
 

 

  

Abstract— This paper describes the evaluation of 

computational complexity of software implementation of finite 

element method. It has been used to predict the approximate 

time in which the given tasks will be solved. Also illustrates the 

increasing of computational complexity in transition from two 

to three dimensional problem.  

 
Index Terms— Finite element methods, Computational 

complexity, Interpolation, Linear approximation. 

 

I. INTRODUCTION 

HE issue of computational complexity of FEM is 

especially critical for the analysis of bodies with a very 

heterogeneous structure [1], described by a huge amount of 

mesh nodes. Having answered the question and knowing 

the size of the input data, we can determine whether the 

task can be solved using available computer, and whether 

the solution will be obtained in a reasonable time.  

 

II. ASYMPTOTIC NOTATION 

The function of computing time complexity in some 

cases can be determined accurately. In most cases it is not 

required to find its exact value. The exact value of the time 

complexity depends on determining the elementary 

operations (e.g., the complexity can be measured in the 

number of arithmetic operations, bit operations or 

operations of Turing machine). When increasing the size of 

the input data, the contribution of constant factors and terms 

of lower order, which appear in the expression, is quite 
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small for the exact work time. Mathematical notation, 

which allows to reject details of the algorithm analysis, is 

called asymptotic notation and is denoted by O(f(N)); it is 

the notation that will be used to describe the complexity of 

algorithms [2]. 

 

III. ALGORITHM ANALYSIS 

Finite Element Method Algorithm 

 There are many algorithms for the implementation of the 

FEM, but they all contain the basic steps shown in Fig. 1. 

 

 
Fig.1 Stages of FEM. 

 
 Preparation of input data includes the formation of finite 

element mesh. We will not evaluate its complexity, as it 

depends heavily on its generation algorithms: in some cases 

it may be a simple task, in other its complexity exceeds the 

complexity of solving the remaining phases of the FEM, as 

well as in most tasks the mesh is created once and used in 

many simulations. 

Computational complexity 

 For instance, to conduct the analysis of algorithm 

complexity, we take the one described in [3]. Here the 

banded stiffness matrix with bandwidth W is used. The 

number of nodes is denoted by N, and the number of 

elements – E. 

 The formation of global matrices of stiffness and forces 

is done via the recording of values obtained for individual 

elements, taking into account boundary conditions. The 

amount of operations needed for this purpose equals C·E, 

where C=const – the number of operations for the 

formation of local matrices of one element. In the 
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asymptotic notation the constant factors are not taken into 

account, so it will look like: 

 

O(E).           (1) 

 

Global matrices need modification to incorporate 

prescribed nodal values. In the worst case the complexity of 

this phase will be: 

 

O(NW).         (2) 

 

The next step solves the system of equations.  Because of 

its huge size, the use of FEM without a computer is not 

reasonable. To solve this problem many different methods 

are used. In the tested program Gaussian elimination is 

used, which allows accurate solution of the system. The 

method implementation is divided into two subroutines. 

The first one reduces the matrix to upper triangular, its 

asymptotic complexity is: 

 

O(NW2).         (3) 

 

The second finishes the solution of the system, and its 

complexity: 

 

O(NW).         (4) 

 

Having added all gained complexities, we obtain 

expression for the whole algorithm. Given large W, the 

function of the algorithm will converge to its third member, 

which is growing the fastest and therefore only considered 

asymptotic complexity of the whole FEM algorithm is equal 

to: 

 

O(E)+O(NW)+O(NW
2
)+O(NW) = O(NW

2
).  (5) 

 

IV. RESEARCH OF RESULTS 

Solution time of two dimensional problem 

 Having computational complexity of the algorithm we 

can predict the approximate time in which the given task 

will be solved. We need to conduct a number of previous 

tests on the computer to be used. For more accurate 

prediction these launches are conducted with large input 

data. Now, knowing the time in which the problem has been 

solved and its dimensions, a time of solving other tasks can 

be provided proportionally, through asymptotic complexity. 

These survey results are presented in Tables I and II, where 

column t exp shows the time of solving of the tasks, 

obtained experimentally, and column t pre – the predicted 

time. In the Table I the third experiment has been taken as 

the basis of time prediction, in Table II – the fourth one.  

As it can be seen from the Table I, high precision of time 

prediction is achieved for large values of input data, since 

the used asymptotic complexity does not consider members 

of the lower orders, and for large input their impact on the 

entire function is small. For more accurate prediction of the 

solution time, the results of the task, which dimension is the 

closest to the explored task dimension, has to be taken as 

the basis. For small input data the full expression of 

complexity Eq. (5) can be used, and previously rejected 

factors must be taken into account within each member. 

However, this assessment does not guarantee high 

predicting accuracy. 

 

TABLE I 

PREDICTED SOLUTION TIME 

№ N W t exp, sec t pre, sec δ, % 

1 251001 502 536.42 546.93 1.92 

2 75 651 502 165.20 164.84 0.22 

3 38 160 361 43.00 basis 

4 27 391 302 14.35 21.60 50.52 

5 7 360 161 1.12 1.65 47.32 

 

TABLE II 

PREDICTED SOLUTION TIME 

№ N W t exp, sec t pre, sec δ, % 

1 251001 502 536.42 363.34 32.27 

2 75 651 502 165.20 109.51 33.71 

3 38 160 361 43.00 28.56 33.58 

4 27 391 302 14.35 basis 

5 7 360 161 1.12 1.10 1.79 

  

Evaluation of memory usage 

 Most memory in the program is needed to store the 

system of equations, which consists of stiffness matrix K, 

the vector of desired values Ф and vector of forces F (Fig. 

