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Abstract

When information about objects and processes is formalised in knowledge bases,
there is often the need to deal with features that have discrete values, for example
gender (male/female) or marital status (married/single/divorced). When the
mutual influence of discrete features is investigated, it is important to fmd out
how closely the variables representing these features are connected and how
strongly they influence each other. It is also important to obtain analytical
dependencies in the data. This paper focuses on the logical correlation in
knowledge bases, and suggests a method for knowledge representation and
discovery of dependencies between selected data features. A knowledge base
containing links between information features is represented in the form of
logical equations with finite predicates. Special classes of equations describing
complicated hierarchical data structures are considered. New knowledge about
logical links in the data are obtained by eliminating variables from these
equations through procedures involving the use of both quantifiers, and the role
of each quantifier is discussed. The results of these procedures are dependencies
between the features that are easier to interpret than the dependencies
represented by the original equations. The elimination procedure does not lead to
an increase in the size of the original knowledge base, and there are possibilities
for parallel calculations. The knowledge base can be written in a text file with
the help of a subset of the extensible mark-up language (XML), which makes it
easy to transfer and manipulate the data. Some examples are discussed for the
purpose of illustration.
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22 Data Mining III

Introduction

When information about objects and processes is formalised in knowledge bases,
there is often the need to deal with features that have discrete values, for example
gender (male/female), marital status (married/single/divorced), or financial state
(low, medium, high). When such information has a complicated logical structure,
various methods that use discrete mathematics and logical equations can be
applied to formally represent this. Logical equations are often applied to pattern
recognition problems that have complicated logical dependencies. Methods of
pattern recognition using logical equations usually deal with variables taking on
the values O or 1 depending on whether or not a given object has a particular
property. Such Boolean variables denote the properties and features in the
objects being recognised by considering definite combinations of these variables,
from which the presence or absence of object properties can be determined [1].
Dependencies between the given variables are written in the form of logical
equations, and these are then transformed mathematically to discover new
knowledge about the objects and their associated properties [2].

A discrete feature can take on any value from a finite set, e.g. the feature
colour can be “black”, “white”, “blue”, or “green” etc. For our purposes, it is
convenient to use finite predicates for the representation of logical dependencies.
The formal language of finite predicate algebra allows the combination of an
algebraic approach to pattern recognition with different tools of predicate
calculus [3]. Finite predicate algebra utilises the operations of conjunction,
disjunction and negation as used in Boolean algebra, but these are applied to
predicates of the variables that can take on discrete values, and not directly to the
variables as used in Boolean algebra. When formulae in finite predicate algebra
are constructed, so-called “recognition” predicates are used. For example, x’ is a
predicate that is equal to 1 if and only if the variable x takes on the value a. It is
said that this predicate “recognises” the symbol a. Equations of finite predicate
algebra are a natural generalization of Boolean algebra equations, and they allow
manipulating arbitrary feature variables defined on finite sets of elements [3].
Using such equations for building inferences in knowledge bases allows an
extension to the potential of logical methods for pattern recognition and
knowledge discovery through the identification of salient features [4]. This has
implications for data mining defined as: “theprocess of extracting and refining
useful knowledge from databases ... extracted information can be used toform a
prediction or classijcation model, iakntifi trends and associations, refine an
existing model, or provide a summary of the database(s) being mined. ” [5]. This
paper describes a mathematical method for knowledge representation and
discovery by composing and manipulating logical equations, and this has various
potential applications for knowledge discovery in data mining.

Discovering logical links between discrete features

When the mutual influence of discrete features is investigated, it is very
important to find out how closely the variables representing these features are
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connected and how strongly they influence each other. Statistical methods for
knowledge discovery in relational databases address this question by regarding
the statistical correlation between feature variables [6]. This paper focuses on
the Io@”calcorrelation in knowledge bases that can be represented by logical
equations where these equations may be considered as closely related to
deductive databases, given that they have data (feature values) and deductive
inference rules (logic and algebraic rules for manipulating logical equations).
With logical equations, it is possible to represent intentional data and construct
deductive inferences in a similar manner as has been the case using deductive
databases and machine learning approaches [7]. The main difference between
these two methodologies lies in the fact that performing deductive reasoning
with the help of logical equations supposes the solving of these equations by
simplifying them instead of building chains of rules. Thus our approach is
algebraic rather than logical.

