAL AND INTERNAL DESIGN DIVERSITY
The application of multi-version approach to the system

design assumes obtaining version redundancy by varying
the set of resources used in design process to receive the
most alternate versions of the same project. For example,
several CAD packages or several developer groups can be
involved into the design flow. In order to get an n-version
project, it is necessary to isolate n subsets of resources that
allow implementing the same functionality. The versions
obtained from the different subsets will be less correlated
than those that are received by varying characteristics
within the only one subset. For example, the lesser
correlation level can be achieved with several CAD tools
rather than with different characteristics of a single CAD
package. So, the design diversity can be observed from the
several levels of system design (Fig. 1). So-called internal
design diversity assumes obtaining alternative versions
from only one isolated subset of resources used in design.
The external one means the application of several sets of
resources.

In fact, the major challenges in multi-version system
design are:

1) isolation of the subsets with the maximum cardinality;
2) selection of the diversity metrics, which allow

comparing system versions;
3) risk analysis while estimating the compatibility of

versions received with the different subsets of resources.

Fig. 1. External and internal design diversity

At this point, it seems that one of the effective ways to
obtain the most diversified project is to exploit the external
design diversity based on the different approaches to system

design and use several non-classical approaches such as
GAs or neural networks along with the classical one.

Fig. 2. Internal diversity that uses different design approaches

In this work, we are concerning GA as an alternative to
the classical system design, mainly because of the
possibility to get non-conventional solutions in system
design and going towards the reliability of digital systems
developed with GA. Thus, if standard CAD tools are used
the different versions can be obtained at the following
phases: hardware selection, project entrance, compilation,
testing and verification. In case of the GA application, the
project diversity can be achieved at the phases of GA
presetting, selection, crossover, mutation and inversion of
individuals. Combination of CAD-based and GA-based
approaches allows considering cases where both internal
and external design diversities are possible (Fig. 2-3).
Moreover, version implementation for a single chip or for a
number of chips gives an additional opportunity to utilize
spatial diversity in system design.

Fig. 3. External diversity that uses different design approaches

26 R&I, 2008, No4

Versions evolved with GA can be even used to control
the functionality of a multi-version system developed with
the standard tools (Fig. 4).

Fig. 4. Using versions obtained with GA as the control ones in a multi-
version project

To assess a diversity of such multi-version projects we
suggest comparing them at two levels. At the logical level,
a digital system with SoC architecture can be represented as
a graph G={L, N}, which is constituted by N logic cells and
a set of cell interconnections, L. Therefore, the degree of
distinction for graph nodes allocation (set of nodes N1 and
N2) can be used as a diversity metrics (Fig. 5):

2
|N||N|
|NN|

M
21

21
1 +

∩
= , (1)

where |N1|, |N2|, |N1∩N2| are the capacities of
correspondent sets.

Figure 5. Graphs that show cell localization in a chip

At the physical level, a digital system with SoC
architecture can be represented as a spatial configuration,
which is constituted by N logic cells on a chip. A set of
logic cells corresponds to set N

1ii}s{S == , where si are the
coordinates of the i-th cell. At this level, a degree of
distinction for logic cell topology in a chip can be selected
as a diversity metrics (Fig. 6):

2
|S||S|
|SS|

M
21

21
2 +

∩
= (2)

where |S1|, |S2|, |S1∩ S2| - are the capacities of
correspondent sets.

Fig. 6. Topology of logic cells in a chip

III. PARTIALLY DEFINITE AND PARTIALLY CORRECT
AUTOMATA

In this section, we classify versions (automata) that can
be evolved with GAs, and investigate the ways to develop
fully correct and definite system.

The digital automaton can be described with its level of
definiteness and correctness. The correctness shows how
the functionality of automaton fits to its specifications. The
definiteness means a level of preliminary awareness about
the correctness of automaton. Thus, digital automata can be
fully or partially correct and fully or partially definite [19].

Partially correct automaton (PCA) is an automaton where
at least one input state хi in the set of input data X does not
correspond to required output state уi in the set of correct
output data Yc, i.e. ∃xi∈ X: xi→ yi, yi∉Yc ⊂ Y, where xi –
current input state; X – set of input data; yi –current output
state that corresponds to xi; Yc – set of correct output data;
Y – total set of output data.

