
 
 

  
Abstract — The method is proposed for reduction of 

hardware amount in logic circuit of Moore finite state 
machine. The method is oriented on customized matrix 
technology. It is based on representation of the next state code 
as a concatenation of code for class of collection of 
microoperations and code of the vertex. Such an approach 
allows elimination of dependence among states and 
microoperations. As a result, both circuits for generation of 
input memory functions and microoperations are optimized. 
An example of the proposed method application is given. 
 

Index Terms — Customized matrices, graph-scheme of 
algorithm, logic circuit, Moore FSM, pseudoequivalent states. 
 

I. INTRODUCTION 
he model of Moore finite state machine (FSM) [1] is 
often used during the digital control systems realization 

[2, 3]. The development of microelectronics has led to 
appearance of different programmable logic devices [4], 
used for implementing FSM circuits. But in the case of 
mass production, they use ASIC (Application-Specified 
Integrated Circuits) [6]. In this case the circuit is 
implemented using customized matrices using the principle 
of distributed logic [7]. 

One of the important problems of FSM synthesis with 
ASIC is decrease of the chip area occupied by its logic 
circuit. One of the ways to solve this problem is optimal 
coding of FSM [2]. However this approach does not allow 
optimization of the circuit generated output signals. In this 
work some new optimization method is proposed. It is 
based on representation of the next state code as a 
concatenation of codes for class of pseudoequivalent states 
and vertex where this collection is generated. Such an 
approach allows reducing of hardware amount in both parts 
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of FSM circuits and does not lead to speed loss. A control 
algorithm to be implemented is represented by the graph-
scheme of algorithms [1]. 

II. THE GENERAL ASPECTS AND THE BASIC IDEA OF 
PROPOSED METHOD 

Let Moore FSM be represented by the structure table 
(ST) with columns [1]: ma , )( maK , sa , )( saK , hX , hΦ , 
h . Here ma  is an initial state of FSM; )( maK  is a code of 
state Aam ∈  of capacity ⎡ ⎤MR 2log= , to code the states 
the internal variables from the set { }R1 T,..,TT =  are used; 

sa , )( saK , are a state of transition and its code 
respectively; hX  is an input, which determines the 

transition sm aa , , and equal to conjunction of some 
elements (or their complements) of a logic conditions set 

{ }L1 x,..,xX = ; hΦ  is a set of input memory functions for 
flip-flops of FSM memory, which are equal to 1 for 
memory switching from )( maK  to )( saK , 

{ }R1h ,..,ϕϕ=Φ⊆Φ ; Hh ,,1 K=  is a number of 
transition. In the column ma  a set of microoperations qY  is 

written, which is generated in the state Aam ∈ , where 
{ },N1q y,..,yYY =⊆  Qq ,...,1= . This table is a basis to 

form the system of functions 
),( XTΦ=Φ ,                                (1) 

)(TYY = ,                                   (2) 
which determines an FSM logic circuit. Systems (1)-(2) 
describe the matrix model of Moore FSM 1U , shown in 
Fig.1. 

 
Fig. 1.  Matrix implementation of FSM 1U  

In FSM 1U  the conjunctive matrix 1M  implements the 
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system of terms },...,{ 1 HFFF = ; the disjunctive matrix 

2M  implements the system (1); the conjunctive matrix 3M  
implements the terms mA  ( Mm ,,1K= ) corresponding to 
FSM states; the disjunctive matrix 4M  implements 
functions (2). The register RG keeps state codes. The 
matrices 1M  and 2M  forms the block of input memory 
functions (BIMF) whereas the matrices 3M  and 4M  the 
block of microoperations (BMO). The area of BIMF can be 
decreased using the approach of optimal state encoding [8]. 
It permits to decrease the number of terms in system (1) up 
to 0H , where 0H  is the number of transitions for 
equivalent Mealy FSM. The area of BMO can be decreased 
due to refined state encoding [9]. It is possible some 
outcome of encoding, when the matrix 4M  is absent. But 
these methods cannot be used together. In this article the 
method is proposed permitting mutual area decrease for 
both blocks of FSM. 

