УДК 621.372.54

ВЫБОР ПОРЯДКА ЛИНЕЙНОГО ФИЛЬТРА ПРЕДСКАЗАНИЯ ДЛЯ СТАЦИОНАРНЫХ СЛУЧАЙНЫХ ПРОЦЕССОВ С ГАУССОВОЙ КОРРЕЛЯЦИОННОЙ ФУНКЦИЕЙ *)

Д.И. ЛЕХОВИЦКИЙ, <u>М.И. ТАБАЧНИКОВ</u>, С.И. ШИПИЦЫН

Устанавливается связь между порядком линейного фильтра предсказания и уровнем минимальной дисперсии ошибки для процесса с гауссовой автокорреляционной функцией. Обосновывается выбор порядка линейного фильтра предсказания в соответствующей ситуации.

Ключевые слова: линейное предсказание с минимальной ошибкой, порядок фильтра, гауссова корреляционная функция, коэффициент подавления.

Линейные фильтры предсказания (ЛФП) – составные элементы устройств обработки сигналов различной природы – геофизических, акустических, радиолокационных и т.п. [1, 2]. Они обычно используются для минимизации дисперсии

$$d(p) = \overline{|\varepsilon(p)|^2} \tag{1}$$

разности (ошибки)

$$\varepsilon(p) = y_{p+1} - \mathbf{k}^* \cdot \mathbf{y}_{-} = y_{p+1} - \sum_{i=1}^p k_i^* \cdot y_i$$
(2)

между текущим (p+1)-м значением y_{p+1} входного процесса $\mathbf{y} = \{y_i\}_{i=1}^{p+1}$ и линейной комбинацией его предшествующих значений $\mathbf{y}_{-} = \{y_i\}_{i=1}^{p}$ за счет соответствующего выбора импульсной характеристики $\mathbf{k} = \{k_i\}_{i=1}^{p}$.

Важным вопросом при проектировании ЛФП является обоснование их порядка p, который выбирается в зависимости от достижимой степени снижения дисперсии d(p) по мере роста p. Как известно, она определяется корреляционной матрицей (**KM**) входного процесса

$$\mathbf{\Phi}(p+1) = \left\{ \varphi_{i\ell} \right\}_{i,\ell=1}^{p+1} = \overline{\mathbf{y} \ \mathbf{y}^*}, \qquad (3)$$

в чем легко убедиться, переписав (2) в виде

$$\varepsilon(p) = \mathbf{r}^* \mathbf{y}; \quad \mathbf{r}^* = \{r_i\}_{i=1}^{p+1} = \{-\mathbf{k}^*, 1\}; \quad r_{p+1} = 1, \quad (4)$$

откуда, учитывая (1), (3), получаем

$$d(p) = \mathbf{r}^* \mathbf{\Phi}(p+1) \mathbf{r} .$$
 (5)

Цель работы — обосновать выбор порядка ЛФП для широко используемой модели стационарного входного процесса с нулевым средним и гауссовой корреляционной функцией (КФ)

$$\boldsymbol{\rho} = \left\{ \rho_i \right\}_{i=1}^{p+1}, \ \rho_i = y_{s+i-1} \cdot y_s^* = y_i y_1^* = = \sigma_{\Pi}^2 c^{(i-1)^2} e^{j(i-1)\beta}, \ s \in 1, p+2-i,$$
(6)

где σ_{π}^2 — дисперсия (мощность) входного процесса; c < 1 и β — соответственно модуль и фаза коэффициента взаимной корреляции $\overline{y_{i+1}y_i^*} / \sigma_{\pi}^2$ ($i \in 1, p$) произвольной пары его смежных отсчетов.

*) Радиотехника. — М. — 1990. — № 4. — С. 44—48.

Для этой модели положительно определенная корреляционная матрица (3) эрмитова ($\phi_{i\ell} = \phi_{\ell i}^*$) теплицева ($\phi_{i\ell} = \phi_{i-\ell+1,1}$, $\ell \le i$) и поэтому полностью определяется своим первым столбцом $\boldsymbol{\phi}_1 = \{ \phi_{i1} \}_{i=1}^{p+1} = \boldsymbol{\rho}$.

