А.И.ЛИТВИН-ПОПОВИЧ, канд. техн. наук

ОБНАРУЖЕНИЕ И ИЗМЕРЕНИЕ ПАРАМЕТРОВ СИГНАЛОВ В ПАРАЛЛЕЛЬНЫХ СИСТЕМАХ ОБРАБОТКИ

Введение

Рассмотрим задачу обнаружения сигнала на фоне шума. При наличии полной априорной информации о параметрах сигнала, процедура оптимальной обработки сводится к оцениванию энергии сигнала и сравнению полученной оценки с пороговым значением [1]. В случае если один или несколько параметров сигнала неизвестны априорно, используются многоканальные приемники обнаружения [1-3]. При этом для каждого из неизвестных параметров α создаётся сетка каналов, рассчитанных на обнаружение сигнала с параметрами $\alpha_1, \alpha_2 ... \alpha_N$. В общем случае, при отсутствии информации о законе распределения ожидаемого значения параметра $\hat{\alpha}$, сетка является эквидистантной с шагом ϵ [4]. Такое решение обеспечивает возможность обнаружения сигнала с параметром а, лежащим в диапазоне $\alpha_1...\alpha_N$, со сколь угодно малой потерей вероятности относительно случая полностью известного сигнала [1]. Вместе с тем, с ужесточением требований к величине потерь вероятности правильного обнаружения, увеличивается требуемое число каналов приемника и возрастает вычислительная сложность процедуры обнаружения. Величина потерь вероятности правильного обнаружения зависит от энергии сигнала, а оценка энергии пропорциональна функции от расстройки $\hat{\alpha} - \alpha_i$ для і-го канала. Следовательно, шаг сетки однозначно определяется требованиями к вероятности правильного обнаружения.

Число каналов приемника определяется шагом сетки ϵ и диапазоном возможных значений величины α :

$$N_k = \left] \frac{\Delta \alpha}{\varepsilon} \right[, \tag{1}$$

где $\Delta \alpha = \alpha_{\scriptscriptstyle N} - \alpha_{\scriptscriptstyle 1}$ - диапазон изменения параметра α [4].

Рассмотрим случай, когда величины параметра α в последовательных сеансах обнаружения не являются статистически независимыми. Допустим, что $\alpha(t)$ представляет собой случайный процесс с некоторой известной априорно плотностью распределения. При этом оказывается, что величина $\alpha(t_1)$ может быть с некоторой погрешностью спрогнозирована по имеющимся оценкам $\alpha'(t_1-\Delta t)...\alpha'(t_1-k\cdot\Delta t)$, где Δt - период повторения процедуры оценивания параметров сигнала. Предположим, что максимальное изменение параметра за интервал Δt составляет $\Delta \alpha'$. Тогда число каналов приемника может быть уменьшено, и составит в итоге

$$N_{k}' = \left| \frac{2 \cdot \Delta \alpha'}{\varepsilon} \right| . \tag{2}$$

В результате можно получить более высокий темп выдачи результатов в существующей РТС, обнаруживать сигналы с несколькими априорно неизвестными параметрами, либо осуществлять параллельное обнаружение нескольких сигналов без ужесточения требований к аппаратурному обеспечению. Реализация подобного приемника обнаружения требует наличия априорных оценок ожидаемой величины параметра α , а также о доверительном интервале таких оценок. Рассмотрим вопрос о совмещении процедур обнаружения и оценивания параметров сигнала на базе многоканального корреляционного приемника. При этом будем полагать, что единственным неизвестным параметром сигнала является α .

Постановка задачи

Пусть имеется некоторый сигнал $x(t,\alpha_R)$ с априорно неизвестным параметром $\alpha=\alpha_R$. Непосредственному наблюдению доступна реализация $s(t)=d\cdot x(t,\alpha_R)+n(t)$, представляющая смесь данного сигнала с шумом n(t). Требуется по реализации s(t) обнаружить факт наличия полезного сигнала и оценить значение неизвестного параметра α .

