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Abstract − This paper describes research results obtained 
in the field of test pattern compression and decompression. We 
refer the hardware test pattern decompression system 
DyRESPIN built-in on a System on Chip, which uses test 
patterns compressed by the compressing algorithm called 
COMPAS. COMPAS reorders and compresses test patterns 
previously generated in an ATPG in such a way that they are 
well suited for decompression by the scan chains in the 
embedded tester cores. We report improvements that have 
been done recently on COMPAS. COMPAS algorithm has to 
manipulate with enormous amount of data when compressing 
test sets of large circuits and the CPU time grows rapidly with 
the growing number of test vectors. The CPU time problem 
was solved by using a test vector initial encoding by sparse 
vectors and by using a dynamic structure for storing the pre-
calculated parameters of candidate vectors to be used in the 
near future algorithm loops for overlapping with the actual 
scan chain content. This arrangement allows the algorithm to 
skip unnecessary computations. The improvements cause that 
the CPU time grows approximately linearly with the size of the 
tested circuit. DyRESPIN uses a built-in processor for test 
control, the embedded RAM memory for storing both the 
compressed test vectors and the partial reconfiguration bit 
streams and the FPGA part of the chip for the wrapped cores 
implementation. The highly compressed test vectors are 
transferred from the memory to those selected cores that are 
reconfigured into the embedded tester cores. The patterns are 
decompressed within the internal scan chains of the embedded 
tester cores and they are simultaneously fed into the parallel 
scan chains of the cores under test with the help of the Test 
Access Mechanism (TAM) and standard wrappers. After 
having tested the first cores under test the TAM of the SoC is 
partially reconfigured with the help of the partial 
reconfiguration bitstreams stored in the RAM memory and the 
till now untested cores are tested by those cores that start to 
serve as embedded testers. 

Index Terms — Circuit testing, Testing, Memory 
management 
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I. INTRODUCTION 

eterministic test spares testing time and the on chip 
hardware overhead is low. However the test sizes has 
been pushing test costs up due to the necessity of using 

more powerful ATEs and if the test access mechanism 
(TAM) is narrow the test application time becomes to be 
critical, too. In order to minimize the data transfer through 
the TAM, compacted and compressed test sets are used. By 
the term compact test set is meant a test set, which is 
created in the automatic test pattern generator (ATPG) from 
test patterns by merging as many as possible patterns. An 
original test pattern usually detects one or more possible 
circuit faults and contains several don’t care bits. The 
original patterns are merged in such a way that resulting 
patterns detect multiple faults and do not contain don’t care 
bits while the test set fault coverage remains unchanged. 

Test data compression is a non-intrusive method that can 
be used to compress the pre-computed test set to a much 
smaller test set, which is then stored in the ATE memory. 
An on-chip decoder is used to generate the original test set 
from the compressed one. Many contributions containing 
different decompression mechanisms were published; let us 
mention [1], [3], [5][7][18], [27], [34]. It is not 
straightforward to compare the compression methods 
because some authors demonstrate the efficiency on 
decompression of random resistant faults only and other 
authors compress and decompress the whole ATPG 
deterministic test sequence. The usefulness of a 
compressing algorithms and decompressing automaton is 
influenced not only by the compression ratio but also by the 
complexity of the decompressing automaton and by the 
computational complexity of the algorithm for finding the 
compressed test sequence. 

Increasing number of transistors results in increasing 
ATPG computation time and memory consumption. Many 
of published test optimization techniques are dedicated to 
sequential test optimization. To handle time consuming test 
generation, it is often necessary to parallelize test generation 
process [35], [15], [36]. Concurrently generated ATPG 
output has to be than effectively compressed. 

 In this paper, we present results of our previous research 
done in the field of test pattern compression based on test 
pattern overlapping [16] and hardware decompression based 
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on wrapper reconfiguration [26]. The results give us a 
possibility to construct a system that combines both of the 
mentioned methodologies.  

