
Test Pattern Overlapping - a Promising
Compression Method for Narrow Test Access

Mechanism SOC Circuits

Ondřej Novák, Jiří Jeníček

Abstract − This paper describes research results obtained
in the field of test pattern compression and decompression. We
refer the hardware test pattern decompression system
DyRESPIN built-in on a System on Chip, which uses test
patterns compressed by the compressing algorithm called
COMPAS. COMPAS reorders and compresses test patterns
previously generated in an ATPG in such a way that they are
well suited for decompression by the scan chains in the
embedded tester cores. We report improvements that have
been done recently on COMPAS. COMPAS algorithm has to
manipulate with enormous amount of data when compressing
test sets of large circuits and the CPU time grows rapidly with
the growing number of test vectors. The CPU time problem
was solved by using a test vector initial encoding by sparse
vectors and by using a dynamic structure for storing the pre-
calculated parameters of candidate vectors to be used in the
near future algorithm loops for overlapping with the actual
scan chain content. This arrangement allows the algorithm to
skip unnecessary computations. The improvements cause that
the CPU time grows approximately linearly with the size of the
tested circuit. DyRESPIN uses a built-in processor for test
control, the embedded RAM memory for storing both the
compressed test vectors and the partial reconfiguration bit
streams and the FPGA part of the chip for the wrapped cores
implementation. The highly compressed test vectors are
transferred from the memory to those selected cores that are
reconfigured into the embedded tester cores. The patterns are
decompressed within the internal scan chains of the embedded
tester cores and they are simultaneously fed into the parallel
scan chains of the cores under test with the help of the Test
Access Mechanism (TAM) and standard wrappers. After
having tested the first cores under test the TAM of the SoC is
partially reconfigured with the help of the partial
reconfiguration bitstreams stored in the RAM memory and the
till now untested cores are tested by those cores that start to
serve as embedded testers.

Index Terms — Circuit testing, Testing, Memory
management

Manuscript received Fabtuary 6, 2008.
Ondřej Novák with the Technical University Liberec, Hálkova 6, 461 17
Liberec I, Czech Republic, E- mail: ondrej.novak@tul.cz.
Jiří Jeníček with the Technical University Liberec, Hálkova 6, 461 17
Liberec I, Czech Republic, E- mail: ondrej.novak@tul.cz.
Acknowledgment. The research was supported by the research grant of the
grant IQS108040510 of the Czech Academy of Sciences.

I. INTRODUCTION

eterministic test spares testing time and the on chip
hardware overhead is low. However the test sizes has
been pushing test costs up due to the necessity of using

more powerful ATEs and if the test access mechanism
(TAM) is narrow the test application time becomes to be
critical, too. In order to minimize the data transfer through
the TAM, compacted and compressed test sets are used. By
the term compact test set is meant a test set, which is
created in the automatic test pattern generator (ATPG) from
test patterns by merging as many as possible patterns. An
original test pattern usually detects one or more possible
circuit faults and contains several don’t care bits. The
original patterns are merged in such a way that resulting
patterns detect multiple faults and do not contain don’t care
bits while the test set fault coverage remains unchanged.

Test data compression is a non-intrusive method that can
be used to compress the pre-computed test set to a much
smaller test set, which is then stored in the ATE memory.
An on-chip decoder is used to generate the original test set
from the compressed one. Many contributions containing
different decompression mechanisms were published; let us
mention [1], [3], [5][7][18], [27], [34]. It is not
straightforward to compare the compression methods
because some authors demonstrate the efficiency on
decompression of random resistant faults only and other
authors compress and decompress the whole ATPG
deterministic test sequence. The usefulness of a
compressing algorithms and decompressing automaton is
influenced not only by the compression ratio but also by the
complexity of the decompressing automaton and by the
computational complexity of the algorithm for finding the
compressed test sequence.

Increasing number of transistors results in increasing
ATPG computation time and memory consumption. Many
of published test optimization techniques are dedicated to
sequential test optimization. To handle time consuming test
generation, it is often necessary to parallelize test generation
process [35], [15], [36]. Concurrently generated ATPG
output has to be than effectively compressed.

 In this paper, we present results of our previous research
done in the field of test pattern compression based on test
pattern overlapping [16] and hardware decompression based

D

26 R&I, 2008, No 1

on wrapper reconfiguration [26]. The results give us a
possibility to construct a system that combines both of the
mentioned methodologies.