Для оценивания неизвестных параметров сигнала можно применить многоканальный коррелятор, опорными сигналами для каналов которого являются сигналы $x(t,\alpha_i)$, с заданным наперёд для каждого канала значением α_i . На выходе многоканального коррелятора формируется набор оценок энергии E_i для каждого из каналов в отдельности, характеризующих степень корреляции сигнала $x(t,\alpha)$ и опорного сигнала $x(t,\alpha_i)$:

$$E_i = \int_0^T x(t, \alpha_R) \cdot x(t, \alpha_i) dt.$$
 (3)

Таким образом, на выходе многоканального коррелятора получаем оценку функции $E(\alpha)$, по которой и производим оценивание параметра α .

Погрешность $\delta \alpha$ оценивания параметра определяется величиной производной $\partial E/\partial \alpha$ вблизи истинного значения параметра α_R , отношением сигнал/шум, а также шагом сетки коррелятора $\varepsilon=\alpha_j-\alpha_{j-1}$. При прочих равных условиях, минимизация $\delta \alpha$ возможна путем увеличения $\partial E/\partial \alpha$ и уменьшения ε .

Введём обозначение: $\xi = \Delta \alpha_{0.5}$ - эффективная ширина автокорреляционной функции входного сигнала по неизвестному параметру α , по уровню половинной энергии. В дальнейшем, шаг сетки многоканального коррелятора нормируем к этой величине.

Схемы рассмотренных в работе приемников обнаружения приведены на рис. 1. $\underbrace{s(t)}_{X_1(t)} + \underbrace{x_1(t)}_{X_1(t)} + \underbrace{x_2(t)}_{X_m(t)} + \underbrace{x_3(t)}_{X_m(t)} + \underbrace{x_3(t)}_{X_m(t)}$

Рис. 1. Структурные схемы многоканальных приемников обнаружения.

Пороговые значения Z_0 определяются в соответствии с критерием Неймана-Пирсона [2]. Поскольку каждый из каналов вносит долю в оценку энергии шума, пороговые значения оказываются в данных схемах зависящими от числа каналов.

Для схемы 1 зависимость является линейной (4), а для схемы 2 — степенной (5). Величины a...e в (4,5) определяются путем имитационного моделирования.

$$Z_{01} = a \cdot N + b . \tag{4}$$

$$Z_{02} = c \cdot N^d + e \,. \tag{5}$$

Характеристики обнаружения для обеих схем приведены на рисунке 2. При этом рассмотрены случаи с различным числом каналов, соответственно и с различным шагом сетки. С ростом числа каналов вероятность правильного обнаружения возрастает. В то же время для первой схемы заметна значительно меньшая скорость роста вероятности с увеличением числа каналов.

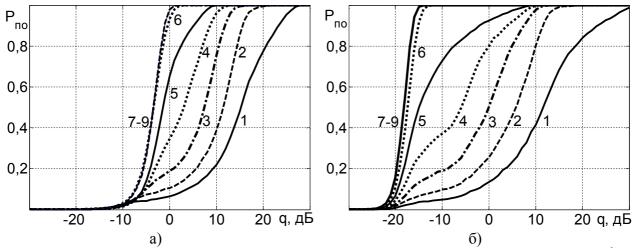


Рис. 2. Характеристики обнаружения для схемы 1 (а) и схемы 2 (б) при вероятности ложной тревоги 10^{-3} . Число параллельных каналов – 16 (кривая 1), 32 (2), 64 (3), 128 (4), 256 (5), 512 (6), 1024 (7), 2048 (8), 4096 (9) (ϵ = 31 (1), 15.4 (2), 7,7 (3), 3,8 (4), 1,9 (5), 0,97 (6), 0,48 (7), 0,24 (8), 0,12 (9)).