One of Moore FSM features is existence of 
pseudoequivalent states [2], which are the states with the 
same transitions by the effect of the same inputs. Such 
states correspond to the control algorithm operator vertices 
[1], outputs of which are connected with an input of the 
same vertex. 

Let { }I1A B,..,B=Π  be a partition of a set A  on classes 
of pseudoequivalent states. Let us code classes AiB Π∈  by 
binary codes )( iBK  having BR   bits, where 

⎡ ⎤IRB 2log= .                              (3) 
Let initial GSA Γ  include Q  different collections of 

microoperations (СМО) .YYq ⊆  Let us code set qY  with 

binary code )( qYK having YR  bits, where 

⎡ ⎤QRY 2log= .                            (4) 
Let },,{ 11 DbbE K=  be a set of operator vertices from 

GSA Γ . Let us use the following relation α on this set 1E  
)()( jiji bYbYbb =↔α .                    (5) 

In (5), the symbols YbYbY ji ⊆)(),(  stand for collections 

of MO from vertices ib  and jb  ( },...,1{, Dji ∈ ).The 

relation α determines the partition },...,{ 1 ηα =Π CC . Let us 

encode each vertex jq Cb ∈  by the binary code )( qbK  

having 
⎡ ⎤GR 2log=α                            (6) 

bits. In (6), ),...,max( 1 η= CCG . Let us use variables 

1Zzr ∈  for this encoding, where α= RZ1 . In this case, the 

code for state Aam ∈  can be represented as: 
)(*)()( qqm bKYKaK = ,                        (7) 

where 1Ebq ∈  is the operator vertex marked by state 

Aam ∈ , ),( qq bYY = and * is the sign of concatenation. 

Let us construct the system  
)(ABB = ,                               (8) 

which describes the dependence among the classes 
AiB Π∈  from the states Aam ∈ . Each function BBi ∈  is 

represented as the following  

),...,1(
1

IiACB mim
I

i
i V ==

=
,                 (9) 

where the symbol imC  stands for Boolean variable equal to 
1, im Ba ∈ . The proposed matrix implementation of Moore 
FSM 2U  is shown in Fig. 2. 

 

 
Fig. 2.  Matrix implementation of  FSM 2U  

 
In FSM 2U , the matrix 5M  implements the system of 

terms 0F  corresponding to rows of transformed table of 
transitions and depending on logical conditions Xxl ∈ and 
additional variables τ∈τr , used for encoding the classes 

AiB Π∈ , where .BR=τ  The matrix 6M  implements the 
input memory functions  

),(00 XτΦ=Φ ,                           (10) 
The system (10) includes α+ RRY  functions; it is the 

number of flip-flops from RG. The matrix 7M  implements 
terms 0Y , entering the system Yyn ∈ and depending from 

variables ,Zzr ∈  where YRz = . The matrix 8M  

implements functions Yyn ∈ , depending on terms 

0Yq ∈∆ . The matrix 9M  implements the terms 0A  from 

(9), whereas the matrix 10M  functions τ∈τr , used for 

encoding classes AiB Π∈ , where .BR=τ  

Matrices 5M  and 6M  form the block BIMF, the 
matrices 7M  and 8M  form the block BMO implementing 
the functions  

)(ZYY = .                              (11) 

 
M5 

 
M6 

 
 

RG 

 
M7 

 
M8 

X
F0 Ф0 

Z 

Y0 Y

Start 
Clock 

& 1 & 1 

1Z

  

τ

М9 М10 

R&I, 2009, No4 5



 
 

Matrices 9M  and 10M  form the block of code 
transformer (BCT) generating functions 

),( 1zzτ=τ .                             (12) 
There are some positive features in the proposed method. 

Now codes of collections of microoperations do not depend 
on state codes. It allows encoding of collections 

YYq ⊆ minimizing the area of BMO. The number of rows 

in the table of transitions for FSM 2U  is always equal to 

0H . It allows such their encoding that diminishes the area 
occupied by BIMF. As it was mentioned, it is enough 

⎡ ⎤MRA 2log=                            (13) 
variables for state encoding in case of FSM 1U . The main 
drawback of 2U  is increase of the number of inputs for 
BIMF if the following condition is true: 

AY RRR >+ α .                          (14) 
Besides, the model 2U  includes the block BCT, which 

requires some area of the chip. But these drawbacks are 
compensated by area decrease for blocks BIMF and BMO 
in comparison with the model 1U . 