II. COMPAS – TEST PATTERN COMPRESSION TOOL

The main idea is to maximally overlap those patterns that
are serially shifted into the scan chain. This approach was
firstly described in [6]. The method uses an algorithm for
finding contiguous and consecutive scan chain vectors for
the actual scan chain vector. These vectors are checked
whether they match with one or more remaining test
patterns, which were previously generated and compacted
with the help of some ATPG and which were not employed
in the scan chain sequence yet. Similar approach was used
in [33]. The compacted test vectors were reordered by a
heuristic algorithm to attain maximal overlapping. A
disadvantage of the mentioned methods is that they are
either computationally complicated and thus they are not
usable for large circuits or the obtained amount of test data
stored in an ATE is greater than the data amount in other
compression methods. We present an algorithm, which
speeds up the computation by searching for the successors
of given starting pattern (usually the all zero seed) and
which improves the compression efficiency by fault
simulation after every test pattern application. This
algorithm uses test vectors with don’t care bits instead of
the compacted ATPG test vector test set, which enables us
to combine test pattern compaction and compression to be
well suited with the decompression in a scan chain. The
algorithm is implemented in the COMPAS (COmpressed
test PAttern Sequencer) software tool. It speeds up and
improves the algorithm [26] by taking into account possible
future conflicts between overlapping patterns, it uses more
efficient pattern coding and it remembers information that
could be useful in future algorithm loops. COMPAS is able
to prepare test sequences for the most complex circuits in
short time. COMPAS can be used also for preparation of
test sequences of cores under test (CUT) that are designed
according the IEEE 1500 standard [23]. Test data can be
effectively decompressed with the RESPIN test architecture
[7]. This architecture reuses scan chains of different cores
for updating the tested core scan chain content. Latest
version of the algorithm used in [26] has been further
enhanced to lower CPU time and memory consumption.

III. MEMORY CONSUMPTION IMPROVEMENT

Uncompressed test data generated by an ATPG are stored
as a plain text file, each fault corresponds to a single vector
in form of sequences of ‘0’, ‘1’ and ‘X’ characters standing
for log. 0, log. 1 and unspecified bit (hereafter DC bit, DCB
or ‘X’).

This data organization allows many concurrent ATPG
processes. Each ATPG can generate test vectors for small
group of faults or for single fault. Outputs of all ATPGs are
then merged into a single file.

Size of the file can be a problem; because data files are
very large for larger circuits (e.g. b19 from ITC99

benchmark set has more than 2.5 GB uncompressed test
data).

For optimal algorithm decision it is necessary to load all
test data at once into a computer memory, so new method
needs to be developed for storing the test data in a computer
memory. Simple loading of the file is not possible for large
circuits.

A. New data encoding
One more stage of compression has to be performed

instead of simple loading of text file into memory. First
stage compresses plain text data from a file and stores them
in a memory. Second stage uses compressed data from a
memory to do pattern overlapping compression.

Three different encodings of test vectors are used in the
program. Data produced by an ATPG are stored as a plain
text: ‘0’, ‘1’ and ‘X’. Each character is stored in on a hard
drive as an 8bit char type. Large amount of uncompressed
test vector data are encoded into two different forms when
loaded into a computer memory, depending on which one
consumes less memory.

The first encoding is a quite straightforward conversion
of the eight bit character vector into two bits. By this
encoding each 8 bit character is reduced to 2 bits, and 6 bits
are saved (75% of memory).

The second encoding creates so called sparse vector,
which means that only care bits and their positions are
saved. 32 bit integer I used as a basic data type; one bit is
used for actual value, and rest 31 bits are used to note the
position. Scan chain with maximal length of 231 can be
encoded this way. DC bits are not stored at all. As not only
one byte but four are used to encode a single care bit, this
compression method is useful only if total amount of care
bits is lower than 25%, otherwise it consumes more
memory than the original vector. The first method can
certainly compress to 25% of the original, a vector to be
encoded more effectively by using the sparse vector than by
the first approach must have less than 6.25% care bits.
However, Tab. 1 with the numbers of DCBs in benchmark
circuits shows that it should not be a problem.

It is decided for each vector separately which method
should be used. So it could be guaranteed that at least 75%
of memory will be saved. For larger circuits often more than
95% can be saved by a proper encoding.

IV. RUNTIME IMPROVEMENT

A. Algorithm description
At first, a Test Pattern List (TPL) together with the

corresponding Undetected Fault List (UFL) is generated for
the tested circuit. An ATPG tool that enables generating
non-compacted test patterns has to be used. At least one
three state test vector with bit values 0, 1 and X, where X
means don’t care value has to be generated for each
considered fault. In this way we can distinguish, which
pattern belongs to which fault.