Partially definite automaton (PDA) is an automaton
where at least one input state хi in the set of input data X
corresponds to such an output state уi where information
about its correctness (whether уi is in Yc or not) is not
known beforehand, i.e. ∃ xi ∈ X: xi→ yi, yi ∉ Ys, Ys ⊂ Y,
where Ys – set of definite (specified) output data.

In fact, the fully correct system can be composed of the
several PCA or/and PDA in such a way that the total set of
correct and definite output states of automata covers the
total set of input data.

IV. RELIABILITY OF DIGITAL SYSTEMS IMPLEMENTED WITH
PARTIALLY DEFINITE AND PARTIALLY CORRECT AUTOMATA

The architecture of digital systems implemented with the
PDA and PCA allows estimation of their reliability using
the apparatus of structural reliability theory.

The analysis of reliability for such systems includes the
following steps:

1) dividing a set of input and output data of automata into
groups as shown in Fig.7;

2) estimating the influence of automata failures on entire
system;

3) selecting a primitive object to be used in the reliability
analysis: the primitive objects can be automata, groups of
definite and correct output data, automata and groups of
definite and correct output data;

4) developing a reliability block diagram (RBD);

R&I, 2008, No4 27

5) forming the equations to estimate system reliability
with regard to its RBD.

Fig. 7. Allocating the groups within the set of input and output data if a
system consists of the several PDA and/or PCA

If a digital system consists of one fully definite and fully
correct version, its reliability is the same as the reliability of
a non-redundant non-recoverable system. If a digital system
is composed of several PDA or/and PCA it can be
considered as a non-recoverable system with passive
redundancy. To estimate the reliability of such systems, the
additional analysis of their functionality must be performed
to prove the choice of the primitive object and develop
RBD more precisely.

Automaton 1

Automaton 2

Automaton 3

Automaton 4

Input Terms

+

-

- The output data is incorrect or indefinite
- The output data is correct and definite

+

-

-

-+

Group1Group2 Group 3 Group 4

+
-

+

-

Automaton 2

Automaton 3 Automaton 4

p1 p3 p4

p2

Automaton 1

Fig. 8. RBD for a system consisted of four automata if primitive objects are
automata

If the primitive objects of RBD are automata, we assume
that the failure of every automaton results in an overall loss
of its functionality. Such an assumption is reasonable for a
few automata as the process of RBD development is quite
complicated and non-conventional for each particular
system. So, RBD is formed according to already known
information about the automata behavior. The example in
Fig. 8 shows that the system fails if Automaton 1 fails or
Automaton 3 fails or Automaton 2 and Automaton 4 fail.
The probability of no-failure for such a system is calculated
with the following formula: P(t)=p1(t)×p3(t)×(1-(1-
p4(t))×(1-p2(t)))×pK(t), where pi is a probability of no-failure
for automaton i; pК(t) is a probability of no-failure for the
subsystem that implements switching between automata.

If the primitive objects of RBD are groups of definite and
correct output data, the assumption is that the failure of an
automaton does not result in the overall loss of its
functionality and it can produce correct output data for
some input terms. In contrast to the previous assumption,
this one is reasonable in case a significant number of

automata constitute a whole system. Nevertheless, there is
one serious disadvantage: during the synthesizing with GA,
a digital system is considered as a “black box” with certain
inputs and outputs without any information about its
internal structure. Therefore, very often information about
the nature and consequences of the automaton’s failure is
not available. The probability of no-failure for such a
system is calculated with the following formula:

∏ ∏
= =

×−−=
n

1i
K

m

0j
ij)t(p])]t(p1[1[)t(P , (3)

where pij(t) is a probability of no-failure for automaton j
within the group of correct and definite output data i; n is a
number of groups of correct and definite output data; m is a
number of automata that have correct and definite output
data within the group of correct and definite output data i.

For the example in Fig. 9, P(t) = p11(t)×p23(t)×(1-(1-
p33(t)) × (1- p34(t))) × (1-(1- p42(t)) × (1- p44(t))) ×pK(t).