III. PROPOSED SYNTHESIS METHOD FOR MOORE FSM 
In this work a method of Moore FSM 2U  synthesis using 

a GSA Γ  is proposed. The method includes the next stages: 
1. Marking of the GSA Γ  and creation of the state set 

A . 
2. Partition of the set A  on classes of pseudoequivalent 

states. 
3. Coding of microoperation collections YYq ⊆ . 

4. Construction of the partition αП and encoding of 
operator vertices 1Ebq ∈ . 

5. Encoding the classes AiB Π∈ . 
6. Construction of transformed table of transitions. 
7. Construction of system (12) by the table of BCT. 
8. Implementation of matrices 5M  – 10M . 
For the first step implementation the known method [1] is 

used, when every operator vertex is marked by a unique 
state. The second step is trivially done by the use of 
pseudoequivalent states’ definition [2]. Remind, that states 

ma , Aas ∈  are named pseudoequivalent, if marked by 
them operator vertices of GSA are connected with the input 
of the same vertex. 

The main goal of the third step is maximum decrease for 
the number of terms in system 0Y . In the best case, each 
microoperation Yyn ∈  is represented by a single term and 
the matrix 8M  is absent [1]. The fourth step is executed on 
the base of (5). The codes of states Aam ∈  are determined 
using the formula (7). Classes AiB Π∈  are encoded in such 
a manner that the number of terms in (12) is maximally 

decreased. It is reduced to the well-known task of symbolic 
encoding [3]. 

The transformed table of transitions includes the columns 
iB , )( iBK , sa , )( saK , kX , kΦ , h . Here 0ФФh ⊆  is a 

collection of input memory functions equal to 1 to write the 
code )( saK  into the register; 0,,1 Hh K=  is the number of 
transition. The table of BCT includes the columns ma , 

)( maK , iB , )( iBK , mτ , m . Here τ⊆τm  is the collection 
of variables equal to 1 into the code )( iBK  from the m -th 
line of the table, where Mm ,,1K= . The last step is 
discussed in the proposed example. 

IV. EXAMPLE OF APPLICATION FOR PROPOSED METHOD 
Let the symbol )( jiU Γ  means that the GSA jΓ  is 

interpreted by the model iU  ( 2,1i = ). Let us discuss the 
example of design for Moore FSM )( 12 ΓU , where GSA 1Γ  
is shown in Fig. 3. 

 
Fig. 3.  Initial graph-scheme of algorithm 1Γ  

It can be found from GSA 1Γ , that },...,{ 81 aaA = , 
8=M , and 3=AR . There is the partition 

},...,{ 41 BBПА = , where }{ 11 aB = , },,{ 4322 aaaB = , 
},{ 653 aaB = , },{ 874 aaB = . It gives us 4=I , 2=BR , 

},{ 21 ττ=τ . There are five different collections of 
microoperations in GSA 1Γ : 01 =Y , },{ 212 yyY = , 

}{ 33 yY = , }{ 44 yY = , },{ 315 yyY = . To encode them, it is 
enough 3=YR  variables from the set }.,,{ 321 zzzZ =  Let 
us encode the collections  YYq ⊆  as it is shown in Fig. 4. 

 
Fig. 4.  Codes of collections of microoperations )( 12 ΓU  
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The following system of equations can be obtained using 

Fig. 3 and Fig.4: 

;

;
;

;

43144

31533

232122

132521

∆===

∆==∨=
∆===

∆==∨=

zzYy

zYYy
zzzYy

zzYYy

                   (15) 

The partition αП  includes four classes: },,{ 7411 bbbC = , 
}{ 22 bC = , },{ 633 bbC = , }{ 54 bC = . It gives 3=G , 

2=αR , },{ 541 zzZ = . There is the following system (8) in 
our example: 

.;
;;

874653

432211
AABAAB
AAABAB

∨=∨=
∨∨==

                (16) 

Let us encode the vertices 1Ebq ∈  in such a manner that 

the state codes (7) are determined from Fig.5. 