II. COMPAS – TEST PATTERN COMPRESSION TOOL 

The main idea is to maximally overlap those patterns that 
are serially shifted into the scan chain. This approach was 
firstly described in [6]. The method uses an algorithm for 
finding contiguous and consecutive scan chain vectors for 
the actual scan chain vector. These vectors are checked 
whether they match with one or more remaining test 
patterns, which were previously generated and compacted 
with the help of some ATPG and which were not employed 
in the scan chain sequence yet. Similar approach was used 
in [33]. The compacted test vectors were reordered by a 
heuristic algorithm to attain maximal overlapping. A 
disadvantage of the mentioned methods is that they are 
either computationally complicated and thus they are not 
usable for large circuits or the obtained amount of test data 
stored in an ATE is greater than the data amount in other 
compression methods. We present an algorithm, which 
speeds up the computation by searching for the successors 
of given starting pattern (usually the all zero seed) and 
which improves the compression efficiency by fault 
simulation after every test pattern application. This 
algorithm uses test vectors with don’t care bits instead of 
the compacted ATPG test vector test set, which enables us 
to combine test pattern compaction and compression to be 
well suited with the decompression in a scan chain. The 
algorithm is implemented in the COMPAS (COmpressed 
test PAttern Sequencer) software tool. It speeds up and 
improves the algorithm [26] by taking into account possible 
future conflicts between overlapping patterns, it uses more 
efficient pattern coding and it remembers information that 
could be useful in future algorithm loops. COMPAS is able 
to prepare test sequences for the most complex circuits in 
short time. COMPAS can be used also for preparation of 
test sequences of cores under test (CUT) that are designed 
according the IEEE 1500 standard [23]. Test data can be 
effectively decompressed with the RESPIN test architecture 
[7]. This architecture reuses scan chains of different cores 
for updating the tested core scan chain content. Latest 
version of the algorithm used in [26] has been further 
enhanced to lower CPU time and memory consumption. 

III. MEMORY CONSUMPTION IMPROVEMENT 

Uncompressed test data generated by an ATPG are stored 
as a plain text file, each fault corresponds to a single vector 
in form of sequences of ‘0’, ‘1’ and ‘X’ characters standing 
for log. 0, log. 1 and unspecified bit (hereafter DC bit, DCB 
or ‘X’).  

This data organization allows many concurrent ATPG 
processes. Each ATPG can generate test vectors for small 
group of faults or for single fault. Outputs of all ATPGs are 
then merged into a single file. 

Size of the file can be a problem; because data files are 
very large for larger circuits (e.g. b19 from ITC99 

benchmark set has more than 2.5 GB uncompressed test 
data). 

For optimal algorithm decision it is necessary to load all 
test data at once into a computer memory, so new method 
needs to be developed for storing the test data in a computer 
memory. Simple loading of the file is not possible for large 
circuits.  

A. New data encoding 
One more stage of compression has to be performed 

instead of simple loading of text file into memory. First 
stage compresses plain text data from a file and stores them 
in a memory. Second stage uses compressed data from a 
memory to do pattern overlapping compression. 

Three different encodings of test vectors are used in the 
program. Data produced by an ATPG are stored as a plain 
text: ‘0’, ‘1’ and ‘X’. Each character is stored in on a hard 
drive as an 8bit char type. Large amount of uncompressed 
test vector data are encoded into two different forms when 
loaded into a computer memory, depending on which one 
consumes less memory. 

The first encoding is a quite straightforward conversion 
of the eight bit character vector into two bits. By this 
encoding each 8 bit character is reduced to 2 bits, and 6 bits 
are saved (75% of memory). 

The second encoding creates so called sparse vector, 
which means that only care bits and their positions are 
saved. 32 bit integer I used as a basic data type; one bit is 
used for actual value, and rest 31 bits are used to note the 
position. Scan chain with maximal length of 231 can be 
encoded this way. DC bits are not stored at all. As not only 
one byte but four are used to encode a single care bit, this 
compression method is useful only if total amount of care 
bits is lower than 25%, otherwise it consumes more 
memory than the original vector. The first method can 
certainly compress to 25% of the original, a vector to be 
encoded more effectively by using the sparse vector than by 
the first approach must have less than 6.25% care bits. 
However, Tab. 1 with the numbers of DCBs in benchmark 
circuits shows that it should not be a problem.  