Сопоставим полученные результаты с характеристикой обнаружения, построенной для случая полностью известного сигнала. Соответствующие графики приведены на рис. 3.

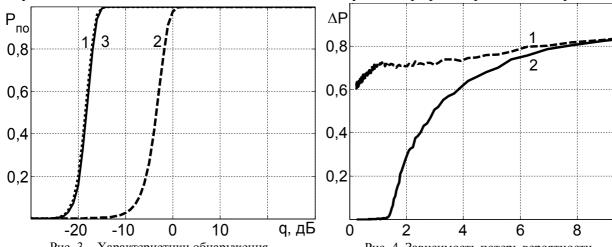


Рис. 3 – Характеристики обнаружения Рис. 4. Зависимость потерь вероятности (1 – случай полностью известного сигнала, правильного обнаружения от шага сетки (q=-10~дБ)

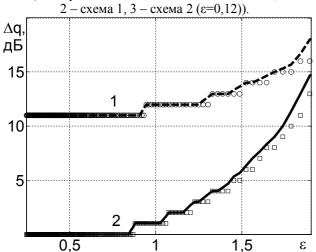


Рис. 5. Зависимость энергетических потерь от шага сетки (1 – схема 1, 2 – схема 2). Опорный уровень вероятности – 0,9.

С увеличением шага сетки вероятность правильного обнаружения снижается. Для схемы 2 характерны меньшие потери вероятности правильного обнаружения (рис. 3, кривая 3). При стремлении шага сетки к нулю, схема 2 обеспечивает величину вероятности правильного обнаружения, стремящуюся к величине, получаемой в случае полностью известного сигнала (рис. 4). Энергетические потери для схемы 2 также меньше (рис. 5). Для схемы 2, из рис. 5 можно определить, что при $\varepsilon \le 0.8$ потери энергии пренебрежимо малы. Для схемы 1, вне зависимости от шага сетки, потери энергии не менее 10 дБ.

Значительные энергетические потери в схеме 1, по-видимому, связаны с вкладом в результирующую оценку со стороны каналов, на выходе которых присутствует только шум. Вместе с тем, в схеме 2 вклад в конечную оценку энергии даёт только канал с наибольшей величиной взаимной корреляции между принимаемым и опорным сигналом. В случае ес-

3

ли значение неизвестного параметра не точно равно его значениям в узлах сетки, значение оценки энергии будет занижено, однако эта погрешность уменьшается с уменьшением шага сетки. В дальнейшем будем рассматривать схему 2, как обеспечивающую более эффективное использование энергии сигнала.

Рассмотрим статистические характеристики оценок параметра α в многоканальной системе. Оценка α' параметра α может быть записана в виде

$$\alpha' = \alpha + \delta \alpha_S + \delta \alpha_R, \tag{6}$$

где $\delta\alpha_{S}$ и $\delta\alpha_{R}$ - соответственно, систематическая и случайная погрешности оценивания параметра. Случайная погрешность оценивания определяется соотношением сигнал/шум, а систематическая – методом измерения. Суммарная погрешность $\delta\alpha$ может быть оцене-

на как $\delta \alpha = \delta \alpha_S + \delta \alpha_R$. При необходимости раздельного рассмотрения случайной и систематической составляющих погрешности, можно поступить следующим образом. С рос-

том отношения сигнал/шум, $\overline{\delta\alpha_{\scriptscriptstyle R}} \to 0$, таким образом можно записать

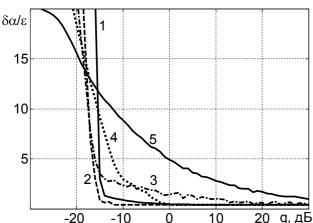


Рис. 6. Зависимость СКО оценок от отношения сигнал/шум (ϵ = 0.05 (1), 0.5 (2), 1 (3), 1.5 (4), 2 (5))