Для решения поставленной задачи воспользуемся результатом из [3], в соответствии с которым минимум v(p) квадратичной формы (5) при выполнении последнего равенства (4)

$$v(p) = \min_{\mathbf{r}} d(p) = \det \Phi(p+1) / \det \Phi(p), \quad (7)$$

где det A – детерминант (определитель) матрицы A.

Этот минимум достигается на векторе $\mathbf{r}=\mathbf{r}_0$, являющемся решением системы

$$\mathbf{\Phi}(p+1)\mathbf{r}_0 = \mathbf{v}(p)\mathbf{e}_{p+1}^{(p+1)}, \qquad (8)$$

где $\mathbf{e}_i^{(M)}-i$ - й столбец единичной $M\times M$ матрицы \mathbf{I}_M .

В Приложении показано, что для рассматриваемого случая гауссовой **КФ** (6) справедлива рекурсия

$$\det \mathbf{\Phi}(p+1) = \sigma_{\Pi}^2 \det \mathbf{\Phi}(p) \prod_{i=1}^p (1-c^{2i}), \qquad (9)$$

в силу которой (7) преобразуется к виду

$$\nu(p) = \sigma_{\pi}^{2} \prod_{i=1}^{p} \left(1 - c^{2i} \right).$$
 (10)

Отсюда следует, что переход от $\mathbf{Л} \mathbf{\Phi} \mathbf{\Pi} (p-1)$ -го к $\mathbf{Л} \mathbf{\Phi} \mathbf{\Pi} p$ -го порядка уменьшает дисперсию ошибки в

$$\gamma(p) = \left(1 - c^{2p}\right)^{-1} \tag{11}$$

раз, так что с ростом *р* прирост эффективности монотонно уменьшается, и тем в большей степени, чем меньше модуль *с*. Мерой эффективности **ЛФП** обычно служит "коэффициент подавления" $K_{\rm n}(p) = \sigma_{\rm n}^2/v(p)$ [4], в рассматриваемом случае равный

$$K_{\Pi}(p) = \prod_{i=1}^{p} \left(1 - c^{2i}\right)^{-1} .$$
 (12)

Соответствующие (12) зависимости $K_{n}(p)$ при различных значениях *с* показаны сплошными кривыми на рис. 1. Они наглядно иллю-

стрируют вклад в увеличение $K_{n}(p)$, обусловленный изменением порядка **ЛФП**.

Рис. 1. Зависимость K_{Π} от порядка p ЛФП

При обработке стационарных временных рядов **ЛФП** *p*- го порядка может быть реализован в форме трансверсального **КИХ** фильтра с весовыми коэффициентами, совпадающими с соответствующими компонентами вектора \mathbf{r}_0 (8).

Более удобна, однако, его реализация в форме эквивалентного *p*-звенного решетчатого фильтра. Дисперсия v(i) ошибки на каждом из двух выходов его *i*-го $(i \in 1, p)$ элементарного решетчатого фильтра (ЭРФ) связана с дисперсией v(i-1) на его входах соотношением $v(i) = v(i-1)(1-|\alpha_i|^2)$, $v(0) = \sigma_{\pi}^2$ [2] и, следовательно

$$\nu(p) = \sigma_{\pi}^{2} \prod_{i=1}^{p} \left(1 - |\alpha_{i}|^{2} \right), \qquad (13)$$

где α_i — коэффициент корреляции процессов на входах *i*- го звена, численно совпадающий с *i*- м частным коэффициентом корреляции входного процесса [2].

Из сопоставления (13) и (10) следует, что

$$|\alpha_i| = c^i , \qquad (14)$$

т.е. процесс с гауссовской **КФ** имеет экспоненциальную частную **КФ**. Этот результат впервые приведен в [5], однако его доказательство там существенно сложнее. Еще более простое доказательство равенства (14) дано в [8].