It is decided for each vector separately which method 
should be used. So it could be guaranteed that at least 75% 
of memory will be saved. For larger circuits often more than 
95% can be saved by a proper encoding. 

IV. RUNTIME IMPROVEMENT 

A. Algorithm description 
At first, a Test Pattern List (TPL) together with the 

corresponding Undetected Fault List (UFL) is generated for 
the tested circuit. An ATPG tool that enables generating 
non-compacted test patterns has to be used. At least one 
three state test vector with bit values 0, 1 and X, where X 
means don’t care value has to be generated for each 
considered fault. In this way we can distinguish, which 
pattern belongs to which fault. 
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TABLE 1:  

CARE BIT PERCENTAGE IN TEST DATA OF DIFFERENT BENCHMARK 
CIRCUITS 

Circuit Gate count Care bits[%] 
c17 6 56,36
c432 160 43,67
c499 202 82,32
c880 383 17,78
c1355 546 86,31
c1908 880 55,16
c2670 1193 7,92
c3540 1669 25,32
c5315 2307 7,39
c6288 2416 76,24
c7552 3512 13,1
s27_comb 10 45,09
s1196_comb 529 26,01
s1238_comb 508 26,48
s1494_comb 647 50,58
s5378_comb 2779 4,05
s9234_comb 5597 5,44
s13207_comb 7951 1,19
s15850_comb 9772 1,38
s35932_comb 16065 0,26
s38417_comb 22179 0,84
s38584_comb 19253 0,39

 
The main loop of the algorithm of finding bits to be 

stored in the ATE memory is described in Fig. 1. Let us 
suppose (without loss of generality) that the SC is reset 
before testing, which means that the all zero pattern is 
considered to be used as the first one (algorithm allows to 
start with any known scan chain state). The fault coverage 
of this pattern is simulated and the detected faults are 
deleted from the UFL, test patterns corresponding to the 
detected faults are deleted from the TPL. Then the 
algorithm tries to compact the test set by overlapping 
resting patterns with the actual scan chain state. The 
algorithm finds, whether log. 0 or log. 1 is better to be used 
as the next most left chain bit. To do this the algorithm 
finds positions of all patterns, in which the actual chain bits 
maximally overlap the pattern and for which the actual bit 
to be introduced into the SC has not a don’t care value. 
After finding the position the algorithm has to count the 
usefulness U of the treated pattern. The pattern usefulness 
U is calculated according to the following formula: 

U = t *(overlapped_cares + shift) + global_cares 
where overlapped_cares – the number of the pattern care 
bits that overlap the SC; shift – the amount of non-
overlapped bits in pattern; global_cares - the global 
number of the pattern care bits; t – Experimentally fixed 
parameter; we obtained good results when we set t = 
number_of_primary_inputs / 2. 

Then the algorithm compares the number of the most 
useful patterns with log. 1 on the actual position and the 
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Fig. 1: Pattern overlapping algorithm 
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number of patterns with log. 0 on this position. If the 
number of ones is greater than the number of zeros the input 
actual bit is fixed to log. 1 in the other case to log. 0. This 
way of setting the actual bit guarantees that a maximum 
number of the most useful patterns could be encoded. When 
searching for the most useful pattern we check whether the 
exercised pattern matches with bits which will be necessary 
to be generated in the future clock cycles because of some 
previously selected patterns. These bits are stored in a 
Future Array (FA) together with their effectiveness and 
pattern identification numbers If some position of FA is 
reserved for a logical value that is clashing with the 
exercised pattern bit value we compare the usefulness of 
both patterns and the winner is used in future 
considerations. After bit selection the fault simulation is 
performed and the faults and patterns, which correspond to 
the covered faults, are removed from the lists. If there are 
not remaining faults in the Undetected Fault List the 
algorithm is finished. 

B. Proposed optimization 
Basic principle of the compression method remains the 

same as in previous chapter, but several steps of the 
algorithm can be skipped, if they can not influence the 
solution. 