Fig. 9. RBD for a system consisted of four automata if primitive objects are
groups of output data

By assuming the primitive objects of RBD to be
automata and groups of definite and correct output data, we
mean that the failure of an automaton might result in either
the overall or partial loss of its functionality with the certain
probability. The probability of no-failure for such a system
is calculated using the following formula:

),t(p))))t(q1(1(()t(P

)t(p)t(P)t(P)t(P

K
n

1i

m

0j
ij

K

×−−×′=

=×′′×′=

∏ ∏
= =

 (4)

where Р'(t) is a probability of no-failure for those parts of
automata which incorrect functioning results in an overall
functionality loss of the appropriate automaton; Р'(t) is
calculated as if the primitive objects are automata, but in
equation (6))t(p j′ is used instead of)t(p j that is the

probability of no-failure for those part of automaton j those
incorrect operating results in an overall functionality loss of
this automaton; Р''(t) is the probability of no-failure for
those parts of automata which incorrect work results in a
functionality loss of the appropriate automaton in the
appropriate groups;)t(qij is the probability of no-failure

for automaton j within group i in case of no-failure
operation of its part which fault results in the overall
functionality loss of automaton j.

28 R&I, 2008, No4

The example in Fig. 10 shows how the probability of no-
failure is calculated for such systems: P(t) = p'1(t) × p'3(t) ×
× (1-(1-p'4(t))×(1-p'2(t))) × q11(t) × q23(t) × (1 - (1 - q33(t)) ×
× (1- q34(t))) × (1 - (1 - q42(t)) × (1 - q44(t)))×pK(t).

Fig. 10. RBD for a system consisted of four automata if primitive objects
are both automata and groups of output data

V. EXPERIMENTAL RESULTS
We have verified our approach using the example of the

digital heating controller developed by means of the
standard CAD tool, and currently used in AN-70 plane. We
have implemented this project using C++, AHDL languages
and Quartus II tool on a Pentium IV with 1500 Mhz clock
and 1 GB RAM.

We have used a simple GA with a population size of 50,
GA cycles of 1000, crossover probability of 0.75 and
mutation probability of 0.25. We have also determined the
modeling area as 4×4 array of logic cells of programmable
logic device (PLD). We have chosen versions by estimating
their diversity at the logical level according to (1).

Input data for the heating controller: 1-st bit determines a
sign, 2-7 bits determine a value of the temperature (°С).
Output data for the heating controller: '01' – the temperature
is lower than 15°С, '10' – the temperature from 15°С up to
35 °С, '11' – the temperature is higher than 35°С.

Designing fault tolerant digital systems with the PDA
and PCA includes two phases. The initial data for the first
phase is a truth table of the required system as well as a
type of automata that should be proved depending on the
system complexity, cost and time constraints. During the
design flow, several partially definite and partially correct
versions of the heating controller, which are sufficient to
form a fully definite and correct model, have been evolved
with GA. Each version represents a digital system at the
gate level coding a single variant of mapping and providing
information about the interconnections between logic cells
in PLD and their internal functions (Fig. 5). The received
model of heating controller involves 9 logic cells of
modeling area and includes two partially correct automata
evolved in 405 and 789 populations (Fig. 11).

Fig. 11. The scheme of term overlapping in the heating controller model
implemented with partially correct automata

We assume that each cell can realize one of the following
internal functions: AND, OR, XOR, and it has one output
and four inputs connected either to one of a global inputs
(input variables from the truth table given for a system) or
to an output of any cell. The fitness fit has been calculated
for each version (individual) by comparing its output data
to the existing project specifications (truth table). It equals a
ratio between the number of correct terms of the individual
and the overall number of terms from the truth table:

n
r

i 2
%100Xfit ×

= , (5)

where i is a number of individual in a population; Xr is the
total number of input terms that corresponds to the correct
output data; n is a number of inputs.

In the second phase, a special block is developed in order
to implement switching between automata and achieve full
correctness of a system. The initial data for this phase is a
number of automata utilized in the model and information
about their behavior.

We have implemented the model in Fig. 11 to FPGA
EP1K10TC144-3 (family ACEX 1K) using the CAD tool
Quartus II v.6.0 and have compared it with the existing
prototype. The scheme that allows switching automata has
been designed according to Table 1 and Fig. 11.

