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Abstract. General approach for solving the problem 

of random generation of compositional k  images of 
combinatorial sets (k-sets) has been proposed. K-sets are 
powerful apparatus that can be applied for solving many 
scientific and applied problems. Though many literature 
is dedicated to the problem of generating combinatorial 
configurations, existing studies deals mostly with simple 
combinatorial configurations like combinations, 
permutations etc.  

The algorithms of generation both basic 
combinatorial sets and k-sets have been described. 
Algorithm for random generation of basic sets allows 
generating various combinatorial sets, and laws of 
constructing basic combinatorial sets can be pre-set. If 
identification of the laws fails, the algorithm allows using 
other algorithms to generate basic sets.  

Complexity of described algorithms has been 
evaluated. The complexity of the algorithm of generation 
k-sets is determined by the complexity of generation of 
basic sets, as well as the complexity of operations of n-

substitution and a number of levels of a certain k-set. 
The described approach to the random generation is 

very flexible since it allows obtaining various results by 
varying algorithm parameters. In its turn, it allows 
adjusting the number of elements for both basic sets and 
k-sets. The developed software allows solving the 
described problems of random generation of k -sets and 
basic combinatorial sets. 

Key words: combinatorial generation, k-set, basic 
combinatorial set, random generation, complexity. 

 
INTRODUCTION 

 
Generation of various combinatorial objects is 

frequently required in developing and implementing 
methods and algorithms for solving many scientific and 
applied problems [1-6]. Generation is usually understood 
as a construction of all combinatorial structures of a 
given type [3]. In these sources, the problem of 
generation of simple combinatorial objects like 
permutations, combinations, splits, trees, binary 
sequences is mainly solved. Solution of generating more 
complex combinatorial objects is hindered by lack of 
special structural tools and by significant computational 
costs caused by redundant results of using well-known 
methods and algorithms of generation. 

 
 

THE ANALYSIS OF RECENT RESEARCHES AND 
PUBLICATIONS 

 
Quite complex combinatorial configurations can be 

formally described and generated with the help of 
structural tools of description of compositional 
k  images of combinatorial sets ( k  sets), proposed in 
[7]. A combinatorial set is understood as a variety of 
tuples constructed from a finite set of arbitrary elements 
(generating elements) in accordance with certain rules  
[7, 8].  

Permutations, combinations, arrangements, binary 
sequences etc. can serve as examples of classical 
combinatorial sets. The apparatus of k  sets has been 
widely explored [7–9]: general concepts of their 
generation are considered in [8], the task of exhaustive 
generation of k  sets was solved in [9], and some 
special cases of this task were studied in [10].  

However, the task of random generation of k  sets 
hasn’t been solved yet. 

Both random and exhaustive generation of k  sets 
require solving the problem of generation of basic 
combinatorial sets used to construct k  sets. Basic sets 
can be combinatorial ones with known descriptions and 
algorithms of generation: either classical combinatorial 
sets (permutations, combinations etc.) or non-classical, 
e.g., permutations of tuples, compositions of 
permutations, permutations with given number of cycles 
etc. [7-12].  

Algorithms of generation of many basic 
combinatorial sets have been described in many articles 
[1-3, 5, 13-21]. However, in most cases, each generation 
algorithm is based on specific properties of combinatorial 
sets. 

 
OBJECTIVES 

 
Objectives of this paper are:  
1. Developing a general approach for solving the 

problem of random generation of  k-sets. 
2. Developing the algorithms of generation of k-sets 

have been described. 
3. Evaluating the complexity of constructed 

algorithms. 
 

 

mailto:igorgrebennik@gmail.com


44 I. Grebennik, O. Lytvynenko 
 

 

MAIN RESULTS OF THE RESEARCH 
 

Let us briefly remind mathematical description of 
compositional k  images of combinatorial sets 
( k  sets). 

 
COMPOSITION K-IMAGES OF COMBINATORIAL 

SETS (K-SETS) 
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Let us consider mappings [7, 8]: 
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element of set 
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respectively,  
 

(z ) ( (z ), )i
i i


    

β
β β , z (z , )i

i
  

β β ,  

 

(z )
  are the primary mappings [7, 8]. It means that: 
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Let us denote 
 

{ }
ii  βΓ , ki J .      (2) 

 
Definition. Composition k-image of combinatorial 

sets  

0Y , 1Y , 2Y ,…, nY , 
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k

Y ,…,
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
  

( k  set) generated by sets kz
 , k k β  is the 

combinatorial set [7,8]: 
 

1 0... ( )z k kW z    ,         (3) 
 

where: mappings i i Γ , ki J  are determined by 
(2). 