One possible state of the compression algorithm is shown 
in Tab. 2. To make explanation easier, the basic version of 
algorithm [26] without bit prediction is used, as the 
principle of the optimization remains the same. 

 
TABLE 2 

EXAMPLE OF VALID ALGORITHM STATE 
  Searched 

bit 
 

Step 5 4 3 2 1 0       

SC content      ? 0 0 1 1 1 0 

vector A   1 X X X 0 0     

vector B   1 X X 1 0 0     

vector C     X 1 X 0 1 1   

vector D 0 X 1 1 1 1       

 
All remaining vectors are overlapped as much as possible 

with current scan chain state during search of the next 
compressed bit (marked with question mark). At the given 
moment, three vectors are overlapping (vectors A,B,C) and 
one vector (D) could not be overlapped. It is not possible to 
store DC bit in the compressed sequence, so only vectors 2, 
3 and 4 are useful. They all have ‘1’ at the current position, 
so value ‘1’ is shifted into the scan chain and stored as the 
next bit of the compressed sequence. The fault simulation of 
the current scan chain state is performed after that, the 
detected faults and their corresponding vectors are removed 
from the memory. Than the algorithm goes to the beginning 
and tries to overlap all remaining vectors again.  

It is important, that vector A has only useless DC bits in 
step 1 and in the two following steps (2 and 3). Those bits 
can not be contained in the solution; on top of that they will 
never collide with any other selected bit. Because of that it 

is possible to omit the calculation of the possibility of 
vector overlapping for vector A in steps 1, 2 and 3. The 
vector A is not useful for calculations in step 1 and 2; in 
step 3 it could be overlapped without collision. Vectors B 
and C have DC bits in the following steps, but during 
calculation it is not certain, if their bit (value ‘1’) will be 
chosen as a solution. Vector D has care bits on the next 
position, so its overlap has to be evaluated. If a vector has a 
DC bit in the actual position, it is only necessary to evaluate 
how many DC bits follow the actual position. This 
computation is done for each new found sequence of DC 
bits in vector only once. It is also faster than finding how 
much is a vector overlapped. Every time when vector 
overlapping is evaluated, the program finds if DC bits series 
follows, and how long is this DC bit sequence. If there is at 
least one DC bit, the overlapping evaluation is omitted. 

Vectors are stored in a dynamic structure from Fig. 2 
according to the number of steps needed to reach a care bit. 
Only the vectors from entry ‘0’ of steps_to_care_bit array 
are checked, others can not influence the solution. It is 
obvious, that it is necessary to store only distance to the 
next care bit, so that each vector will be saved only once. 
Solution is chosen after evaluation of all vectors in entry 
‘0’, and vectors are placed into the proper entries of 
steps_to_care_bit array according to the distance to the next 
care bit. After evaluation and replacement of all the vectors 
from entry ‘0’, whole array is shifted one position to the 
right and the algorithm is ready for the next loop. 

011100

00xxx1

001xx1

1111x0

110x1x

scan chain

vector A

vector B

vector C

vector D

012345
steps_to_care_bit

 
Fig. 2: Dynamic structure for calculation omit decision 

 
Amount of the DC bits in the uncompressed test data file 

of several circuits from ISCAS85 and ISCAS89 benchmark 
set is noted in Tab. 1. The data contain a lot of DC bits, and 
the percentage of DC bits grows with the circuit size. That 
is why it is possible to skip a lot of calculations. 

V. TEST ACCESS MECHANISM (TAM) 

A test session can be controlled by a tester or by a BIST 
controller. It could be advantageous to use an embedded 
processor instead of a specialized controller with a RAM. 
As the RAM size is limited, the test set has to be as small 
as possible. Further testing speed improvement could be 
obtained by minimizing the amount of data transferred 
between the processor and the tested cores. From this 
reason it is worthwhile to send the compressed data from 
the processor to the decoders that are placed closely to the 
tested cores and to leave the decoders to decode the 
patterns independently on the processor activity. This 
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arrangement can speed up testing as the clock frequency of 
the core flip-flops could be higher than the processor clock 
frequency and the processor can prepare next data during 
decoding the previous pattern (Figure 3). Another problem 
arises when using cores with the SCs that contain internal 
flip-flops; if we have to guarantee not corrupting test 
patterns by CUT responses and simultaneously catching 
all test responses we have to scan in and scan out the 
whole test pattern after each system clock application. The 
RESPIN (Reusing Scan Chains for Test Decompression) 
test architecture [7] solves both pattern decompression and 
reducing the data traffic between tester and CUT. 