R&I, 2008, No 1 27

TABLE 1:

CARE BIT PERCENTAGE IN TEST DATA OF DIFFERENT BENCHMARK
CIRCUITS

Circuit Gate count Care bits[%]
c17 6 56,36
c432 160 43,67
c499 202 82,32
c880 383 17,78
c1355 546 86,31
c1908 880 55,16
c2670 1193 7,92
c3540 1669 25,32
c5315 2307 7,39
c6288 2416 76,24
c7552 3512 13,1
s27_comb 10 45,09
s1196_comb 529 26,01
s1238_comb 508 26,48
s1494_comb 647 50,58
s5378_comb 2779 4,05
s9234_comb 5597 5,44
s13207_comb 7951 1,19
s15850_comb 9772 1,38
s35932_comb 16065 0,26
s38417_comb 22179 0,84
s38584_comb 19253 0,39

The main loop of the algorithm of finding bits to be

stored in the ATE memory is described in Fig. 1. Let us
suppose (without loss of generality) that the SC is reset
before testing, which means that the all zero pattern is
considered to be used as the first one (algorithm allows to
start with any known scan chain state). The fault coverage
of this pattern is simulated and the detected faults are
deleted from the UFL, test patterns corresponding to the
detected faults are deleted from the TPL. Then the
algorithm tries to compact the test set by overlapping
resting patterns with the actual scan chain state. The
algorithm finds, whether log. 0 or log. 1 is better to be used
as the next most left chain bit. To do this the algorithm
finds positions of all patterns, in which the actual chain bits
maximally overlap the pattern and for which the actual bit
to be introduced into the SC has not a don’t care value.
After finding the position the algorithm has to count the
usefulness U of the treated pattern. The pattern usefulness
U is calculated according to the following formula:

U = t *(overlapped_cares + shift) + global_cares
where overlapped_cares – the number of the pattern care
bits that overlap the SC; shift – the amount of non-
overlapped bits in pattern; global_cares - the global
number of the pattern care bits; t – Experimentally fixed
parameter; we obtained good results when we set t =
number_of_primary_inputs / 2.

Then the algorithm compares the number of the most
useful patterns with log. 1 on the actual position and the

No

End

TPL

UFL

Yes

No

Find next pattern position with maximal overlapping
the actual SC state and with a care bit on the most
left SC position, calculate pattern usefulness

TPL

Yes
No

Yes

Select next SC actual bit to be set

No

No
#one > #zero?

Yes

pattern bit is log. 1: one +1
pattern bit is log. 0: zero +1

SC input bit := 1

Begin

SC input bit := 0

UFL
All zero pattern, simulate fault coverage,
delete covered faults from UFL and TPL

Select next test pattern

Actual bit already defined
in the FA?

Yes

FA

Last pattern ?

FA

Yes
colision with FA?

No
Yes

Update SC, FA;
simulate fault coverage;

delete covered faults from
UFL and TPL

best usefulness?

Check future bits belonging to the
most useful pattern

Uncovered faults?

Best usefulness?

No

TPL

FA

Fig. 1: Pattern overlapping algorithm

28 R&I, 2008, No 1

number of patterns with log. 0 on this position. If the
number of ones is greater than the number of zeros the input
actual bit is fixed to log. 1 in the other case to log. 0. This
way of setting the actual bit guarantees that a maximum
number of the most useful patterns could be encoded. When
searching for the most useful pattern we check whether the
exercised pattern matches with bits which will be necessary
to be generated in the future clock cycles because of some
previously selected patterns. These bits are stored in a
Future Array (FA) together with their effectiveness and
pattern identification numbers If some position of FA is
reserved for a logical value that is clashing with the
exercised pattern bit value we compare the usefulness of
both patterns and the winner is used in future
considerations. After bit selection the fault simulation is
performed and the faults and patterns, which correspond to
the covered faults, are removed from the lists. If there are
not remaining faults in the Undetected Fault List the
algorithm is finished.

B. Proposed optimization
Basic principle of the compression method remains the

same as in previous chapter, but several steps of the
algorithm can be skipped, if they can not influence the
solution.

One possible state of the compression algorithm is shown
in Tab. 2. To make explanation easier, the basic version of
algorithm [26] without bit prediction is used, as the
principle of the optimization remains the same.

TABLE 2

EXAMPLE OF VALID ALGORITHM STATE
 Searched

bit

Step 5 4 3 2 1 0

SC content ? 0 0 1 1 1 0

vector A 1 X X X 0 0

vector B 1 X X 1 0 0

vector C X 1 X 0 1 1

vector D 0 X 1 1 1 1

All remaining vectors are overlapped as much as possible

with current scan chain state during search of the next
compressed bit (marked with question mark). At the given
moment, three vectors are overlapping (vectors A,B,C) and
one vector (D) could not be overlapped. It is not possible to
store DC bit in the compressed sequence, so only vectors 2,
3 and 4 are useful. They all have ‘1’ at the current position,
so value ‘1’ is shifted into the scan chain and stored as the
next bit of the compressed sequence. The fault simulation of
the current scan chain state is performed after that, the
detected faults and their corresponding vectors are removed
from the memory. Than the algorithm goes to the beginning
and tries to overlap all remaining vectors again.