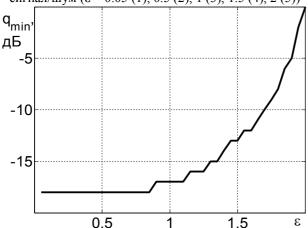


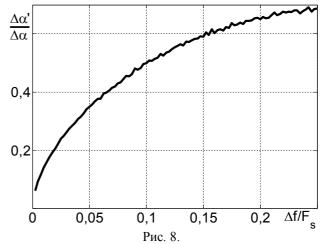
Рис. 7. Зависимость порогового отношения сигнал/шум от шага сетки.

$$\delta \alpha_S \approx \delta \alpha \big|_{q >> 1}$$
 (7)

Зависимость среднеквадратического отклонения оценки параметра от отношения сигнал/шум представлена на рис. 6. С ростом отношения сигнал/шум погрешность оценивания уменьшается, причем систематическая величина погрешности может быть оценена как $\delta\alpha/\varepsilon\approx0.41\,$ и не зависит от шага сетки многоканального коррелятора.

Зависимость, приведенная на рис. 6, имеет явно выраженный пороговый характер, в особенности при малых значениях шага сетки. Рассмотрим зависимость порогового отношения сигнал/шум от шага сетки коррелятора (рис. 7). Пороговое отношение сигнал/шум увеличивается с ростом шага сетки, причем возрастание начинается с величины $\varepsilon \approx 0.8$, что согласуется с результатами, приведенными на рис. 5. Совокупность этих данных дает возможность сформулировать следующий вывод: энергетические характеристики многоканального корреляционного приемника сколь угодно мало отличаются от характеристик оптимального приемника полностью известных сигналов при шаге сетки $\varepsilon \le 0.8$.

Общее число каналов, согласно (2), можно оценить, зная шаг сетки и пределы изменения параметра $\Delta\alpha'$. В простейшем случае можно ограничиться оценкой $\Delta\alpha'$ как максимального по модулю приращения параметра α за интервал между измерениями. Введём следующие обозначения: пусть $\Delta\alpha_i$ - приращение параметра α за время Δt , $\delta\alpha$ - погрешность измерения, а $\Delta\alpha$ - максимальная разность значений α в соседние периоды измерения, тогда


$$\max(\Delta \alpha') = \max |\delta \alpha| + \max |\Delta \alpha_i|. \tag{8}$$

Первое слагаемое в выражении (8) зависит от отношения сигнал/шум (рисунок 6), а второе определяется свойствами зависимости $\alpha(t)$.

Зависимость величины $\Delta \alpha'$ от относительной ширины полосы случайного процесса $\alpha(t)$ приведена на рис. 8. Зависимость может быть аппроксимирована аналитической моделью вида

$$\Delta \alpha' = a \cdot \Delta f^b + c$$
.

Таким образом, для оценивания необходимого числа каналов параллельного приемника обнаружения нужно учесть пороговое отношение сигнал/шум, при котором планируется реализовать его обнаружение (рис. 6), а также частотные свойства вариаций оцениваемого параметра сигнала (рис. 8).

Число каналов можно оценить по формуле

$$N_k = \left| \frac{\Delta \alpha}{\varepsilon} \cdot \frac{\Delta \alpha'}{\Delta \alpha} \right|, \tag{9}$$

где первый сомножитель представляет собой формулу (1) (то есть случай полной априорной неопределенности для параметра α), а второй сомножитель учитывает свойства зависимости $\alpha(t)$ (рисунок 8). В общем случае, число каналов тем меньше, чем уже спектр вариаций $\alpha(t)$. В пределе, при $\alpha=const$, приходим к одному каналу (случай полностью известного сигнала).

Оценим оптимальное значение $\Delta f/F_s$. Очевидно, что при заданных свойствах зависимости $\alpha(t)$, на это значение можно влиять выбором частоты дискретизации — или, иначе, периода повторения процедуры оценивания параметров. Анализ зависимости на рис. 8 приводит к результатам, приведенным в табл. 1.