В реальных условиях из-за наличия некоррелированного шума значения $K_{\rm n}(p)$ меньше показанных на рис. 1 непрерывными кривыми. Степень снижения определяется относительным уровнем шума $\mu = \sigma_{\rm m}^2/\sigma_{\rm n}^2$, а предельный уровень $K_{\rm n}(p)$ соответствует полностью коррелированным отсчетам процесса (*c*=1). В этом случае

$$\Phi(p+1) = \sigma_{\rm BX}^2 \,\mu(\mu+1)^{-1} \Big(\mathbf{I}_{p+1} + \mu^{-1} \mathbf{e}_{p+1} \mathbf{e}_{p+1}^* \Big), \quad (15)$$
где

$$σ_{BX}^2 = σ_{\Pi}^2 + σ_{III}^2 = σ_{\Pi}^2 (1 + \mu); \mathbf{e}_{p+1} = \left\{ \exp(j(i-1)\beta) \right\}_{i=1}^{p+1}$$

ΠΟΘΤΟΜΥ

$$\det \Phi(p+1) = \left(\sigma_{_{\mathrm{BX}}}^2 \cdot \mu \cdot (1+\mu)^{-1}\right)^{p+1} \left(1+\mu^{-1} \cdot (p+1)\right),$$

Прикладная радиоэлектроника, 2011, Том 10, № 4

и, в соответствии с (7),

$$v(p) = \sigma_{BX}^2 \cdot \mu \cdot (\mu + p + 1) / \{(1 + \mu) \cdot (p + \mu)\},$$
так что

. 410

$$K_{\rm n}(p) = \sigma_{\rm BX}^2 / \nu(p) = [(\mu+1) / \mu] [(\mu+p) / (\mu+p+1)].$$
(16)

При малом уровне шума ($\mu <<1$) $K_{\rm n}(p) \approx \mu^{-1} p / (1+p)$, т.е. основное подавление, равное $1/2 \cdot \mu$, обеспечивается уже при p=1 и при увеличении p вплоть до $p \to \infty$ увеличивается не более, чем вдвое (на 3 дБ). Можно показать также, что в условиях (15) *i*- й (*i* ≤ p) частный коэффициент корреляции $\alpha_i = -(\mu + i)^{-1} \exp(ji\beta)$, и при $\mu <<1 |\alpha_i| \approx i^{-1}$, т.е. аддитивная смесь детерминированного сигнала и некоррелированного шума малой интенсивности имеет гиперболическую частную **КФ**.

На рис. 1 штриховыми кривыми приведено семейство зависимостей $K_{\pi}(p)$ (16) для ряда значений параметра и. Эти кривые задают верхнюю границу коэффициента подавления, которая при соответствующем значении µ не может быть превзойдена ни при каких значениях $c \le 1$. Поэтому в реальных условиях ($\mu \neq 0$) скорость изменения $K_{\Pi}(p)$ с ростом порядка **ЛФП** оказывается ниже теоретически возможной (12) в отсутствие шума (непрерывные кривые на рис. 1). Степень замедления тем выше, чем выше модуль коэффициента корреляции с входного процесса. В связи с этим наличие шума «нивелирует» отличия в скорости изменения $K_{\pi}(p)$ для разных значений c, что наглядно иллюстрируется штрихпунктирными кривыми на рис. 1, определяющими зависимости $K_{\pi}(p)$ при $\mu = 10^{-7}$ и c < 1. Как следует из анализа этих зависимостей,

Как следует из анализа этих зависимостей, при $\mu > 10^{-7}$ (-70дБ) **ЛФП** порядка $p = 3 \div 5$ обеспечивают практически предельный коэффициент подавления независимо от значения *c*, так что использование **ЛФП** более высоких порядков в этих условиях малоэффективно.

Значения $p=3\div5$ могут рассматриваться в качестве верхней границы порядка **ЛФП** для минимизации дисперсии ошибки и для широкого класса других реальных процессов с унимодальными спектрами мощности, поскольку для них характерен более медленный рост коэффициента подавления, чем для рассмотренного процесса с гауссовской (колокольной) формой спектра.

ПРИЛОЖЕНИЕ

Докажем равенство (9), следствием которого являются основные результаты (10)–(12), а также формула (14), выводу которой посвящены статьи [5–7] (см. также предыдущую статью данного выпуска).

Заметим вначале, что матрица $\Phi(p+1)$ допускает представление

$$\Phi(p+1) = \mathbf{D}\mathbf{A}(p+1)\mathbf{D}^{*},$$

$$\mathbf{A}(p+1) = \left\{a_{i\ell}\right\}_{i,\ell=1}^{p+1}, \ a_{i\ell} = \sigma_{\pi}^{2} \cdot c^{(i-\ell)^{2}},$$
(II1)

где $\mathbf{D} = diag \left\{ d_i \right\}_{i=1}^{p+1}$ — диагональная матрица с элементами $d_i = \exp\{j(i-1)\beta\}$ на главной диагонали.