 

MISRETC CUT1
1

1
0

MISRETC CUT1
1

1
0

 
Fig. 3. ETC and CUT in the RESPIN architecture 

 
The RESPIN architecture temporarily divides the circuit 

into the core under test (CUT) and the embedded tester 
core (ETC). The data transfer mechanism between the 
tester and ETC can be denoted as a narrow TAM as the 
demanded transfer capacity is low. The TAM between the 
ETC and CUT is wide as the data transfer is done parallel 
and on a higher clock frequency. The ETC chains are 
concatenated into a serial scan chain; a feedback tap 
connects the ETC last chain output with the first bit input 
through a multiplexer. According the multiplexer control 
input, ETC can either load a bit from the tester or shift the 
scan chain circularly. The parallel chains of the CUT are 
connected with the parallel ETC chain outputs. This test 
pattern updating mechanism guarantees that the patterns, 
which are shifted through the CUT SC during several test 
steps, are not mixed with the CUT responses. An 
additional multi input MISR connected to the SC outputs 
can be exploited for capturing all the test responses. The 
conditions for effective testing are: the ETC has at least 
the same number of chains as the CUT; the CUT chains 
are not longer than the corresponding ETC chains and the 
number of scan cells of the CUT and the total number of 
ETC scan cells incremented by one have not a common 
divider. If it is not possible to find an ETC core that fulfils 
the above mentioned conditions, more than one core can 
be used for creating the ETC. 

A. Reconfiguration 
The novel FPGA circuits are dynamically 

reconfigurable at runtime. These dynamically 
reconfigurable FPGA circuits have a capability to change 
the behavior of one part of the circuit; the rest part is fully 
operational without changes and without interruption. 
Generally, each memory-based FPGA can be reconfigured 
dynamically. In the currently known dynamically 
reconfigurable devices two techniques are used: “partial 

configuration” and “Multiple-context configuration 
memory” [31]. 

Reconfiguration of the TAM for a SoC testing seems to 
be an efficient exploitation of the partial reconfiguration 
capability of FPGAs. As the Atmel FPGAs can efficiently 
perform the fine grained reconfiguration we decided to use 
it for an implementation of the self-testable SoC (System on 
Chip) design. The diagnostic system uses RESPIN 
architecture which is based on the IEEE 1500 standard. The 
partial reconfiguration is used for connection among ETCs, 
CUT and the feedback multiplexer. 

The main advantage of the proposed solution is that all 
the reconfiguration bitstreams are stored inside the chip. 
Thereafter the reconfiguration process can be controlled by 
the embedded processor and the only communication 
between the tested SoC and the external test supervisor is a 
request for execution the test and checking the results of the 
done tests. 

VI. EXPERIMENTAL RESULTS 

Fig. 4 shows the COMPAS CPU time improvement 
against [26]. The new algorithm performs better for larger 
circuits, and it corresponds with amount of DC bits. 
Average speedup is 114% for all measured circuits and 
181% for circuits with more than 10.000 gates. 
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Fig. 4: Speedup of the compression part of the algorithm 
 