As far as the quantitative measure of mutual influence of features is
concerned, it is usually said that the smaller the number of sets of feature values
that satis~ the equation, the stronger the formal logical link between the
features. If any possible sets of values of the variables satis@ the equation, then
there is no logical link between the features [4]. In other words, the fewer the
degrees of fi-eedom allowed by the variables in a logical equation, the stronger
the logical link. This measure is rather formal and does not reflect the logical
nuances hidden in the knowledge base. For example, a particular value of feature
x may strictly define the only possible value of feature y. However, another value
of the same feature x may be co-located with any value of feature y. In some
cases the values of feature variables are known a priori, and this knowledge may
alter previous hypotheses regarding the other variables. In this case the following
question arises: how strong is the logical dependence between two or more
selected features, and what does this dependence look like?

To answer this question, we eliminate tlom the original equation all the non-
salient variables [4] using a quantifier 3. We can then investigate the resulting
equation with a smaller number of variables that describe all possible
combinations of values for the target features.

The main difficulty encountered in trying to eliminate discrete variables lies in
the fact that the formal application of the operation 3 to a predicate leads to an
exponential increase in the size of the original formula. To simplifj the
elimination procedure we used the following properties of the quantifier 3

1. 3XX”=1

2. ~ (F’(x)VQ(x)) =3x P(x) V 3x Q(x)

3. .3x (P(x)& Q@))= 3x P(x., & Q(j)

4. 3y (?’(x) -+ Q@))= f’fi) + ~ Q@)
5. Suppose Pi (x) &Pi (x) = O,i #j, i,j = 1, 2,..., k. Then:

3y ((?’, @ + Q, @))& (P2(X) + Q, @)) & ... & (P/i(X) + Q~@))) =

= (pI (’x)+~y Q] (j)) & (’2 (x) +~y Q2 @)) & .-. & (Pk(x) +3Y Qk@).
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6. If the identity Pi (x) -0 is not true for i = 1, 2, .... k ~d Pi (x) & Pj (x) = Ofor
i #j, i,j = 1, 2, .... kthen:

5 (~1 (x) + Q] (j)) & (PI (X) + Q, @)) & ... & ~k (X) + Q~@))) =

=Q](l) J’Q2@) V... vQk@).

Properties 1 to 6 allow us to define special predicate types that can be more
easily processed with algorithms for variable elimination. In a previous paper we
recursively constructed the predicate class A. [4]. For any predicate of this class
one can easily eliminate the variable x with the quantifier 3. The algorithm for
the elimination of the variable x looks for blocks connected with the conjunction
or disjunction operations, and spreads the quantifier 3 throughout the formula
using properties 1 to 6. We must note here that knowledge of the hierarchical
structure of the original formula facilitates the elimination of variables, and if we
do not know the structure of the formula in advance we will therefore have to
recognize it. At present, we do not have an effective algorithm that would allow
us to find out whether a predicate belongs to the class A or not. Nevertheless,
where we can represent knowledge about discrete object features as a predicate
formula belonging to the above class, we will be able to quickly eliminate
variables. In such a case the complexity of the algorithm grows linearly with
respect to the length of the formula, and there is the possibility of parallel
calculations dramatically reducing the time required for elimination. For
example, if we consider the expression:

P, VP2 v... VP.,
where the predicates PI, P2, .... P. belong to AD we can see that the elimination
of the variable .x can be performed for each predicate in parallel. Hence if we
have tools for parallel calculations, the time required for elimination will be
equal to the maximum time of the elimination of the variable in the predicates
P], PI, ... . P. taken separately.

It maybe argued that the requirement for exact information about the formula
structure is too strong a restriction to be placed on the knowledge base. The
counter argument is that for relational representations, there are much stronger
limitations on the knowledge structure anyway. Let us consider the following
relational table with the fields x, y and z

m
We can represent this table as a logical equation in the perfect disjunctive normal
form:

x“’yb’2’1 VX”2yb22’2= 1.

In the general case it is obvious that any relational table can be represented in the
form of a logical equation, the formula on the left side of the equation being in
the perfect disjunctive normal form. The class A of finite predicates described in
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[4] includes all possible disjunctive (not necessarily perfect) normal forms. This
means that the way of knowledge representation in the form of logical equations
containing formulae that belong to the class A is more general than relational
representation. Of course using such a logical method makes sense only in cases
where there are many complicated logical dependencies in data features.

