
ECONTECHMOD. AN INTERNATIONAL QUARTERLY JOURNAL – 2016, Vol.5, No.4, 43-48

RANDOM GENERATION OF COMBINATORIAL SETS WITH SPECIAL PROPERTIES

I. Grebennik, O. Lytvynenko

Kharkiv National University of Radio Electronics; email: igorgrebennik@gmail.com

Received October 14.2016: accepted November 15.2016

Abstract. General approach for solving the problem

of random generation of compositional k  images of
combinatorial sets (k-sets) has been proposed. K-sets are
powerful apparatus that can be applied for solving many
scientific and applied problems. Though many literature
is dedicated to the problem of generating combinatorial
configurations, existing studies deals mostly with simple
combinatorial configurations like combinations,
permutations etc.

The algorithms of generation both basic
combinatorial sets and k-sets have been described.
Algorithm for random generation of basic sets allows
generating various combinatorial sets, and laws of
constructing basic combinatorial sets can be pre-set. If
identification of the laws fails, the algorithm allows using
other algorithms to generate basic sets.

Complexity of described algorithms has been
evaluated. The complexity of the algorithm of generation
k-sets is determined by the complexity of generation of
basic sets, as well as the complexity of operations of n-

substitution and a number of levels of a certain k-set.
The described approach to the random generation is

very flexible since it allows obtaining various results by
varying algorithm parameters. In its turn, it allows
adjusting the number of elements for both basic sets and
k-sets. The developed software allows solving the
described problems of random generation of k -sets and
basic combinatorial sets.

Key words: combinatorial generation, k-set, basic
combinatorial set, random generation, complexity.

INTRODUCTION

Generation of various combinatorial objects is

frequently required in developing and implementing
methods and algorithms for solving many scientific and
applied problems [1-6]. Generation is usually understood
as a construction of all combinatorial structures of a
given type [3]. In these sources, the problem of
generation of simple combinatorial objects like
permutations, combinations, splits, trees, binary
sequences is mainly solved. Solution of generating more
complex combinatorial objects is hindered by lack of
special structural tools and by significant computational
costs caused by redundant results of using well-known
methods and algorithms of generation.

THE ANALYSIS OF RECENT RESEARCHES AND
PUBLICATIONS

Quite complex combinatorial configurations can be

formally described and generated with the help of
structural tools of description of compositional
k  images of combinatorial sets (k  sets), proposed in
[7]. A combinatorial set is understood as a variety of
tuples constructed from a finite set of arbitrary elements
(generating elements) in accordance with certain rules
[7, 8].

Permutations, combinations, arrangements, binary
sequences etc. can serve as examples of classical
combinatorial sets. The apparatus of k  sets has been
widely explored [7–9]: general concepts of their
generation are considered in [8], the task of exhaustive
generation of k  sets was solved in [9], and some
special cases of this task were studied in [10].

However, the task of random generation of k  sets
hasn’t been solved yet.

Both random and exhaustive generation of k  sets
require solving the problem of generation of basic
combinatorial sets used to construct k  sets. Basic sets
can be combinatorial ones with known descriptions and
algorithms of generation: either classical combinatorial
sets (permutations, combinations etc.) or non-classical,
e.g., permutations of tuples, compositions of
permutations, permutations with given number of cycles
etc. [7-12].

Algorithms of generation of many basic
combinatorial sets have been described in many articles
[1-3, 5, 13-21]. However, in most cases, each generation
algorithm is based on specific properties of combinatorial
sets.

OBJECTIVES

Objectives of this paper are:
1. Developing a general approach for solving the

problem of random generation of k-sets.
2. Developing the algorithms of generation of k-sets

have been described.
3. Evaluating the complexity of constructed

algorithms.

mailto:igorgrebennik@gmail.com

44 I. Grebennik, O. Lytvynenko

MAIN RESULTS OF THE RESEARCH

Let us briefly remind mathematical description of
compositional k  images of combinatorial sets
(k  sets).

COMPOSITION K-IMAGES OF COMBINATORIAL

SETS (K-SETS)

Let 1 2{ , ,..., }
in

z z z z


     βZ , where
iβZ

are sets of arbitrary elements,

i β , 0 {0,1,..., }ki J k  ,

where:

0 {0}β , { , 1,2..., }i j ij  β ,

1 2(, ,...,)j i    , 1 nJ  ,

12 nJ


  ,...,
...1 1i

i nJ
 




 ,

1 n  , 2
1

n

j
j

n


 ,

...1 21

1 1
1 2 1

...
1 1 1

...
i

i

i

nnn

i n 
  






  

    , 3,4,...,i k .