Поскольку $\mathbf{DD}^* = \mathbf{I}_{p+1}$, то

$$\det \Phi(p+1) = \det \mathbf{A}(p+1) \tag{\Pi2}$$

и, следовательно, (9) эквивалентно равенству

$$\det \mathbf{A}(p+1) = \sigma_{\Pi}^2 \det \mathbf{A}(p) \prod_{i=1}^p \left(1 - c^{2i} \right)$$
(II3)

для действительной симметричной теплицевой матрицы A(p+1) (П1), которую можно записать в блочном виде

$$\mathbf{A}(p+1) = \begin{bmatrix} \sigma_{\Pi}^2 & \sigma_{\Pi}^2 \mathbf{s}^* \\ \sigma_{\Pi}^2 \mathbf{s}^* & \mathbf{A}(p) \end{bmatrix}; \mathbf{s} = \{s_i\}_{i=1}^p; \ s_i = c^{i^2}. \quad (\Pi 4)$$

Детерминант этой матрицы, как известно, равен

$$\det \mathbf{A}(p+1) = \sigma_{\Pi}^2 \det \mathbf{G}(p);$$

$$\mathbf{G}(p) = \left\{ g_{i\ell} \right\}_{i,\ell=1}^{p} = \mathbf{A}(p) - \sigma_{\Pi}^{2} \mathbf{ss}^{*}.$$
(II5)

Используя (П1), (П4), для элементов матрицы $\mathbf{G}(p)$ получим

$$g_{i\ell} = \sigma_{\pi}^2 \left(c^{(i-\ell)^2} - c^{i^2+\ell^2} \right) = \sigma_{\pi}^2 c^{(i-\ell)^2} \left(1 - c^{2i\ell} \right),$$

что позволяет представить ее в виде произведения

$$\mathbf{G}(p) = \mathbf{Q}\mathbf{H}(p) \tag{\Pi6}$$

диагональной матрицы $\mathbf{Q} = diag\{q_i\}_{i=1}^{p}$ с элементами $q_i = 1 - c^{2i}$ и детерминантом

$$\det \mathbf{Q} = \prod_{i=1}^{p} \left(1 - c^{2i} \right) \tag{\Pi7}$$

на матрицу $\mathbf{H}(p) = \{h_{i\ell}\}_{i,\ell=1}^{p}$ с элементами

$$h_{i\ell} = \sigma_{\pi}^2 c^{(i-\ell)^2} \left\{ \left(1 - c^{2i\ell} \right) / \left(1 - c^{2i} \right) \right\}.$$

Дробь в фигурных скобках последнего выражения описывает сумму ℓ членов геометрической прогрессии с единичным первым членом и знаменателем, равным c^{2i} , поэтому это выражение можно переписать в виде

$$h_{i\ell} = \sigma_{\Pi}^2 c^{(i-\ell)^2} \sum_{\nu=1}^{\ell} c^{2i(\ell-\nu)} = \sum_{\nu=1}^{\ell} \sigma_{\Pi}^2 c^{(i-\nu)^2} c^{\ell^2-\nu^2} ,$$

или, учитывая (П1), $h_{i\ell} = \sum_{v=1}^{\ell} a_{iv} c^{\ell^2 - v^2}$, т.е. $\mathbf{H}(p) = = \mathbf{A}(p)\mathbf{V}(p)$, где $\mathbf{V}(p) = \{v_{i\ell}\}_{i,\ell=1}^{p}$ — верхняя треу-гольная матрица с элементами $v_{i\ell} = 0$ ($\ell < i$), $v_{i\ell} = c^{\ell^2 - v^2}$ ($\ell \ge i$). Поскольку ее диагональные элементы $v_{ii} = 1$, det V(p) = 1 и, значит, $\det \mathbf{H}(p) = \det \mathbf{A}(p)$, что в сочетании с (П8), (П7), (П5) и (П2) доказывает (П3) и равенство (9) в основном тексте.

От редактора

В процессе подготовки статьи к публикации в данном выпуске было найдено еще более простое "решетчатое" доказательство равенства (9)

и, тем самым, основных результатов (10) - (12)ланной статьи.