It is important, that vector A has only useless DC bits in
step 1 and in the two following steps (2 and 3). Those bits
can not be contained in the solution; on top of that they will
never collide with any other selected bit. Because of that it

is possible to omit the calculation of the possibility of
vector overlapping for vector A in steps 1, 2 and 3. The
vector A is not useful for calculations in step 1 and 2; in
step 3 it could be overlapped without collision. Vectors B
and C have DC bits in the following steps, but during
calculation it is not certain, if their bit (value ‘1’) will be
chosen as a solution. Vector D has care bits on the next
position, so its overlap has to be evaluated. If a vector has a
DC bit in the actual position, it is only necessary to evaluate
how many DC bits follow the actual position. This
computation is done for each new found sequence of DC
bits in vector only once. It is also faster than finding how
much is a vector overlapped. Every time when vector
overlapping is evaluated, the program finds if DC bits series
follows, and how long is this DC bit sequence. If there is at
least one DC bit, the overlapping evaluation is omitted.

Vectors are stored in a dynamic structure from Fig. 2
according to the number of steps needed to reach a care bit.
Only the vectors from entry ‘0’ of steps_to_care_bit array
are checked, others can not influence the solution. It is
obvious, that it is necessary to store only distance to the
next care bit, so that each vector will be saved only once.
Solution is chosen after evaluation of all vectors in entry
‘0’, and vectors are placed into the proper entries of
steps_to_care_bit array according to the distance to the next
care bit. After evaluation and replacement of all the vectors
from entry ‘0’, whole array is shifted one position to the
right and the algorithm is ready for the next loop.

011100

00xxx1

001xx1

1111x0

110x1x

scan chain

vector A

vector B

vector C

vector D

012345
steps_to_care_bit

Fig. 2: Dynamic structure for calculation omit decision

Amount of the DC bits in the uncompressed test data file

of several circuits from ISCAS85 and ISCAS89 benchmark
set is noted in Tab. 1. The data contain a lot of DC bits, and
the percentage of DC bits grows with the circuit size. That
is why it is possible to skip a lot of calculations.

V. TEST ACCESS MECHANISM (TAM)

A test session can be controlled by a tester or by a BIST
controller. It could be advantageous to use an embedded
processor instead of a specialized controller with a RAM.
As the RAM size is limited, the test set has to be as small
as possible. Further testing speed improvement could be
obtained by minimizing the amount of data transferred
between the processor and the tested cores. From this
reason it is worthwhile to send the compressed data from
the processor to the decoders that are placed closely to the
tested cores and to leave the decoders to decode the
patterns independently on the processor activity. This

R&I, 2008, No 1 29

arrangement can speed up testing as the clock frequency of
the core flip-flops could be higher than the processor clock
frequency and the processor can prepare next data during
decoding the previous pattern (Figure 3). Another problem
arises when using cores with the SCs that contain internal
flip-flops; if we have to guarantee not corrupting test
patterns by CUT responses and simultaneously catching
all test responses we have to scan in and scan out the
whole test pattern after each system clock application. The
RESPIN (Reusing Scan Chains for Test Decompression)
test architecture [7] solves both pattern decompression and
reducing the data traffic between tester and CUT.

MISRETC CUT1
1

1
0

MISRETC CUT1
1

1
0

Fig. 3. ETC and CUT in the RESPIN architecture

The RESPIN architecture temporarily divides the circuit

into the core under test (CUT) and the embedded tester
core (ETC). The data transfer mechanism between the
tester and ETC can be denoted as a narrow TAM as the
demanded transfer capacity is low. The TAM between the
ETC and CUT is wide as the data transfer is done parallel
and on a higher clock frequency. The ETC chains are
concatenated into a serial scan chain; a feedback tap
connects the ETC last chain output with the first bit input
through a multiplexer. According the multiplexer control
input, ETC can either load a bit from the tester or shift the
scan chain circularly. The parallel chains of the CUT are
connected with the parallel ETC chain outputs. This test
pattern updating mechanism guarantees that the patterns,
which are shifted through the CUT SC during several test
steps, are not mixed with the CUT responses. An
additional multi input MISR connected to the SC outputs
can be exploited for capturing all the test responses. The
conditions for effective testing are: the ETC has at least
the same number of chains as the CUT; the CUT chains
are not longer than the corresponding ETC chains and the
number of scan cells of the CUT and the total number of
ETC scan cells incremented by one have not a common
divider. If it is not possible to find an ETC core that fulfils
the above mentioned conditions, more than one core can
be used for creating the ETC.