Cardinality of the set (3) can be obtained [7, 8] as: 
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As the generation of k  sets is based on the 

generation of basic combinatorial sets, we need an 
algorithm for generating these sets. 

 
GENERATION OF BASIC COMBINATORIAL SETS 

 
Let us associate the set  
 

( ) { , , }p T A m S  
 

with each basic combinatorial set T , where  
 

1 2{ , ,..., }nA a a a , 1 2 ... na a a    
 
is a set of generating elements, m  is the length of tuple 
t T  (let us consider that all tuples in the set are of the 
same length), S  is a set of parameters describing the set 
T  (e.g., parameters 1 2, ,..., kn n n  for permutations with 
repetitions and other parameters specific for different 
classes of combinatorial sets). We understand a class of 
combinatorial sets as its belonging to permutations, 
combinations, etc. 
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Let the basic set T  and its parameters ( )p T  be 
defined. We need to generate all elements t T , where 
each element is a tuple of the length m . Let us denote  

 

1 2( , ,..., )i
it t t t , it A  , ( )A p T , ni J . 

 

It means that 0 ( )t   is an empty tuple and 
mt t T  .  

 
Firstly, let us recall the main concept of the 

algorithm of random generation of basic sets [9]. This 
algorithm is of a recursive nature: at each recursion level 

0
1mi J   it expands current tuple 1 2( , ,..., )i

it t t t  by 

adding the following element 1it   and thus obtaining a 

tuple 1
1 2 1( , ,..., )i

it t t t
  at level 1i  . At level 

m n  the algorithm adds tuple mt t  to the resulting 
set Т. 

The fact that set T belongs to a certain class of 
combinatorial sets imposes some restrictions on element 

1it A  .  

At each level   0
1mi J    let  

 

1 2{ , ,..., }i
kF f f f A   

 
denote a set of all generating elements that satisfy these 
restrictions. In this case, for each kj J , the algorithm 

adds element 1i jt f   to the “input” tuple  

1 2( , ,..., )i
it t t t  

 
and calls itself recursively with  

1
1 2( , ,..., )i

jt t t f   

as an input. 
 

The described algorithm can generate elements of set 
T randomly: for that we just need to do a recursive 
algorithm call at level i  not for all kj J , but only for 

iq % of them (selected randomly). It should be noted that 
we can use various mechanisms of random selection (in 
this work we use the simplest way of selection: we just 
generate a uniformly distributed random value; though 
other distributions can also be used). 

Let us consider specific features of the construction 

of set iF  for some classes of combinatorial sets. In the 

case of arrangements with repetitions, set iF  consists of 
all generating elements: 

 
iF A . 

 

For arrangements without repetitions and 

permutations as their special case, set iF  consists of 

n i  generating elements that have not appeared in it : 
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As for the combinations the order of the items is not 

important, let us generate them in the form of ordered 
sets where 1 2 ... it t t    is for combinations without 

repetitions and 1 2 ... it t t    is for combinations with 
repetitions. 

For combinations without repetitions, set iF  
includes all generating elements that have not been 

included into it  and are greater than ti : 
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For combinations with repetitions, set iF  also 
includes generating element which is equal to ti : 
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Let us describe the algorithm GenBase that 

implements the steps described. GenBase input data 
consist of T - type of a basic set, a set of parameters 

( )p T  and tuple it . At each recursion level 0
1mi J   , 

the algorithm builds the set iF , then randomly adds 

selected element iF  to tuple it as many as iv  times and 
recursively calls itself. At each level, the number of 
recursive calls is determined by  

 

| |
100

i
i

i
F q

v


 . 

 
To generate all the elements of set T , GenBase 

should be called with parameters T , ( ) , ( )p T . 

Here (1, | |)i
random F  is a uniformly distributed 

random number between 1 and | |iF . In order to 
generate combinatorial sets of other classes with this 
algorithm (Fig. 1), it is sufficient to identify laws of 

constructing set  iF . 
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Fig. 1.  GenBase algorithm 
 

It should be noted that, to generate combinatorial sets 
of other classes with this algorithm, it is sufficient to 

identify laws of constructing set iF . 
 
Example 1. Let the task is to randomly generate 

arrangements of 4 to 2. Let 0 175, 60q q  . At zero 

level, set 0F  includes all generating elements: 
0 {1,2,3,4}F  . Hence, 0

4 75 3
100

v


  . The algorithm 

randomly selects three elements 0F  (let them be 3, 2 
and 4) and makes recursive calls of itself with 
1 1 1(3), (2), (4)t t t    respectively. 