(1)

Let us consider mappings [7, 8]:

0 0
0: β βZ Y , 1:

i i

i i  β βY Z Y ,

where:

0
0

0{ (), }Y z  βY β ,

1
{ (,), }

i i

i
iY Y z 


 β βY β , ki J ,

{1,2,..., }tJ t ,

1 1
(, z)= (, (z))i i

i i i i i
Y Y F Y

 
  

β β
β β β β β ,

ki J ,

1
(, (z))i

i i
F Y




β
β β – a mapping that realizes n -

composition which consists in replacing each generative
element of set

1i
Y

β with elements of primary

combinatorial sets (z), iY 
    β ,

respectively,

(z) ((z),)i
i i


    

β
β β , z (z ,)i

i
  

β β ,

(z)
 are the primary mappings [7, 8]. It means that:

1 2
(, ,...,)

l l l
z z z Y



  
 ,

tl
z Y


 , t ll J


 ,

1i  β , i β , ki J .

Let us denote

{ }
ii  βΓ , ki J . (2)

Definition. Composition k-image of combinatorial

sets

0Y , 1Y , 2Y ,…, nY ,

11Y , 12Y ,…,
11nY , …, 1...1

k

Y ,…,
1 1... knn nY



(k  set) generated by sets kz
 , k k β is the

combinatorial set [7,8]:

1 0... ()z k kW z    , (3)

where: mappings i i Γ , ki J are determined by
(2).

Cardinality of the set (3) can be obtained [7, 8] as:

 
1 2

1 2

1 2

, ,...,
, ,...,

1 (...)

()
r

r n

i

i i

z
J

k

i

Card W

Card Y

  
  


   




 

 

 

 (4)

As the generation of k  sets is based on the

generation of basic combinatorial sets, we need an
algorithm for generating these sets.

GENERATION OF BASIC COMBINATORIAL SETS

Let us associate the set

() { , , }p T A m S

with each basic combinatorial set T , where

1 2{ , ,..., }nA a a a , 1 2 ... na a a  

is a set of generating elements, m is the length of tuple
t T (let us consider that all tuples in the set are of the
same length), S is a set of parameters describing the set
T (e.g., parameters 1 2, ,..., kn n n for permutations with
repetitions and other parameters specific for different
classes of combinatorial sets). We understand a class of
combinatorial sets as its belonging to permutations,
combinations, etc.

 RANDOM GENERATION OF COMBINATORIAL SETS… 45

Let the basic set T and its parameters ()p T be
defined. We need to generate all elements t T , where
each element is a tuple of the length m . Let us denote

1 2(, ,...,)i
it t t t , it A  , ()A p T , ni J .

It means that 0 ()t  is an empty tuple and
mt t T  .

Firstly, let us recall the main concept of the

algorithm of random generation of basic sets [9]. This
algorithm is of a recursive nature: at each recursion level

0
1mi J  it expands current tuple 1 2(, ,...,)i

it t t t by

adding the following element 1it  and thus obtaining a

tuple 1
1 2 1(, ,...,)i

it t t t
 at level 1i  . At level

m n the algorithm adds tuple mt t to the resulting
set Т.

The fact that set T belongs to a certain class of
combinatorial sets imposes some restrictions on element

1it A  .

At each level 0
1mi J  let

1 2{ , ,..., }i
kF f f f A 

denote a set of all generating elements that satisfy these
restrictions. In this case, for each kj J , the algorithm

adds element 1i jt f  to the “input” tuple

1 2(, ,...,)i
it t t t

and calls itself recursively with

1
1 2(, ,...,)i

jt t t f 

as an input.

The described algorithm can generate elements of set
T randomly: for that we just need to do a recursive
algorithm call at level i not for all kj J , but only for

iq % of them (selected randomly). It should be noted that
we can use various mechanisms of random selection (in
this work we use the simplest way of selection: we just
generate a uniformly distributed random value; though
other distributions can also be used).

Let us consider specific features of the construction

of set iF for some classes of combinatorial sets. In the

case of arrangements with repetitions, set iF consists of
all generating elements:

iF A .

For arrangements without repetitions and

permutations as their special case, set iF consists of

n i generating elements that have not appeared in it :

1 2{ , ,..., } : ,

, .

i
n i l j

i n i

F f f f A f t

j J l J





  

   

As for the combinations the order of the items is not

important, let us generate them in the form of ordered
sets where 1 2 ... it t t   is for combinations without

repetitions and 1 2 ... it t t   is for combinations with
repetitions.

For combinations without repetitions, set iF
includes all generating elements that have not been

included into it and are greater than ti :

1 2

1

{ , ,..., } : , ,

, .

i
k l j l i

k i

F f f f A f t f t

l J j J 

   

   

For combinations with repetitions, set iF also
includes generating element which is equal to ti :

1 2

1

{ , ,..., } : , ,

, .

i
k l j l i

k i

F f f f A f t f t

l J j J 

   

   

Let us describe the algorithm GenBase that

implements the steps described. GenBase input data
consist of T - type of a basic set, a set of parameters

()p T and tuple it . At each recursion level 0
1mi J  ,

the algorithm builds the set iF , then randomly adds

selected element iF to tuple it as many as iv times and
recursively calls itself. At each level, the number of
recursive calls is determined by

| |
100

i
i

i
F q

v


 .