To translate the model into the acceptable format in order
to exploit the standard CAD tool, each automaton has been
described in AHDL language as follows. The codes of the
internal functions of each cell have been extracted from
binary string that describes the behavior of automata as well
as codes that show cell interconnections. Then we have
defined the appropriate variable for each cell to implement
its internal function and set the connections between these
variables, inputs and outputs of automaton. We have
received a hierarchical project by applying such a technique
to every automaton included in the model: on the top level,
there are a switching block and automata represented as
“include files”.

TABLE 1
SWITCHING LOGIC FOR TWO AUTOMATA

 Information about current behavior of automata
A - Automaton А1 = А2 А1 ≠ А2
A1 and A2 have
definite and correct
output

«OK», Switch
to А1 or A2

«Fail»

A1 has definite and
correct output

«Risk», Switch
to А1

«OK», Switch
to А1

K
no

w
n

in
fo

rm
at

io
n

ab
ou

t d
ef

in
ite

ne
ss

 a
nd

co

rr
ec

tn
es

s o
f a

ut
om

at
a

A2 has definite and
correct output

«Risk», Switch
to А2

«OK», Switch
to А2

R&I, 2008, No4 29

To estimate the reliability of the developed project, we
have chosen two parameters:

1) the probability of no-failure;
2) the probability of keeping system operating state.
The first parameter has been calculated for chip failure

rate λ=10-7 1/hour, 1pK = , time intervals t={101, 102, 103,
104, 105} hours and overall number of logic cells N=256.
Time till the PLD fault has been given by the exponential
distribution.

If the primitive objects are automata, the probability of
no-failure is calculated with the following formula:
P(t)=p1(t)×p2(t)×pK(t). We have assumed that p1(t)=p2(t), so
P(t)=p(t)2×pK(t). The probability of no-failure for a single
automaton is equal to λa= (λ×Na)/N, where Na is a number
of logic cells that constitute single automaton. Na=Ns/h,
where Ns is a number of cells allocated for the whole system
and h is a number of automata. Therefore, the probability of
no-failure for the whole system is the following:

P(t)
[] t××

×
= 256

9/2102-
-7

e .
If the primitive objects are groups of definite and correct

output data, the probability of no-failure is calculated as
P(t)=p11(t)×(1-(1- p12(t) ×(1- p22(t)) × p23 (t) × p14(t) ×pK(t).
We have assumed that all probabilities p(t) are equal, so
P(t)=p(t)3×(1-(1- p(t)2)×pK(t). The probability of no-failure
for a single group of correct and definite data of automaton
equals p(t)= tge λ− , where λg is a failure rate of automaton for
a group g. λg is calculated as λg= (λ×Ng)/N, where Ng
=Ns/(h×n) and n is a number of groups. Therefore, the
probability of no-failure for the whole system is the

following: P(t)))e1(1(e 2256
42

910
-

256
42

910
-3

-7-7

tt ×
⎥⎦
⎤

⎢⎣
⎡
×

×
×
⎥⎦
⎤

⎢⎣
⎡
×

×
×

−−×= .
To compare the developed project of heating controller

with the prototype, we assume prototype to be a single fully
definite fully correct automaton. Thus, P(t)=

tpe λ−
, where

λp is a failure rate of the prototype. λp is equal λg= (λ×Ns)/N,
so the probability of no-failure for the prototype is

t
256

7410-
7

eP(t)
×−

= .
The values of P(t) for the obtained project and its

prototype are given in Table 2. The gain in reducing the
probability of no-failure for both projects is shown in Table
3.

To analyse the reliability for the obtained heating
controller, we have also used a PLD fault simulator [21]
and assessed the probability of keeping system operating
state for the several fault configurations. We have received
the values of the probability of keeping system operating
state by the serial experiments where different
configurations of faults were generated. The experimental
results given in Table 4 show that the system is able to keep
its operating state even though there is a significant number
of failed cells in the chip. The reason is the compactness of
the developed project: it uses only 27 logic cells (Fig. 12),

whereas in the heating controller that is currently used in
AN-70 plane, the overall number of cells involved is 74.