A. Reconfiguration
The novel FPGA circuits are dynamically

reconfigurable at runtime. These dynamically
reconfigurable FPGA circuits have a capability to change
the behavior of one part of the circuit; the rest part is fully
operational without changes and without interruption.
Generally, each memory-based FPGA can be reconfigured
dynamically. In the currently known dynamically
reconfigurable devices two techniques are used: “partial

configuration” and “Multiple-context configuration
memory” [31].

Reconfiguration of the TAM for a SoC testing seems to
be an efficient exploitation of the partial reconfiguration
capability of FPGAs. As the Atmel FPGAs can efficiently
perform the fine grained reconfiguration we decided to use
it for an implementation of the self-testable SoC (System on
Chip) design. The diagnostic system uses RESPIN
architecture which is based on the IEEE 1500 standard. The
partial reconfiguration is used for connection among ETCs,
CUT and the feedback multiplexer.

The main advantage of the proposed solution is that all
the reconfiguration bitstreams are stored inside the chip.
Thereafter the reconfiguration process can be controlled by
the embedded processor and the only communication
between the tested SoC and the external test supervisor is a
request for execution the test and checking the results of the
done tests.

VI. EXPERIMENTAL RESULTS

Fig. 4 shows the COMPAS CPU time improvement
against [26]. The new algorithm performs better for larger
circuits, and it corresponds with amount of DC bits.
Average speedup is 114% for all measured circuits and
181% for circuits with more than 10.000 gates.

Compression speedup

0%

50%

100%

150%

200%

250%

c1
7

c4
32

c4
99

c8
80

c1
35

5
c1

908
c2

67
0

c3
54

0
c5

31
5

c6
28

8

s2
7_

co
mb

s1
19

6_
co

mb

s1
23

8_
co

mb

s1
49

4_
co

mb

s5
37

8_
co

mb

s9
23

4_
co

mb

s1
32

07
_c

om
b

s1
58

50
_c

omb

s3
84

17_
co

mb

s3
85

84
_c

om
b

Circuit

Fig. 4: Speedup of the compression part of the algorithm

Tab. 3 shows the resulting numbers of stored bits for

some well known test pattern compression methods and for
the proposed algorithms. In the second column we plotted
the test data volume for ATPG vectors, which were
compacted only [3]. Next column shows the number of
stored bits for statistical coding of the test patterns from the
previous column [1]. Next results correspond to a
combination of statistical coding and LFSR reseeding [18].
Next columns summarize results of compression with
parallel/serial scan chains [27], frequency directed codes
[5]. The results for the method of Embedded Deterministic
Test are presented in the next column [18]. The column
RESPIN++ shows the numbers of bits stored in the ATE for
the RESPIN++ architecture given in [32]. We can see that
the number of bits, which are stored in a memory, is
substantially lower for the proposed method than for other
pattern compressing methods. We have to note that a
majority of the tabulated pattern compression methods do

30 R&I, 2008, No 1

not use a fault simulation after encoding a new test pattern
(with the exception of the method [32]). These methods use
compacted test sequences, the fault coverage was simulated
during test pattern generation in the ATPG in the process of
pattern compaction. The number of fault simulations in
these cases corresponds with the total number of non
compacted test patterns. In case of COMPAS and
RESPIN++ the ATPG patterns were generated without any
simulation, fault simulation is performed after a pattern
encoding. The number of fault simulations is equal to the
length of the final compressed sequence. Lengths of the
compressed sequences are the same as in previous work
[26], because both optimizations do not change the principle
of the algorithm. That means that the results should be
exactly the same, but due to optimizations the results should
be obtained faster and with smaller memory footprint. This
is true especially for larger circuits, because their test data
generated by an ATPG contain large amount of don’t care
bits.

The experimental diagnostic system was built on the
FPSLICTM AT94K40AL circuit. It is a dynamically
reconfigurable programmable SoC, which integrates
Atmel SRAM, FPGA and an 8-bit AVR processor
[11].