При увеличении периода измерения вдвое, необходимое число каналов увеличивается в 1.33 раза. Время выполнения процедуры обнаружения может быть приблизительно оценено как T_0 = T_1 · N_k /m [4], где T_1 – время выполнения обнаружения по одному каналу коррелятора, а m – число параллельных вычислительных блоков системы обработки. Следовательно, характер зависимости времени обнаружения от числа каналов является линейным, и более частое повторение процедуры оценивания параметров не приводит к сокращению общей вычислительной сложности процедуры обнаружения сигналов с частичной априорной параметрической неопределенностью. Таким образом, можно сформулировать следующий вывод: интервал времени между измерениями параметров обнаруживаемого сигнала определяется только требованиями потребителя к темпу выдачи результатов радиотехнической системой.

Рассмотрим вопрос о производительности вычислительных устройств, применяемых для обнаружения сигналов в многоканальной системе. В качестве вычислителей рассмотрим современные центральные и графические процессоры персональных компьютеров (в дальнейшем будем обозначать их как ЦП и ГП, соответственно). Параметры рассмотренных вычислительных устройств приведены в табл. 2 [4,6].

Таблица 2

$N_{\underline{0}}$	Процессор	Число	Тактовая	Пиковая	Относительная	Объем	Пиковая	Тип
		ядер	частота,	вычислительная	вычислительная	ΟЗУ,	пропускная	
			МГц	мощность,	мощность	Гб	способность	
				ГФлоп/с			ОЗУ, Гб/с	
1	Intel E2160	2	1600	12.80	0.3	1	4.26	ЦП
2	Intel E3300	2	2500	20	0.47	4	12.8	ЦП
3	Intel i3-2100	$2^{(1)}$	3100	40.70	0.96	4	21.3	ЦП
4	Intel Q9400	4	2660	42.56	1	8	17.0	ЦП
5	GF119	48	1620	155.5	3.65	1	9.6	ГΠ
6	G215	96	1340	386	9.06	0.5	54.4	ГΠ
7	GF116	192	1200	461	10.8	1	20.8	ГΠ
8	GF110	480	1464	1405	33.0	1.25	152	ГΠ

Процессор і 3-2100 имеет 2 вычислительных ядра, но способен одновременно исполнять 4 потока благодаря технологии HyperThreading.

Время выполнения расчетов для одного канала [4] может быть определено как

> $T_1 = \frac{T_k m}{N_k} \,,$ (10)

где T_k - время выполнения расчетов для N_k каналов, а m - число параллельных вычислительных ядер исполнительного устройства. Результаты оценки (10) приведены в табл. 3. Системы на базе ЦП имеют в среднем более низкое время обработки по единичному каналу, однако существенно меньшее число вычислительных ядер ограничивает их производительность при росте числа параллельных каналов.

Таблица 3 Система T_1 , MC 0.655 0.435 0.405 0.265 1.249

0.408

7 1.396 8 0.745

3 4

6

При адаптивном управлении числом каналов и шагом сетки многоканального приемника, каждое изменение шага сетки и граничных значений параметров означает повторное формирование всей совокупности опорных сигналов, что тоже требует вычислительных ресурсов. Рассмотрим оценки потерь производительности на формирование опорных сигналов (табл. 4).

Таблица 4

Система	$\overline{T_U/T_0}$
1	9.60
2	9.14
3	9.18
4	8.94
5	1.86
6	1.96
7	2.18
8	1.98

Для систем на базе ЦП (1-4) характерны более заметные затраты времени на формирование опорных сигналов. В связи с этим, для таких систем целесообразно проводить обработку с избыточным числом каналов, с тем, чтобы обновление оценки числа каналов и пересчет опорных колебаний происходил как можно реже.