TABLE 2

THE PROBABILITY OF NO-FAILURE FOR HEATING CONTROLLER AND ITS
PROTOTYPE

 Primitive
Object Time, hour

 10 102 10
3

10
4

10
5

Automata

 0,

99
99

99
96

5

0,
99

99
99

64
8

0,
99

99
96

48
4

0,
99

99
64

84
4

0,
99

96
48

49
9

N
ew

 P
ro

je
ct

Groups of

output
data

 0,

99
99

99
98

68
16

0,
99

99
99

86
81

64

0,
99

99
98

68
16

41

0,
99

99
86

81
64

7

0,
99

98
68

17
08

29

Pr
ot

ot
yp

e

 0,

99
99

99
71

09
38

0,
99

99
97

10
93

79

0,
99

99
71

09
41

68

0,
99

97
10

97
92

7

0,
99

71
13

54
88

34

TABLE 3

THE GAIN IN REDUCING THE PROBABILITY OF NO-FAILURE FOR HEATING
CONTROLLER COMPARING TO ITS PROTOTYPE

Primitive Object Time, hour
- 10 102 103 104 105

Automata

8,
25

89
27

38

8,
21

19
90

97

8,
22

12
26

46

8,
22

10
92

43

8,
21

17
86

50

Groups

21
,9

25
24

71

21
,9

25
88

38

21
,9

25
61

53

21
,9

22
86

33

21
,8

95
39

04

TABLE 4

THE PROBABILITY OF KEEPING SYSTEM OPERATING STATE WITH THE
SEVERAL NUMBERS OF FAULTY CELLS

Faulty Cells 1
Cell

2
Cells

3
Cells

5%
of

Chip

10%
of

Chip

25%
of

Chip

50%
of

Chip

75%
of

Chip

GA-project 0.958 0.951 0.943 0.865 0.810 0.663 0.398 0.080

Prototype 0,870 0,797 0,745 0,480 0,343 0,050 0 0

30 R&I, 2008, No4

Project
Location Project Location

Failed Cells

View in FloorpalnEditor (Quartus II) ViewinPLDFaultSimulator
Project of heating controller obtained by using GA

Project of heating controller obtained by using standard CAD that is
currently used in AN-70 plane

View in PLD Fault Simulator View in FloorpalnEditor (Quartus II)

Project Location

Failed Cells

Project
Location

Fig. 12. Physical location of the heating controller projects in the FPGA
EP1K10TC144-3 and their representation in the PLD fault simulator

In fact, both prototype and project evolved with GA can
be gathered to duplex architecture as it is shown in Fig. 3 to
constitute a multi-version project of the heating controller.
Another way is to use the obtained project as a control
module for the prototype (see Fig. 4).

VI. CONCLUSION
In this work, we have elaborated the overall strategy that

allows a developer to manage the level of design diversity
while developing multi-version projects of digital systems
with SoC architecture. We have found out that one of the
most efficient ways to obtain a high level of system
diversity is to use different approaches to the system design.
Focusing on the design with GA, we have suggested several
methods to estimate reliability of systems evolved with GA
that consider information about the definiteness and
correctness of each system version. We have illustrated
them by estimating the reliability of heating controller
evolved with GA and by comparing it to its prototype.
Further research can focus on the issues of version selection
to minimize probability of common mode failure and its
assessment taking into account implementation of design
into a chip. Besides, we are planning to develop tools for
support of design decision making.

REFERENCES
[1] Blanke, M., Kinnaert, M., Lunze, J., Starosweicki, M. Diagnosis and

Fault-tolerant Control. Springer, 2006, pp. 672.
[2] Stevens, L., Lewis, F. Aircraft Control and Simulation. Wiley-IEEE,

Technology & Industrial Arts, 2003, pp. 680.
[3] Pasetti, A. Software Frameworks and Embedded Control Systems.

Springer, Computers, Languages Programming, 2002, p.293.
[4] Townend, P., Jie Xu, Munro, M. Building Dependable Software for

Critical Applications: Multi-Version Software versus One Good

Version. In Proceedings of the 6th Int. Workshop on Object-Oriented
Real-Time Dependable Systems (WORDS'01), 2001, p. 103.