The FPSLIC circuit is connected to PC through
JTAG interface. A user is able to program both main
parts of IC – program for AVR processor and/or static
content of FPGA. Testing with the RESPIN
architecture requires reconfiguring circuit cores
several times during the test. Each core in the SoC is
surrounded by the wrapper [14]. The wrapper allows
connecting the core with the defined surrounding
cores either in the functional mode or in the test
mode. The Test Access Mechanism (TAM) takes care
of the on-chip test pattern transport. The TAM and
wrappers form the infrastructure for access to
individual cores providing tests of all cores. Whereas
the core wrapper is defined and standardized by the
IEEE 1500 standard, the design of test access
mechanism is excluded from this standard and assumed
to be addressed by the SoC designer. Partial FPGA
reconfiguration was used as an efficient way how to form
the low area demanding TAM for multiple embedded core
SoC design. The FPGA consists of a number of generic
cells called LUTs. In our system the LUT is used for
connecting the test core terminal and a LUT of the TAM.
By this arrangement two LUTs are needed to form one
wire interconnection between 1-bit core test input and
output terminal in the FPGA.

The testing system uses an 8-bit AVR processor, an
SRAM memory and a dynamic reconfigurable FPGA
accessible both from the processor and from the FPGA. In
the FPGA we programmed wrapped cores, the MISR, the
controller and detached area of the TAM. The AVR
processor was used for data processing, for handling the
data with the hardware controller and for partial
reconfiguration of the TAM before initiation of the core
test. Test patterns together with TAM configurations were
stored in the embedded SRAM. The processor controls the

test scheduling and communicates with the hardware
controller. The RAM is used for storing the compressed
test sequence. For each test pattern the processor gives the
controller a command to run the test cycle independently
on the processor. This arrangement enables the hardware
controller and the processor to work concurrently and to
speed up the test. The hardware controller drives core
wrappers and the TAM by the WSC signals. During the
test cycle the AVR transports one test bit from the
memory to the port tdi and informs the controller about
availability and suitability of test data. At the end of the
test session, the processor shifts data through the port tdo
from the MISR where the responses were accumulated and
compares the resulting signature with the sample one
stored in the RAM (Figure 5). After finishing the first
CUT test the TAM is partially reconfigured and the next
core is assigned as a CUT and it is tested through a newly
reconfigured ETC. As the granularity of configurable
blocks of the FPGA is relatively fine only a small part of
the configuration memory has to be replaced by a new
content (In Fig. 4 denoted by the gray color).

The ISCAS benchmark circuits (S298, S382, S444 and
S1423) were used as cores in the experiment. The system
with three cores S1423 designed in the SoC used 73% of
the FPGA AT94K40 resources. Reconfiguration takes
several thousands of clock cycles of processor. Number of
clock cycles depends on the design to be reconfigured. In
our case the reconfiguration time is less than 1 ms in case
of 4 MHz processor clock. The circuit has 36 Kbytes of
available RAM memory (20 – 32 Kbytes for program and
4 – 16 Kbytes for data). The size of one reconfigurable
bitstream, which was used in the diagnostic system, was 2
Kbytes. The more cores are used in RESPIN architecture
the more reconfigurable bitstreams are needed for
arranging the ETC–CUT structure. Nevertheless the spent
RAM memory amount was acceptable. In case of lack of
the RAM memory the bitstreams can be reloaded from a
PC. The test time depends on the longest parallel chain
and on the number of bits of the compressed test. In our

s

LUT

wrapper

M
I
S
R

tdo

tdi
si si si si so so so

pi pi pip p p

dynamically reconfigurable FPGA

ETC

wrapper wrapper

CUT other

feedback
multiplexor

Fig. 5: An example of TAM configuration (given by dotted lines). The TAM is

reconfigured by reprogramming LUTs of the reconfigurable FPGA blok

R&I, 2008, No 1 31

case the test time is about 0.3 ms for the best possible
clock frequency of the FPGA (40 MHz).

VII. CONCLUSION

The COMPAS compression tool demonstrates that it is
possible to apply the method of test pattern compression
through pattern overlapping for relatively large circuits and
that the resulting test data volume is kept very low.
COMPAS uses as input test patterns non compacted
original ATPG test vectors with don’t care bits. The
patterns are overlapped and the resulting test sequence can
be decompressed by the scan chain. The decompressed
patterns are simulated by the fault simulator whether they
cover any other additional fault. This mechanism reduces
the number of test patterns that have to be used for testing
since the interleaving patterns that appear in the scan chain
between the original patterns cover the random testable
faults. These faults are usually tested by the random pattern
sequence in mixed/mode testing algorithms and the
proposed method avoids using this random testing phase.
We have solved the problem of long CPU time for
enumerating the compressed test sequence by multiple
usage of test bit usability evaluation during the process of
finding the test sequence and by skipping pattern
recalculation for cases when don’t care bit groups are
present in the patterns. This was enabled by using a
concatenated list of pattern pointers. Problem of extreme
memory consumption has been solved by using two new
data encodings during the compression. New test data
encoding effectively reduces memory footprint of the
COMPAS program to less than 25% of the original. The
algorithm is also capable of compression of data generated
by concurrently running ATPG processes

The proposed method of compression and compaction of
test patterns is very well suited for testing combinational
circuits with Boundary Scan because it does not require any
additional hardware for test pattern decompression. It can
be used also for testing sequential cores with multiple scan
chains. To do this we can use the RESPIN architecture. For
the use of the compressed test sequence in the multi scan
chain system the sequence is reordered in order to be
correctly decompressed within the RESPIN architecture.
Following the IEEE 1500 standard [23] we do not require
extra hardware with the exception of one multiplexer and a
feedback wire in every core. The sequence generated by
COMPAS can be used for less time consuming sequential

core testing than it is possible in the mixed-mode testing
approaches [26].