As a result of the elimination of variables with the help of the quantifier 5, we
obtain the sets of values of the salient features for which there exists at least one
possible set of values of the other features. However, if we want to obtain the
sets of the salient features that satisfJ the equation irrespective of the values that
the other features take on, we should eliminate variables with the help of the
quantifier H When applying this quantifier we encounter the same complexity
problems as in the case of using the quantifier Z To resolve the problems
connected with exponential growth in the size of the formula in a logical
equation, we use the following properties of the quantifier ti.

8. bk F(X)& Q(x)) = b’XP(x)& b’XQ(x)

10. b’y (P(x)& Q(j))= P(t)& ~ Q(j)
11. SuPPose Pi (x)& Pj(x) = O,i #j, i,j = 1, 2,..., k. Then

b’y ((P, (i)& Q, (j)) V(P, (x)& Qz @)) V ... P’fpkfi) & Qkfj))) =

= (p~(x) & WYQI (j)) V(P2 (i)& ~Y Q2V)) V ... ‘@’k (x)& yY Qk@)

12. If the identity Pi (x) -0 is not true for my i = 1, 2, .... k and Pi @)& Pj(x) =
Ofor i+j, i,j = 1, 2, .... k then:

tiX (~, (X)&Q, (j)) V (Pj (X) &Q, (j)) V ... V (?’,(X)& fj?k(j))) =

‘Q16?)& Q2@)&... &Qk@).

The predicates Pi(x) in properties 11 and 12 can be interpreted as hypotheses for
possible values of the feature x, the predicates Pi(x) defining domains for values
of this feature that do not have common elements.

We must also mention here that if the additional condition

VP,(X) = 1 (1)

is satisfied, then the expressions

pI 6) + Q] 6!)) & (P2(x) +Q2 ti!~~ ... & (pIt@) +Qk@))) (2)

((PI (x) &Q] @)) V (P2(x) & Q2(j)) V-.. V(Pk (x) & Qkfjj) (3)

are formulae representing the same predicate (of course the predicates Pi(i)
should satis~ the conditions indicated in properties 6 and 12). This statement
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26 Data Mining III

allows us to simplifj the elimination procedure for both quantifiers 5 and Y
since we can otlen transform logical equations into a form that is convenient for
application of a particular quantifier. Condition (1) can be interpreted as the
requirement for the hypotheses PI (x), PZ(x), .... pk (x) to cover all possible values
of the discrete feature x.

Let us now recursively define a class of finite predicates for which the
elimination of variables with the help of the quantifier b’does not lead to any
increase in the size of the original formula. Consider the set Z of finite predicates
with the set of variables {x, y, .... z). Let us define a subset @, of Z as follows:

All the predicates Xa,‘xb,-..., ‘xc recognizing symbols from the domain for the
variable x belong to @,.
All the predicates that do not depend on the variable x belong to @..
If predicates P] and Pj belong to @. then the predicate P = P} VPJ belongs
to@x.
If a predicate PI belongs to@X,and a predicate Pz does not depend on x, then
the predicate P = P] VPZ belongs to@X.
If a predicate PI does not depend on x, and a predicate Pz belongs too,, then
the predicate P = PI & P1 belongs to@X.
If predicates P,, Pz, .... pk do not depend Onq Pi & Pj = Ofor i #j, i,j = 1, 2,
.... IGpredicates Q], Q,, .... Qkbelong to Q; then the predicate P = (P1& Q])
V (P2& QJ V ... V (pk & Qk) belongs to@X.
If predicates PI, Pz, .... pk depend only on x; Pi & Pj = Ofor i #j, i,j = 1,
2,..., lGfor any i = 1, 2, .... k the identity Pi ~0 is not true; predicates
Q1,Q2,.... Qkdo not depend on x; then the predicate P = (P, & Q,) V (P2 &

Q2) J’ ... V@k & Qk) belongs to @,.