 
Fig. 5. State codes for Moore FSM )( 12 ΓU  

The following codes can be found from the Karnaugh 
map (Fig. 5): 

.;
;;

4453

542221
zBzB

zzzBzB
==
==                      (17) 

Let us encode the classes AiB Π∈  in the following 
manner 01)( 1 =BK , 00)( 2 =BK , 10)( 3 =BK , 

11)( 4 =BK . The following system can be derived from 
these codes: 

.

;

42412

45431

zzBB

zzBB

∨=∨=τ

∨=∨=τ
                   (18) 

The system (18) determines the block BCT, where the 
matrix 9M  is absent. 

Let us construct the system of generalized formulae of 
transitions for GSA 1Γ : 

.;
;

;

1423

8437436235232

421321211

aBaB
axxaxxaxxaxxB

axxaxxaxB

→→
∨∨∨→

∨∨→

      (19) 

This system together with state codes from Fig. 5 leads to 
the transformed table of transitions for FSM )( 12 ΓU , 
having 90 =H  lines (Table 1). 

TABLE I 
TRANSFORMED TABLE OF TRANSITIONS FOR FSM )( 12 ΓU  

iB )( iBK sa  )( saK hX  hΦ  h  

2a  01000 1x  2D  1 

3a  11100 21xx  321 DDD  2 1B  01 

4a  01100 21 xx  32DD  3 

5a  01001 23xx  52DD  4 

6a  11001 23 xx  521 DDD 5 

7a  01010 43xx  42DD  6 
2B  00 

8a  01110 43 xx  432 DDD  7 

3B 10 2a  01000 1 2D  8 

4B 11 1a  00000 1 - 9 
 
This table is used to derive the system (10). For example, 

the following functions can be found from Table 1: 

23212121521 xxxxFFD ττ∨ττ=∨= ; ;... 822 FFD ∨∨=  

7323 FFFD ∨∨= ; ;764 FFD ∨=  545 FFD ∨= . In the 
case of matrix implementation, there is no need in 
minimizing these functions. The table for BCT is absent on 
our example because the system (18) determines the 
functions (12). Let us find the areas for matrices 5M  – 

10M , determined as the product for the numbers of inputs 
and outputs of the matrix. From system of functions we can 
find the following areas of matrices: 

1089*)24(2)( 5 =+=MS , 455*9)( 6 ==MS , 
204*5),( 87 ==MMS  and 62*3),( 109 ==MMS . Thus, 

it is necessary 179 area units [1] to implement the logic 
circuit of Moore FSM )( 12 ΓU . It can be found for FSM 

)( 11 ΓU  that 19=H , 16619*)34(2)( 1 =+=MS , 
573*19)( 2 ==MS , 427*3*2)( 3 ==MS  and 

284*7)( 4 ==MS . It means that logic circuit of FSM 
)( 11 ΓU  occupies 293 area units. Besides, the circuit of 
)( 11 ΓU  has 4 levels of logic, whereas the circuit for 
)( 12 ΓU only three (because functions τ  and Y  are 

generated in the same time). Thus, application of proposed 
method for encoding of collections of microoperations with 
state code presentation in the form (7) allows area decrease 
for 1,7 times Moore FSM. 
 

V. CONCLUSION 
The proposed method of state code presentation targets 

on area decrease under implementation of Moore FSM 
logic circuit with customized matrices. This approach 
allows decreasing the number of terms in the system of 
input memory functions up to corresponding value of the 
equivalent Mealy FSM. Besides, this method permits 
decreasing the number of terms in the system of 
microoperations due to the lack of dependence among the 
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state codes and codes of collections of microoperations.  
Investigation for effectiveness of proposed method was 

conducted on the standard examples [10]. It shows that the 
proposed method permits to decrease the average chip area 
occupied by FSM circuit up to 52% in comparison with the 
standard FSM implementation. In the same time, it was the 
increase for FSM performance in 86% of examples. The 
further direction of our research is application of proposed 
method for case of FPGA. 
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