Tab. 3 shows the resulting numbers of stored bits for 

some well known test pattern compression methods and for 
the proposed algorithms. In the second column we plotted 
the test data volume for ATPG vectors, which were 
compacted only [3]. Next column shows the number of 
stored bits for statistical coding of the test patterns from the 
previous column [1]. Next results correspond to a 
combination of statistical coding and LFSR reseeding [18]. 
Next columns summarize results of compression with 
parallel/serial scan chains [27], frequency directed codes 
[5]. The results for the method of Embedded Deterministic 
Test are presented in the next column [18]. The column 
RESPIN++ shows the numbers of bits stored in the ATE for 
the RESPIN++ architecture given in [32]. We can see that 
the number of bits, which are stored in a memory, is 
substantially lower for the proposed method than for other 
pattern compressing methods. We have to note that a 
majority of the tabulated pattern compression methods do 
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not use a fault simulation after encoding a new test pattern 
(with the exception of the method [32]). These methods use 
compacted test sequences, the fault coverage was simulated 
during test pattern generation in the ATPG in the process of 
pattern compaction. The number of fault simulations in 
these cases corresponds with the total number of non 
compacted test patterns. In case of COMPAS and 
RESPIN++ the ATPG patterns were generated without any 
simulation, fault simulation is performed after a pattern 
encoding. The number of fault simulations is equal to the 
length of the final compressed sequence. Lengths of the 
compressed sequences are the same as in previous work 
[26], because both optimizations do not change the principle 
of the algorithm. That means that the results should be 
exactly the same, but due to optimizations the results should 
be obtained faster and with smaller memory footprint. This 
is true especially for larger circuits, because their test data 
generated by an ATPG contain large amount of don’t care 
bits. 

The experimental diagnostic system was built on the 
FPSLICTM AT94K40AL circuit. It is a dynamically 
reconfigurable programmable SoC, which integrates 
Atmel SRAM, FPGA and an 8-bit AVR processor 
[11]. 

The FPSLIC circuit is connected to PC through 
JTAG interface. A user is able to program both main 
parts of IC – program for AVR processor and/or static 
content of FPGA. Testing with the RESPIN 
architecture requires reconfiguring circuit cores 
several times during the test. Each core in the SoC is 
surrounded by the wrapper [14]. The wrapper allows 
connecting the core with the defined surrounding 
cores either in the functional mode or in the test 
mode. The Test Access Mechanism (TAM) takes care 
of the on-chip test pattern transport. The TAM and 
wrappers form the infrastructure for access to 
individual cores providing tests of all cores. Whereas 
the core wrapper is defined and standardized by the 
IEEE 1500 standard, the design of test access 
mechanism is excluded from this standard and assumed 
to be addressed by the SoC designer. Partial FPGA 
reconfiguration was used as an efficient way how to form 
the low area demanding TAM for multiple embedded core 
SoC design. The FPGA consists of a number of generic 
cells called LUTs. In our system the LUT is used for 
connecting the test core terminal and a LUT of the TAM. 
By this arrangement two LUTs are needed to form one 
wire interconnection between 1-bit core test input and 
output terminal in the FPGA. 

The testing system uses an 8-bit AVR processor, an 
SRAM memory and a dynamic reconfigurable FPGA 
accessible both from the processor and from the FPGA. In 
the FPGA we programmed wrapped cores, the MISR, the 
controller and detached area of the TAM. The AVR 
processor was used for data processing, for handling the 
data with the hardware controller and for partial 
reconfiguration of the TAM before initiation of the core 
test. Test patterns together with TAM configurations were 
stored in the embedded SRAM. The processor controls the 

test scheduling and communicates with the hardware 
controller. The RAM is used for storing the compressed 
test sequence. For each test pattern the processor gives the 
controller a command to run the test cycle independently 
on the processor. This arrangement enables the hardware 
controller and the processor to work concurrently and to 
speed up the test. The hardware controller drives core 
wrappers and the TAM by the WSC signals. During the 
test cycle the AVR transports one test bit from the 
memory to the port tdi and informs the controller about 
availability and suitability of test data. At the end of the 
test session, the processor shifts data through the port tdo 
from the MISR where the responses were accumulated and 
compares the resulting signature with the sample one 
stored in the RAM (Figure 5). After finishing the first 
CUT test the TAM is partially reconfigured and the next 
core is assigned as a CUT and it is tested through a newly 
reconfigured ETC. As the granularity of configurable 
blocks of the FPGA is relatively fine only a small part of 
the configuration memory has to be replaced by a new 
content (In Fig. 4 denoted by the gray color). 