We have verified that the proposed diagnostic system is
applicable on a SoC. We have placed the system together
with simple functional cores on the AT94K FPSLIC circuit.
The diagnostic system uses the dynamic and partial
reconfiguration feature of the embedded FPGA. This is
advantageous because it saves resources of the FPGA
devoted for switching the TAM busses. For larger cores the
system can be built on the large Xilinx FPGA circuits with
embedded processor and RAM memory block. The property
of dynamic reconfiguration of the FPGA part could be an
advantage that can save the FPGA resources. We can
conclude that the diagnostic system is well suited for a SoC
architecture with a processor, RAM block embedded FPGA
and ASIC. The memory requirements for storing the test
data are lower than it is in case of other comparable
methods; the test time is very low, too.

REFERENCES

[1] Abhijit Jas, Jayabrata Ghos-Dastir, and Nur A. Touba: Scan Vector
Compression/Decompression Using Statistical Coding. Proc. VTS
1999

[2] Bayraktaroglu, I., and Orailoglu, A.: Decompression Hardware
Determination for Test Volume and Time Reduction through
Unified Test Pattern Compaction and Compression. Proc. of VTS
2003

[3] Bernhart et al.: OPMISR: the foundation for compressed ATPG
vectors. Proc. ITC, 2001, pp. 748-757

[4] Brglez, F., Bryan, D., Kozminski, K.: Combinational Profiles of
Sequential Benchmark Circuits. Proc. of. Int. Symp. on Circuits and
Systems, 1989, pp. 1929-1934

[5] C Chandra, A. – Chakrabarty, K.: Frequency/Directed Run Length
(FDR) Codes with Application to System/on/Chip Test Data
Compression. Proc. VTS 2001, pp. 42-47

[6] Daehn, W., Mucha, J,: Hardware Test Pattern Generation for Built-
in Testing. Proc. of ITC, 1981, pp. 110-113

[7] Dorsch, R. and Wunderlich, H-J:Reusing Scan Chains for Test
Pattern Decompression.Proc. IEEE ETW, 2001, pp.24-32

[8] Hellebrand, S., - Liang, H.G. – Wunderlich, H.J.: A mixed mode
BIST scheme based on reseeding of folding counters. Proc. of ITC,
2000

[9] http://direct.xilinx.com/bvdocs/userguides/ug070.pdf. [cit 9.5.2006]
[10] http://iko.kes.vslib.cz, [cit 10.27.2006]
[11] http://www.atmel.com/dyn/resources/prod_documents/2818s.pdf

[cit 20.5.2006]
[12] http://www.cerc.utexas.edu/itc99- benchmarks/bench.html
[13] http://www.cerc.utexas.edu/itc99-benchmarks/bench.html
[14] IEEE Computer Society. IEEE Standard Testability Method for

Embedded Core-based Integrated Circuits - IEEE Std 1500-2005.
IEEE, New York, 2005.

TABLE 3
COMPARISON OF MEMORY REQUIREMENTS FOR DIFFERENT TEST PATTERN COMPRESSION TECHNIQUES

Circuit
name

MinTest
[3]

Stat.
Coding

[1]

LFSR
Reseed-

ing
[10]

Illinois
Scan
[15]

FDR
Codes

[5]

EDT
[17]

RESPIN++
[18]

COMPAS
(proposed)

 # of bits # of bits # of bits # of bits # of bits # of bits # of bits # of bits
s13207 163,100 52,741 11,285 109,772 30,880 10,585 26,004 4,024
s15850 58,656 49,163 12,438 32,758 26,000 9,805 32,226 7,737
s38417 113,152 172,216 34,767 96,269 93,466 31,458 89,132 21,280
s38584 161,040 128,046 29,397 96,056 77,812 18,568 63,232 6,675

32 R&I, 2008, No 1

[15] Irion, A.; Kiefer, G.; Vranken, H.; Wunderlich, H.-J. : Circuit
Partitioning for Efficient Logic BIST Synthesis, Proc. DATE, 2001,
pp.88-93