2). To store the system we need MG memory cells: 

 

MG = N(W+2L)       (6) 

 

where L is an amount of unknown values in one node. 

 
Fig. 2. Presentation of the system of equations in memory 

For elements storage using an array that stores numbers of 

its nodes, the size equals: 

 

ME = n·E ,        (7) 

 

where n is an amount of nodes in one element. The second 

array stores the coordinates of nodes; its size is equal to: 

 

MN = d·N ,        (8) 
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where d is the dimension of space. 

 Other expenses of memory are not taken into 

consideration as they are much smaller and do not depend 

on input data.  

 For example, when solving the problem of 

deformation of plates with one million elements and 500 

000 nodes, with the bandwidth of 500, triangular elements 

with three nodes are used. To store the nodes we use Long 

data type with the size of 4 bytes, and for the coefficients of 

equations and nodes coordinates - Double type with the size 

of 8 bytes. Then, to store the described arrays we need the 

following amount of memory:  

N(W+2L+d)·8 + n·E·4 = 5·105·(500+2·2+2)·8+ 3·106·4 = 

= 2024·106B ≈ 1,89 GB. 

Comparing of computational complexities of two and 

three dimensional problems 

Using the equations obtained from previous sections, we 

will conduct a comparison of computational complexities 

for two and three dimensional problems.  

For illustrative comparison of complexities consider cubic 

body (Fig. 3). This will simplify our calculations, but will 

clearly illustrate the complexity of the transition to three-

dimensional problem using Gaussian elimination. Body 

divided into a uniform grid with h nodes per each edge. 

Denote the number of nodes needed to solve two 

dimensional problems through N2D and bandwidth through 

W2D. For three dimensional problems these values denote 

respectively N3D and W3D, each of h times larger than its 

two-dimensional analogue (9),(10). 

 

N3D = hN2D        (9) 

 

W3D = hW2D        (10) 

 

 By substituting of obtained number of nodes and 

bandwidth for three-dimensional problem to (5) and 

dividing to complexity of two dimensional problem (5) we 

obtain an expression that shows how many times the three-

dimensional problem is more complex of its two 

dimensional analogue (11). 
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Now try to show how increased complexity of 

calculations in the solution of three dimensional problems, 

in comparison of two dimensional. For example, we 

consider square area. Uniform mesh is constructed so that 

every edge accounts 100 nodes. 

Then in transition to three dimensional problem which 

describes the cube, according to (11) computational 

complexity will increase in 1003 = 1 million times. Even if 

such a two dimensional problem will be calculated in 1 

second, the three dimensional solution takes about 12 days. 

  

 
Now conduct an approximate evaluation of machine 

memory using for example of a cubic body. According to 

(9), (10) the number nodes and bandwidth increase in the 

matrix in h times. In this evaluation we do not take into 

account the expressions of  lower orders, so by substituting 

(9), (10) into (6) and dividing by (6) we obtain an 

approximate evaluation of increasing of memory using in 

the transition to three dimensional problems: 
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For example described above, obtained value shows that 

the memory usage will grow in almost 10 000 times. So 

even if the solution of two dimensional problem used only 

about 8 MB of memory, now this number will reach 80 GB 

which are not available for modern personal computers. 

Perform an approximate evaluation of what size of three-

dimensional cubic body problem our program can solve. 

Take the time limit in 10 hours. In calculating we based in 

the results from Table I from the first row. They obtained 

for a square body described by uniform grid on each side of 

which h2D = 501 nodes. Number of nodes in the grid N2D = 

h2D
2, bandwidth of conductivity matrix W2D = h2D +1. This 

problem was solved in T2D = 536.42 seconds. For the three-

dimensional grid N3D = h3D
3, W2D = h3D

2. Now use 

evaluation of complexity (5) to determine how many nodes 

can be on edge of three-dimensional grid (Fig. 3) the 

solution of the problem lasted for 10 hours: 
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If the number of nodes is increased only by one to 64, the 

solution time will increase by 18 minutes. 

The results show that software implementation of FEM is 

still possible to use Gaussian elimination at solving of two 

dimensional problems. But this method is unacceptable 

 
 

Fig. 3. Nodes location for three dimensional cubic body 
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costly for solving of the three-dimensional problems with 

large amount of nodes. Because the number of equations in 

such problems is increasing rapidly. The complexity of the 

cubic Gauss entire task complexity grows very rapidly, 

making this method unsuitable for large problems. 

V. CONCLUSION 

 On the basis of analysis of asymptotic complexity of 

algorithm, it is possible to determine its critical places that 

have the greatest impact on performance. For the 

considered example the subroutine solving system of 

equations is proper. When input data is huge, the 

complexity of the whole problem is close to its complexity. 

Gaussian elimination can be used for systems with 

thousands of equations and unknowns, but when their 

amount reaches several million, the cost of solution 

becomes too large. In such cases the special iterative 

methods are used. Analysis of such methods is more 

difficult because their work time depends on the needed 

accuracy of the solution.  

Number of nodes (N) appears in all expressions of 

algorithm complexity, both computational and of memory 

usage, which indicates the extreme importance of careful 

preparation of input data to get the most simplified model. 

The factor of the obtained complexity, which depends on 

the bandwidth of the matrix, grows the fastest. So, when 

preparing a finite element mesh, one has to pay close 

attention to the numbering of nodes in order to achieve as 

small as possible bandwidth. 
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