Таблица 5

Система	T_0/T_S
5	1.19
6	1.02
7	1.27
8	1.08

Оптимизация программного обеспечения по времени выполнения с использованием разделяемой памяти ГП [6,7] наиболее эффективна для тех конфигураций, где имеется явно выраженная нехватка полосы пропускания видеопамяти (системы 5,7). Для систем 6 и 8 выигрыш существенно меньше - в этом случае скорость вычислений в большей степени ограничивается вычислительной мощностью АЛУ, чем потерями времени на доступ в память.

Выволы

- 1) Многоканальный приемник обнаружения сигналов с априорно неизвестными параметрами обеспечивает характеристики, сколь угодно близкие к характеристикам приемника полностью известных сигналов, при достаточном числе параллельных каналов.
- 2) Совмещение процедуры анализа параметров сигнала и процедуры обнаружения позволяет снизить вычислительную сложность процедуры обнаружения сигнала в условиях частичной априорной неопределенности, за счет сужения диапазона значений неизвестных параметров и соответственного уменьшения числа каналов.
- 3) Процедура обнаружения сигналов в многоканальной системе может быть существенно ускорена за счет применения параллельных вычислительных устройств многоядерных универсальных процессоров, графических процессоров или вычислителей на базе современных цифровых процессоров обработки сигналов и программируемых логических матриц. При этом универсальные процессоры обеспечивают вполне приемлемые характеристики производительности для числа параллельных каналов, не превышающего нескольких десятков. В этих же условиях, графические процессоры не полностью раскрывают свой потенциал из-за неполной загрузки вычислительных блоков.
- 4) Применение параллельной обработки дает возможность реализовать значительное число параллельных каналов, что позволяет работать с сигналами с несколькими неизвестными параметрами. Это позволяет существенно повысить темп выдачи результатов и повысить вероятность правильного обнаружения, в том числе при действии помех.
- 5) Во многих случаях имеет смысл проводить расчеты с избыточным числом каналов, чтобы не пересчитывать заново опорные сигналы. Это особенно критично при реализации системы обработки на базе универсальных процессоров с малым числом вычислительных ядер.

Данная работа проводилась в рамках программы NVIDIA Academic Partnership, и автор хотел бы выразить признательность корпорации NVIDIA и лично Антону Джораеву за предоставленное оборудование (видеокарты GeForce GTS450). Автор также благодарит коллег за возможность тестирования разработанного программного обеспечения на видеокартах GeForce GT240 и GTX570.

Список литературы:

- 1. Обнаружение радиосигналов / П.С.Акимов и др.; под ред. А.А.Колосова. М.:Радио и связь, 1989. 224с. ил.
- 2. Тихонов В.И., Харисов В.Н. Статистический анализ и синтез радиотехнических устройств и систем: учеб. пособие для вузов. М.:Радио и связь, 2004. 608 с.: ил.
- 3. Теоретические основы радиолокации: учеб. пособие для вузов. / Под ред. Я.Д. Ширмана. М.:Сов.радио, 1970. 560с.
- 4. *А.И.Литвин-Попович*. Обработка радиолокационных сигналов в параллельных вычислительных системах // Литвин-Попович А.И. // Радиотехника. Всеукр. межвед. науч.-техн. сб. 2011. Вып. 166. С. 165-172.
- 5. *А.И.Литвин-Попович*. Обнаружение сигналов в условиях априорной параметрической неопределенности // Радиотехника. Всеукр. межвед. науч.-техн. сб. 2012. Вып. 168. С. 16-21.
- 6. Информационные материалы Nvidia [электронный ресурс]. Режим доступа: http://www.nvidia.com/object/personal-supercomputing.html
- 7. E. Alerstam, T. Svensson & S. Andersson-Engels, "Parallel computing with graphics processing units for high speed Monte Carlo simulation of photon migration", J. Biomedical Optics 13, 060504 (2008)

Харьковский национальный университет радиоэлектроники

поступила в редколлегию 12.09.2012