Искомый результат получается последовательным использованием равенств (7), (20), (21б), (41), (51а), (61) первой статьи [9] настоящего сборника

$$\det \Phi(p+1) = (\det \Psi(p+1))^{-1} = (\det (\mathbf{H}^* \cdot \mathbf{H}))^{-1} =$$
$$= \left(\prod_{m=1}^{p+1} h_{mm}^2\right)^{-1} = \left(\prod_{m=1}^{p} h_{mm}^2\right)^{-1} \cdot h_{p+1,p+1}^{-2} =$$
$$= (\det \Psi(p))^{-1} \cdot (b_{p+1}^{(p+1)})^{-2} = \det \Phi(p) \cdot s_1^{-2} \cdot \prod_{i=2}^{p+1} s_i^{-2} =$$
$$= \det \Phi(p) \cdot \sigma_{\Pi}^2 \cdot \prod_{i=2}^{p+1} (1-|\alpha_i|^2),$$

что в сочетании с формулой (2) предыдущей статьи завершает доказательство.

Литература

- [1] Фридландер Б. Решетчатые фильтры для адаптивной обработки данных // ТИИЭР. - 1982. - Т. 70, № 8. – C. 54–97.
- [2] Мосунов В.Б. Алгоритмы адаптивного линейного усиления // Зарубежная радиоэлектроника. – М. – 1985. – №5. – C. 3–23.
- [3] Беллман Р. Введение в теорию матриц. М.: Наука, 1976.
- [4] Ширман Я.Д., Манжос В.Н. Теория и техника обработки радиолокационной информации на фоне помех. - М.: Радио и связь, 1981.
- [5] Джаковитти Дж., Скарано Дж. О свойстве коэффициентов частной корреляции стационарных процессов с гауссовской корреляционной функцией // ТИИЭР. – 1987. – т.75. – №7.
- [6] A.E. Yagle "On geometric sequences of reflection coefficients and Gaussian autocorrelations," Proc. IEEE, vol. 76, no. 10, pp. 1372-1374, Oct. 1988.
- [7] D.L. Jones and T.W. Parks, "On computing spaced sam-ples of a complex Gaussian function," IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-35, no. 10, Oct. 1987.
- [8] Леховицкий Д.И. Замечание к сообщению "о свойстве коэффициентов частной корреляции стационарных процессов с гауссовой автокорреляционной функцией // ТИИЭР т. 77, №12, декабрь 1989, C. 222.
- [9] Леховицкий Д.И., Рачков Д.С., Семеняка А.В., Рябуха В.П., Атаманский Д.В. Адаптивные решетчатые фильтры. Часть І. Теория решетчатых структур// Настоящий сборник.

Поступила в редколлегию 4.10.2011

Леховицкий Давид Исаакович, фото и сведения об авторе см. на с. 404.

Шипицын Сергей Иванович, кандидат технических наук, доцент, доцент кафедры Национального университета "Юридическая академия Украины имени Ярослава Мудрого". Область научных интересов – пространственновременная обработка сигналов на фоне помех.

УДК 621.372.54

Вибір порядку лінійного фільтра пророкування для стаціонарних випадкових процесів з гаусівською кореляційною функцією / Д.І. Леховицький, М.І. Табачников, С.І. Шипіцин // Прикладна радіоелектроніка: наук.-техн. журнал. – 2011. Том 10. № 4. – С. 450-453.

Установлюється зв'язок між порядком лінійного фільтра пророкування й рівнем мінімальної дисперсії помилки для процесу з гаусівською автокореляційною функцією. Обгрунтовується вибір порядку лінійного фільтра пророкування у відповідній ситуації.

Ключові слова: лінійне пророкування з мінімальною помилкою, порядок фільтра, гаусівська кореляційна функція, коефіцієнт придушення.

Іл. 1. Бібліогр.: 9 найм.

UDC 621.372.54

Choice of order of linear prediction filter for stationary random processes with Gaussian correlation function / D.I. Lekhovytskiy, M.I. Tabachnikov, S.I. Shipitsyn // Applied Radio Electronics: Sci. Journ. 2011. Vol. 10. \mathbb{N} 4. – P. 450-453.

The paper establishs the connection between the order of a linear prediction filter and the level of error minimal variance for the process with Gaussian autocorrelation function. The choice of linear prediction filter order is also validated for this case.

Keywords: linear prediction with minimal error, filter order, Gaussian correlation function, suppression ratio.

Fig. 1. Ref: 9 items.