To generate all the elements of set T , GenBase

should be called with parameters T , () , ()p T .

Here (1, | |)i
random F is a uniformly distributed

random number between 1 and | |iF . In order to
generate combinatorial sets of other classes with this
algorithm (Fig. 1), it is sufficient to identify laws of

constructing set iF .

46 I. Grebennik, O. Lytvynenko

Fig. 1. GenBase algorithm

It should be noted that, to generate combinatorial sets
of other classes with this algorithm, it is sufficient to

identify laws of constructing set iF .

Example 1. Let the task is to randomly generate

arrangements of 4 to 2. Let 0 175, 60q q  . At zero

level, set 0F includes all generating elements:
0 {1,2,3,4}F  . Hence, 0

4 75 3
100

v


  . The algorithm

randomly selects three elements 0F (let them be 3, 2
and 4) and makes recursive calls of itself with
1 1 1(3), (2), (4)t t t   respectively.

Let us consider the situation at level 1 for 1 (3)t  .

In this case, set 1F includes all elements that have not

been not included into 1t , i.e. 1 {1,2,4}F  . Hence,

1
3 60 2
100

v


  . The algorithm randomly selects two

elements 1F (let them be 1 and 4); it means that, at level
2, full arrangements (31) and (34) are obtained.

A possible recursion tree of the algorithm operation
is provided below (Fig. 2).

Fig. 2. Example results of GenBase algorithm

GENERATION OF K-SETS

First, let us briefly describe the algorithm of
exhaustive generating k-sets [9]. At the beginning, it
generates the elements of each basic set using GenBase
algorithm (values of iq are individual for each basic set).
After that, the algorithm sequentially implements
mappings

1 0.. ()i iГ Г Г z , 0 0()z A p Y 

for each 0
1ki J  . In other words, it implements n -

composition, where generating elements of a parent set
are replaced by the elements-tuples of its child sets.

Algorithm Get_k-set in its original version in [9],
while implementing an operation of n-composition,
performs a sequential substitution of the element of a
parent set by each element of a child set. The proposed
algorithm Get_Random_k-set does it not for all, but for
some elements of a child set. By analogy with the
generation of basic sets, we can put the parameter Q(Y)

for each basic set Y at level ki J , which defines the
fraction of elements participating in the operation of n -
composition. The number of the elements is determined
by

| | ()()
100

Y Q Y
V Y


 .

Example 2. Let us describe the generation of the

composition of permutations by means of
Get_Random_k-set. The structure of the corresponding
k-set can be presented as follows:

The elements “a” and “b” of set 0 {(),()}Y ab ba
are replaced by the elements of child sets:

1 {(),(),(),Y cde ced dce (),(),()}dec ecd edc

and

2 {(),()}Y fg gf ,

respectively.

Let

1 2() () 50Q Y Q Y  .

Hence, 1 2() 3; () 1V Y V Y  , i.e. element “a” is

sequentially replaced by three random elements of 1Y ,

and “b” – by one random element of 2Y .

Р(a,b)

Р(c,d,е) P(f,g)
Y2

Y0

Y1

 RANDOM GENERATION OF COMBINATORIAL SETS… 47

A possible results of the generation is

()

()

{(), (), () ,

(), (), ()}.

z

result of replacing ab

result of replacing ba

W cdefg dcefg ecdfg

gfced gfdec gfedc



THE EVALUATION OF THE COMPLEXITY OF
ALGORITHM GET_RANDOM_K-SET

The complexity of the algorithm is determined by the

complexity of generation of basic sets, as well as the
complexity of operations of n-substitution and a number
of levels of a certain k-set. In [9], the evaluation of the
complexity of the «full» algorithm Gen_k-set is
described. This formula can also be used in this case. It is
sufficient to replace cardinality Card(Y) of each basic set
by V(Y). Then, the formula to evaluate Get_Random_k-
set complexity is:

11

(1)
0 1 0 1

() (() ())
iik k

i
ij i j

i j i j

O Y Card P V Y

 


   

   ,

where: ()ijO Y is the complexity of generating a basic

set ijY (i is the level of the basic set in k-set, j is the

sequence number of the set at level i);

1 0... ()i
i iP Г Г Г z – “intermediate” k-set,

which is the parent set at level i.

Details about designations and obtaining this formula
are given in [9].