Let us consider the situation at level 1 for 1 (3)t  . 

In this case, set 1F  includes all elements that have not 

been not included into 1t , i.e. 1 {1,2,4}F  . Hence, 

1
3 60 2
100

v


  . The algorithm randomly selects two 

elements 1F  (let them be 1 and 4); it means that, at level 
2, full arrangements (31) and (34) are obtained.  

A possible recursion tree of the algorithm operation 
is provided below (Fig. 2). 

 

 
 

Fig. 2.  Example results of GenBase algorithm 
 

GENERATION OF K-SETS 
 

First, let us briefly describe the algorithm of 
exhaustive generating k-sets [9]. At the beginning, it 
generates the elements of each basic set using GenBase 
algorithm (values of iq  are individual for each basic set). 
After that, the algorithm sequentially implements 
mappings  

 

1 0.. ( )i iГ Г Г z , 0 0( )z A p Y   
 

for each 0
1ki J   . In other words, it implements n -

composition, where generating elements of a parent set 
are replaced by the elements-tuples of its child sets. 

Algorithm Get_k-set in its original version in [9], 
while implementing an operation of n-composition, 
performs a sequential substitution of the element of a 
parent set by each element of a child set. The proposed 
algorithm Get_Random_k-set does it not for all, but for 
some elements of a child set. By analogy with the 
generation of basic sets, we can put the parameter Q(Y) 

for each basic set Y at level ki J , which defines the 
fraction of elements participating in the operation of n -
composition. The number of the elements is determined 
by  

 

| | ( )( )
100

Y Q Y
V Y


 . 

 
Example 2. Let us describe the generation of the 

composition of permutations by means of 
Get_Random_k-set. The structure of the corresponding 
k-set can be presented as follows: 

 

 
 

The elements “a” and “b” of set 0 {( ),( )}Y ab ba  
are replaced by the elements of child sets:  

 

1 {( ),( ),( ),Y cde ced dce  ( ),( ),( )}dec ecd edc  
 

and  

2 {( ),( )}Y fg gf , 
 

respectively.  
 

Let  

1 2( ) ( ) 50Q Y Q Y  . 
 

Hence, 1 2( ) 3; ( ) 1V Y V Y  , i.e. element “a” is 

sequentially replaced by three random elements of 1Y , 

and  “b” – by one random element of 2Y . 
 

Р(a,b) 

Р(c,d,е) P(f,g) 
Y2 

Y0 

Y1 
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A possible results of the generation is  
 

( )

( )

{( ), ( ), ( ) ,

( ), ( ), ( )}.

z

result of replacing ab

result of replacing ba

W cdefg dcefg ecdfg

gfced gfdec gfedc



 

 
 

THE EVALUATION OF THE COMPLEXITY OF 
ALGORITHM  GET_RANDOM_K-SET 

 
The complexity of the algorithm is determined by the 

complexity of generation of basic sets, as well as the 
complexity of operations of n-substitution and a number 
of levels of a certain k-set. In [9], the evaluation of the 
complexity of the «full» algorithm Gen_k-set is 
described. This formula can also be used in this case. It is 
sufficient to replace cardinality Card(Y) of each basic set 
by V(Y). Then, the formula to evaluate Get_Random_k-
set complexity is:  

 
11

( 1)
0 1 0 1

( ) ( ( ) ( ))
iik k

i
ij i j

i j i j

O Y Card P V Y

 


   

   , 

 
where: ( )ijO Y  is the complexity of generating a basic 

set ijY (i  is the level of the basic set in k-set, j  is the 

sequence number of the set at level i);  

1 0... ( )i
i iP Г Г Г z  – “intermediate” k-set, 

which is the parent set at level  i. 
 

Details about designations and obtaining this formula 
are given in [9]. 

 
 

CONCLUSIONS 
 

1. We described the general approach for solving the 
problem of random generation of k  sets based on the 
single approach to random generation of various basic 
combinatorial sets.  

Algorithm for random generation of basic sets allows 
generating various combinatorial sets, and laws of 

constructing sets iF can be pre-set. If identification of 
the laws fails, the algorithm allows using other 
algorithms to generate basic sets.  

2. The described approach to the random generation 
is very flexible since it allows obtaining various results 
by varying parameters iq  and Q(Y). In its turn, this 
allows adjusting the number of elements for both basic 
sets and k-sets. 

3. The developed software allows solving the 
described problems of generation of k -sets and basic 
sets. 
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