The algorithm for the elimination of the variable x looks for blocks connected
with the conjunction or disjunction operations, and spreads the quantifier Y
throughout the formula using properties 7 to 12. As in the case of the elimination
procedure using the quantifier a to effectively eliminate variables with the help
of the operation V we must know the hierarchical structure of the original
formula in advance. If the structure is known, then the time of calculation grows
linearly with respect to the length of the original formula. Similar to the case of
using the quantifier 5, there is the possibility of eliminating variables in parallel
since properties 7 tol 2 allow us to apply the quantifier to a block of a formula
without knowing the result of the elimination of variables in the other blocks.

Let us consider now a simplified example that illustrates elimination of
variables with the help of both quantifiers. Suppose it is known that a patient’s
disease can be A or B or C, and the following discrete features can be observed
for these diseases or different strains of the same disease: temperature (low,
normal, high); blood pressure (low, normal, high); pulse (slow, normal, quick). It
is known that these are the only possible diseases, and that two diseases cannot
happen at the same time:
. If disease A occurs, the temperature is low or normal; if the temperature is

low then the blood pressure is low and the pulse is slow
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● If disease B occurs, the temperature is high, the pulse is slow or normal; if
the pulse is slow then the blood pressure is low

. If disease C occurs, the pulse is quick, the temperature is high and no
information is available on the blood pressure.

We can formalise these dependencies as follows. Let us introduce the variables
~ t,b, and p, where d is the disease, t is the temperature, b is the blood pressure
and p is the pulse. The variable d takes on values ffom the set {A, B, C), the
variables t and b can take on values from the set {low, normal, high}, the
variable p can take on values ffom the set {slow, normal, quick}. The above
dependencies can be described in the following way (we omit the conjunction
sign between the elementary “recognition” predicates):

(d+ (i”” vt”Omd)&(/Ow+ b’”wps]”w))& (8 + ?’i@@’OwVpnOm’~&
(p’i”w+ b’Ow))&(8 +pquick?i@)= 1.

The solutions of the above equation (the sets of the variables’ values satisfying
the equation) form a relational table with 3x3x3x3=81 rows, which demonstrates
the fact that using logical equations instead of relational tables allows us to
describe complicated logical links concisely. On simplifying this equation we
get:

(i+ (i’’om”V~wblOwp’’Ow))& (8 + /’i@@’’Owb’OwVpn”’’’’ay)
& (ii +p’”ickti@) = 1. (4)

Let us denote
S = (8 + (f’”””d V ?’Wb’”wps’”w))& (’ + ?“&@’Owb]OwVpn”’’’’a;)&
(~ + pquick~i~),s]= & -+ (f”’’”’”V l“wbl”wps’”w),S.2= # +
/i& SlOWb]OW vpIMd

‘?
), S3 = # +p’”’’’t~q Sll = #, S1.2 = p~’1 v

~OWbOWp,lOW,

S121 = t“”ma’,S122 = #’wb]OwpslOw,S1221 = ~w, S1222 = b~ow,S1223 =

P“owetc.
Then
s = S1 & S2 & S3, S1 = Sll + S12, S12 = S121 v S122, S122 = S1221 &
S1222 & S1223 etc.
and we can see that our model has a tree-like hierarchical structure where the
“leaves” are elementary “recognition” predicates.

Let us investigate the logical links between the temperature and blood
pressure features. If we want to get all possible links between the features in
question we will need to use the quantifier 5. The hierarchical structure of the
original model allows us to “spread” the quantifier across the formula without
any increase in its size as all the predicates S, S1, S2, S3 etc. obviously belong to
the class A for any variable. Using property 6, we can eliminate variable d from
the original equation to get:

(t”-” V ~wb’”wp’’”w)V /’i@@~OwblOwVp””””d)Vpq”i’k?io = 1. (5)
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Using the properties 1 to 3 we can eliminate variable p to get:

(t”-’ v ~wZ$Ow) p’ ~i@@lOw v]) v $i@ = p~al VpW~lOW ~p@ ~ p4

= tn”ma’v PWb’”wF’?i@= 1. (6)

We can see from eqn (6) that only when the temperature is low can we be sure
that the blood pressure will be low. If the temperature is high or normal, we
cannot say anything about the blood pressure.