The ISCAS benchmark circuits (S298, S382, S444 and 
S1423) were used as cores in the experiment. The system 
with three cores S1423 designed in the SoC used 73% of 
the FPGA AT94K40 resources. Reconfiguration takes 
several thousands of clock cycles of processor. Number of 
clock cycles depends on the design to be reconfigured. In 
our case the reconfiguration time is less than 1 ms in case 
of 4 MHz processor clock. The circuit has 36 Kbytes of 
available RAM memory (20 – 32 Kbytes for program and 
4 – 16 Kbytes for data). The size of one reconfigurable 
bitstream, which was used in the diagnostic system, was 2 
Kbytes. The more cores are used in RESPIN architecture 
the more reconfigurable bitstreams are needed for 
arranging the ETC–CUT structure. Nevertheless the spent 
RAM memory amount was acceptable. In case of lack of 
the RAM memory the bitstreams can be reloaded from a 
PC. The test time depends on the longest parallel chain 
and on the number of bits of the compressed test. In our 
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Fig. 5: An example of TAM configuration (given by dotted lines). The TAM is 

reconfigured by reprogramming LUTs of the reconfigurable FPGA blok 
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case the test time is about 0.3 ms for the best possible 
clock frequency of the FPGA (40 MHz). 

VII. CONCLUSION 

The COMPAS compression tool demonstrates that it is 
possible to apply the method of test pattern compression 
through pattern overlapping for relatively large circuits and 
that the resulting test data volume is kept very low. 
COMPAS uses as input test patterns non compacted 
original ATPG test vectors with don’t care bits. The 
patterns are overlapped and the resulting test sequence can 
be decompressed by the scan chain. The decompressed 
patterns are simulated by the fault simulator whether they 
cover any other additional fault. This mechanism reduces 
the number of test patterns that have to be used for testing 
since the interleaving patterns that appear in the scan chain 
between the original patterns cover the random testable 
faults. These faults are usually tested by the random pattern 
sequence in mixed/mode testing algorithms and the 
proposed method avoids using this random testing phase. 
We have solved the problem of long CPU time for 
enumerating the compressed test sequence by multiple 
usage of test bit usability evaluation during the process of 
finding the test sequence and by skipping pattern 
recalculation for cases when don’t care bit groups are 
present in the patterns. This was enabled by using a 
concatenated list of pattern pointers. Problem of extreme 
memory consumption has been solved by using two new 
data encodings during the compression. New test data 
encoding effectively reduces memory footprint of the 
COMPAS program to less than 25% of the original. The 
algorithm is also capable of compression of data generated 
by concurrently running ATPG processes 

The proposed method of compression and compaction of 
test patterns is very well suited for testing combinational 
circuits with Boundary Scan because it does not require any 
additional hardware for test pattern decompression. It can 
be used also for testing sequential cores with multiple scan 
chains. To do this we can use the RESPIN architecture. For 
the use of the compressed test sequence in the multi scan 
chain system the sequence is reordered in order to be 
correctly decompressed within the RESPIN architecture. 
Following the IEEE 1500 standard [23] we do not require 
extra hardware with the exception of one multiplexer and a 
feedback wire in every core. The sequence generated by 
COMPAS can be used for less time consuming sequential 

core testing than it is possible in the mixed-mode testing 
approaches [26]. 

We have verified that the proposed diagnostic system is 
applicable on a SoC. We have placed the system together 
with simple functional cores on the AT94K FPSLIC circuit. 
The diagnostic system uses the dynamic and partial 
reconfiguration feature of the embedded FPGA. This is 
advantageous because it saves resources of the FPGA 
devoted for switching the TAM busses. For larger cores the 
system can be built on the large Xilinx FPGA circuits with 
embedded processor and RAM memory block. The property 
of dynamic reconfiguration of the FPGA part could be an 
advantage that can save the FPGA resources. We can 
conclude that the diagnostic system is well suited for a SoC 
architecture with a processor, RAM block embedded FPGA 
and ASIC. The memory requirements for storing the test 
data are lower than it is in case of other comparable 
methods; the test time is very low, too.  
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