CONCLUSIONS

1. We described the general approach for solving the
problem of random generation of k  sets based on the
single approach to random generation of various basic
combinatorial sets.

Algorithm for random generation of basic sets allows
generating various combinatorial sets, and laws of

constructing sets iF can be pre-set. If identification of
the laws fails, the algorithm allows using other
algorithms to generate basic sets.

2. The described approach to the random generation
is very flexible since it allows obtaining various results
by varying parameters iq and Q(Y). In its turn, this
allows adjusting the number of elements for both basic
sets and k-sets.

3. The developed software allows solving the
described problems of generation of k -sets and basic
sets.

REFERENCES

1. Knuth D., 2005. The Art of Computer
Programming, Volume 4, Fascicle 2: Generating All
Tuples and Permutations. Addison-Wesley. – 144.

2. Knuth D., 2005. The Art of Computer
Programming, Volume 4, Fascicle 3: Generating All
Combinations and Partitions. Addison-Wesley.–160.

3. Kreher D., Stinson D., 1999. Combinatorial
Algorithms: Generation Enumeration and Search. CRC
Press. – 329.

4. Bona M., 2004. Combinatorics of Permutations.
Chapman Hall-CRC. – 383.

5. Ruskey F., 2009. Combinatorial generation, Dept.
of Computer Science Univ. of Victoria, Canada, 1j-CSC
425/520. – 289.

6. Korsh J., LaFollette P., 2004. Loopless array
generation of multiset permutations // The Computer
Journal. – Vol. 47, № 5. – 612–621.

7. Stoyan Y., Grebennik I., 2008. Description of
Classes of Combinatorial Configurations by Mappings //
Proc. of NAS of Ukraine.– 10. - 28-31. (in Russian).

8. Stoyan Y., Grebennik I., 2011. Description and
Generation of Combinatorial Sets Having Special
Characteristics // International Journal of Biomedical Soft
Computing and Human Sciences. Special Volume
“Bilevel Programming, Optimization Methods, and
Applications to Economics” Vol. 18, №1. – 85-90.

9. Grebennik I., Lytvynenko O., 2012. Generating
combinatorial sets with given properties // Cybernetics
and Systems Analysis, 48(6). – 890–898.

10. Grebennik I., 2010. Description and generation
of permutations containing cycles // Cybernetics and
Systems Analysis, 46(6). – 945-952.

11. Grebennik I., Chorna O., 2015. Elements
transpositions and their impact on the cyclic structure of
permutations. // ECONTECHMOD. An International
Quarterly Journal on Economics of Technology and
Modelling Processes. – Vol. 4, № 3. – 33–38.

12. Grebennik I., Baranov A., Chorna O.,
Gorbacheva E., 2016. Optimization of linear function of
a cyclic permutation based on the random search. //
ECONTECHMOD. An International Quarterly Journal
on Economics of Technology and Modelling Processes. –
Vol. 5, № 3. – 211–216.

13. Bauslaugh B., Ruskey F., 1990. Generating
alternating permutations lexicographically // BIT
Numerical Mathematics. 30, 17–26.

14. Poneti M., Vajnovszki V., 2010. Generating
restricted classes of involutions, Bell and Stirling
permutations // European Journal of Combinatorics. 31,
553–564.

15. Bergeron F., Labelle G., Leroux P., 1998.
Combinatorial Species and Tree-Like Structures.
University Press, Cambridge.

16. De Bruijn N., 1970. Permutations with given ups
and downs // Nieuw Arch. Wisk. 18 (3), 61–65.

http://link.springer.com/search?facet-author=%22O.+S.+Lytvynenko%22
http://www.springerlink.com/content/106467/?p=7460a3d5d7b04277b32690e8906c3fd6&pi=0
http://www.springerlink.com/content/106467/?p=7460a3d5d7b04277b32690e8906c3fd6&pi=0
http://www.springerlink.com/content/106467/?p=7460a3d5d7b04277b32690e8906c3fd6&pi=0
http://www.springerlink.com/content/106467/?p=7460a3d5d7b04277b32690e8906c3fd6&pi=0

48 I. Grebennik, O. Lytvynenko

17. Carlitz L., 1973. Permutations with prescribed
pattern // Math Hachr, vol. 58, No. 1-6, 31–53.

18. Viennot G., 1979. Permutations ayant une forme
donne // Discrete Mathematics. 26, 279–284.

19. Etienne G., 1984. Linear extensions of finite
posets and a conjecture of G. Kreweras on permutations
// Discrete Mathematics. 52, 107–112.

20. Shevelev V., 2012. The number of permutations
with prescribed Up-down structure as a function of two
variables // Integers. Volume 12.

21. Van Baronaigien R., Ruskey F., Ruskey D.,
1992. Generating permutations with given ups and downs
// Discrete Applied Mathematics. 36, 57–65.