In case we wish to investigate unconditional logical links between discrete
features i.e. links that do not depend on values of the other features, we should
use the quantifier 1% Let us investigate unconditional links between the
temperature and the disease in the above example. Before we apply the
quantifier, let us transform the formula (4) using the fact that if condition (1) is
satisfied, then (2) is equivalent to (3). In our example # V# V~ ‘1, therefore
we can represent (4) in the following form:

dA(tnOm~V?’’wb’owps’”w)V#?i@(ps’”wb’”wVp”oma’)v&pq”icTi@ = 1.

Using the hierarchical structure of this formula (obviously belonging to the class
@for any variable) we spread the quantifier without any increase in the size of
the formula. First we eliminate the variable b using property 11:

bb(dA(t’’O””~V ?“wb’”wp~”w)Vd%M@@lOwblOwvp””m~) V (.fpq”ickthi*)
= @(~”~’l v ~(~”wbl”wpslow))v #/’i@ (~@]OwblOw)vp’o~’j J/~pq”i’k$@

= d’P””d vcW’i@p”O””dvc$pq”ick?i~.

Using properties 9 and 12 we can eliminate the variable p:

Thus if d = A then t= normal, and if t= normal then d= A for any values of the
features b and p, which means that we have obtained the unconditional link
between the target features.

A method for knowledge representation

The logical models considered in this paper allow us to develop a method for
knowledge representation and discovery, which promises to be quite effective
when dealing with data of complicated logical structure. It can be easily seen that
the classes A [4] and @of predicate formulae are much more general than
disjunctive normal forms. If we take into consideration the fact that any
relational table can be represented as a logical equation in the perfect disjunctive
form (we have given a simple example before), then it becomes clear that the
above classes of equations allow us to describe more complex data structures
than with relational tables. Moreover, it is very convenient to build deductive

© 2002 WIT Press, Ashurst Lodge, Southampton, SO40 7AA, UK. All rights reserved.
Web: www.witpress.com  Email witpress@witpress.com
Paper from: Data Mining III, A Zanasi, CA Brebbia, NFF Ebecken & P Melli (Editors).
ISBN 1-85312-925-9



Data Mining III 29

inferences based on logical equations of this type. Nevertheless, a practical
question arises: how can we represent the above data structures in computer
programs? To answer this question we have developed a special mark-up
language LHXML, which is a subset of XML (extensible mark-up language). In
this language special tags are used to denote:
. different levels of the hierarchy of a logical formula,
● logical operations (we use “empty” tags for this purpose)
● names of features (we use “opening” and “closing” tags)

Using LHXML we can write down our example (4) in a text file:

<root level>—
<level 1>

<d>A</d><implication/>
<leve12>

<t>normal</t>
<orb
<leve13>
<t>low</t><and/><b> low</b><and/><p> slow</p>
</levels>

</leve12>
</level 1>
<and>
<level 1>
<d>13</d><implication/>

<]evelz>
<t>high<lt>
<and>
<levels>

<1eve14>
<p>s]ow<fp> <~d/> <b>low</b>
</leveM>
<or/>
<p>norm~</p>

</levels>
</le@2>

</level 1>
<and/>
<levell>

<d>C</d><implication/>
<leve,lz>
<p>quick</p> <and/> <t>high<l~
</1eve12>

</level 1>
</root level>—
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If we use LHXML then the process of obtaining inferences from such data
structures just means manipulating XML nodes [8], which corresponds to the
procedures for eliminating variables as described above. We would like to stress
that the representation of logical dependencies with the help of XML allows us
to use the whole capability of the XML object model (i.e. all the methods and
properties of the XML elements) and hence quickly draw logical conclusions
fi-om data (applying standard XML techniques and tools). We are now in the
process of developing specialized data structures based on our method that are
expected to be used in the development of a new generation billing system.

Summary

In this paper we have suggested a method for knowledge representation and
discovery based on composing and manipulating logical equations of special
types. We have considered the process of discovering hidden patterns in complex
data structures that are more general than relational databases. In order to
discover new patterns in dat% we apply logic quantifiers and obtain
dependencies that are simpler and clearer than the dependence defined by the
original knowledge base. We have demonstrated some possibilities of parallel
calculations for obtaining deductive inferences fkom the model, which can
dramatically reduce the speed of knowledge discovery. We have also developed
a special mark-up language (a subset of XML) that allows us to store data in a
text file and discover hidden patterns in the data by manipulating XML nodes.
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