[16] Jenicek J. J., Novak O :Test Pattern Compression Based on Pattern
Overlapping, In Design and Diagnostics of Electronic Circuits and
Systems. Los Alamitos: IEEE Computer Society, 2007, pp. 29-34

[17] Koenemann, B.: LFSR – coded test patterns for scan designs. Proc.
Europ. Test Conf., Munich , Germany, 1991,

[18] Krishna, C.V., Touba, N.A.: Reducing Test Data Volume Using
LFSR Reseeding with Seed Compression. Proc. of ITC 2002,
pp321-330

[19] Lee H. K., and Ha, D. S.: HOPE: An efficient parallel fault
simulator. Proc of the IEEE Design Automation Conference, pp.
336-340, June 1992

[20] Lee H. K., and Ha, D. S.: On the generation of test patterns for
combinational circuits. Technical Report 12_93, Department of
Electrical Eng., Virginia Polytechnic Institute and State University

[21] Li, L and Chakrabarty K.: Test Data Compression Using
Dictionaries with Fixed-Length Indices. Proc. VTS, 2003

[22] Li, L and Chakrabarty K.: Test Set Embedding for Deterministic
BIST Using a Reconfigurable Interconnection Network. IEEE
Trans. on Comp. Aided Design of IC, Vol. 23, No. 9, Sept 2004,
pp.1289-1305

[23] Marinissen, E. J.- Zorian, Y. - Kapur, R. Taylor T., and Whetsel.
L.:Towards a Standard for Embedded Core Test: An Example. Proc.
of ITC, pp. 616–627. IEEE, 1999.

[24] Marinissen, E.J., Arendsen, R., Bos, G.: A Structured and Scalable
Mechanism for Test Access to Embedded Reusable Cores.
Proceedings IEEE, ITC, 1998

[25] Novák, O., Nosek, J.: Test Pattern Decompression Using a Scan
Chain, Proc. of IEEE International Symposium on Defects and Fault
Tolerance in VLSI Systems 2001, pp. 110 – 115.

[26] Novak, O., Pliva, Z., Jenicek, J., Mader, Z., Jarkovsky, M.: Self
Testing SoC with Reduced Memory Requirements and Minimized
Hardware Overhead. Defect and Fault Tolerance in VLSI Systems,
2006. Proc. of DFT'06. pp. 300 – 308

[27] Pandey, A. R. – Patel, H. J.: Reconfiguration Technique for
Reducing Test Time and Test Data Volume in Illinois Scan
Architecture Based Designs. Proc. IEEE VLSI Test Symp, 2002, pp.
9-15

[28] Pandey, A. R. – Patel, H. J.: Reconfiguration Technique for
Reducing Test Time and Test Data Volume in Illinois Scan
Architecture Based Designs. Proc. IEEE VLSI Test Symp, 2002, pp.
9-15

[29] Rajski, J. et al.: Embedded Deterministic Test . IEEE Trans. on
CAD, vol. 23, No. 5, May 2004, pp. 776-792

[30] Rao, W., Oraiologlu, A.: Virtual Compression through Test Vector
Stitching for Scan Based Designs. DATE 2003

[31] Scandaliaris, J., Moreno, J.M., Cabestany, J., Buttel, P., Rachet, A.,
Kadlec, J., Hermanek, A., de Saint Romain, D., Habay, G., Donati,
A.: A General Design Flow for Dynamically Reconfigurable FPGAs
(D_FPGAs).
http://www.reconf.org/Files/Publications/RAW03_UPC.pdf [cit 22.
5. 2006]

[32] Schafer, L. - Dorsch, R.- Wunderlich, H.J.: RESPIN++-
Deterministic Embedded Test. Proc. European Test Workshop,
2002, pp. 37-42

[33] Su, C., and Hwang, K.: A Serial Scan Test Vector Compression
Methodology. Proc. ITC 1993, PP. 981-988

[34] Wolf, F. G. and Papachristou C.: Multiscan-based Test Compression
and Hardware Decompression Using LZ77. Proc. of ITC 2002, pp.
331-339

[35] Wolf, J.M.; Kaufman, L.M.; Klenke, R.H; Pylor J.H.; Waxman, R.:
An Analysis of Fault Partitioned Parallel Test Generation, IEEE
Trans. On Computer-Aided Design of ICs and Systems, Vol. 15,
1996

[36] Wu, D.M.; Lin, M.; Reddy, M.; Jaber, T.; Sabbavarapu, A.;
Thatcher, L.: An Optimized DFT and Test Pattern Generation
Strategy for an Intel High Performance Microprocessor, Proc. Int.
Test. Conf., 2004, pp. 38-47

R&I, 2008, No 1 33