[5] Avizienis A., Lapric J.C. Dependable Computing: From Concepts to
Design Diversity // Proceedings of the IEEE, 1986, vol. 74, issue 5,
pp. 629- 638.

[6] Kharchenko, V., Tarasenko, V., Ushakov, A., The Fault-tolerant
PLD-based Embedded Digital Systems, National Airspace University
"KhAI", Kharkiv, 2004, pp.207.

[7] Hatton, L. N-version Design Versus One Good Version. In
Proceedings of Software, IEEE, 1997, pp. 71-76.

[8] Anderson, S., Felici, M. Safety, Reliability And Security Of
Industrial Computer Systems. Reliability Engineering & System
Safety. 2005, vol. 89, issue 1, pp. 1-5.

[9] Shuqing Wang, Jiaping Liao, Zipeng Zhang, Xiaohui Yuan.
Application of Neural Networks and Genetic Algorithm in
Knowledge Acquisition of Fuzzy Control System. In Proceedings of
the 6th World Congress on Intelligent Control and Automation. 2006,
vol. 1, pp. 3886 - 3890.

[10] Fernando Morgado Dias, Ana Antunes, Alexandre Manuel Mota.
Artificial neural networks: a review of commercial hardware.
Engineering Applications of Artificial Intelligence, 2004, vol. 17,
issue 8, pp. 945-952A.

[11] B. Dunham, D. Fridshal, R. Fridshal, J. North. Design by Natural
Selection. Synthese, D. Reidel Publication Company, Dordrecht-
Holland, pp. 254-259, 1963.

[12] Thompson, A., Layzell, P., Zebulum, R. Explorations in Design
Space: Unconventional Electronics Design through Artificial
Evolution, IEEE Transactions on Evolutionary Computation, vol. 3,
№ 3, September 1999.

[13] Savage, M.J.W., Salcic, Z., Coghill, G., Covic, G. Extended genetic
algorithm for codesign optimization of DSP systems in FPGAs. In
Proceedings of IEEE International Conference on Field-
Programmable Technology. 2004, pp. 291 - 294.

[14] J. Koza, S. Al-Sakran, L. Jones. Cross-Domain Features of Runs of
Genetic Programming Used to Evolve Designs for Analog Circuits,
Optical Lens Systems, Controllers, Antennas, Mechanical Systems
and Quantum Computer Circuits. NASA/DoD Conference on
Evolvable Hardware, IEEE Computer Society Press, 2005, pp. 205 –
214.

[15] G. S. Hornby, S. Takamura, J. Yokono, O. Hanagata, T. Yamamoto,
M. Fujita. Evolving Robust Gaits with AIBO. In IEEE International
Conference on Robotics and Automation, IEEE, 2000, pp. 3040 –
3045.

[16] G. Hornby. Functional Scalability through Generative
Representations: the Evolution of Table Designs. Environment and
Planning B: Planning and Design, 2004, vol. 31, issue 4, pp. 569 –
587.

[17] Yakymets, N., Kharchenko, V. Resource-Oriented Diversification of
Fault-Tolerant PLD-Systems. Radio-electronic and Computer
Systems, KhAI, 2006, vol. 3, pp. 45-50.

[18] Sverre Vigander, Evolutionary fault repair of electronics in space
applications. Ph.D. Thesis, Dept. of Computer & Information
Science, Norwegian University of Science and Technology (NTNU),
Trondheim, 2001.

[19] Yakymets, N., Kharchenko, V. Fault-Tolerant Digital Systems
Implemented with Partially Definite and Partially Correct Automata.
In Proceedings of the 2007 workshop on Engineering fault tolerant
systems, Dubrovnik, Croatia, September 04 - 05, 2007.

[20] Yakymets, N., Ushakov, A. Analysis of Failure Types and
Development of an Adjustable Generator of Cluster Failures for
PLDS. Vestnik NTU KhPI, 2003, vol. 6, pp. 149-152.

[21] M. Young, The Technical Writer's Handbook. Mill Valley, CA:
University Science, 1989.

R&I, 2008, No4 31

