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Abstract . This paper is dedicated to nonsta-

tionary plane-parallel flows of viscous incompress-

ible fluid in finite simply connected domains. The-

orem of the solution uniqueness is presented. The 

method of successive approximation, the Galerkin 

method and the R-functions method are used to 

obtain the numerical solution, which was tested on 

the problem with known solution. 

 

Key words: nonstationary flow, incompressi-

ble fluid, stream function, method of successive 
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INTRODUCTION 

It is known that nonstationary plane-parallel 

flows computations are used for mathematical 

modeling in hydrodynamics, aerodynamics, heat-

power engineering, biomedicine and etc. That’s 

why such problems are relevant nowadays [2–6, 

25, 29]. 

These problems are mainly solved using the fi-

nite difference and finite element methods [1,7–9, 

11,12,24,30]. They are easy to program, but new 

grid generation and boundary simplification are 

required every time a transition to a new area is 

made. The R-functions method developed by the 

academician of the Ukrainian Academy of Scienc-

es V.L. Rvachev is free of these issues [14,21–23, 

26]. This method allows us to consider the geome-

try of the problem accurately. 

The aim of this work is the mathematical simu-

lation of nonstationary plane-parallel flows of vis-

cous incompressible in finite simply connected 

domains by means of the R-functions method, the 

Galerkin method and the method of successive ap-

proximation. 

 

PROBLEM STATEMENT 

Let’s consider simply connected area   

bounded by piecewise smooth bound  . Also 

consider the stream function (x,y, t)  connected 

with the vector x y(v ,v )v  of fluid velocity by the 

equations below: 

 
xv

y





, yv
x


 


. 

The mathematical model using stream function 

and dimensionless variables in area   takes the 

following form [16–18]: 

 

 2

t y x x y

    
     

    
, (1) 

 

where: x  and y  are dimensionless coordinates, 

t 0  – dimensionless time,    – kinematic coef 

ficient of viscosity,  
2 2

2 2x y

 
  

 
  – Laplace  

operator. 
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Based on the statement of 


v  and 
t 0

v  we 

can complete the equation (1) with boundary and 

initial conditions: 

 0f (s, t)


  ,  (2) 

 
0g (s, t)






n
,   s , t 0 , (3) 

 0t 0
(x,y)


  ,   (x,y) , (4) 

where: 0f

s




, 

0g  – some distributions of the veloci-

ty normal and tangential components, n  – outer 

normal vector to the boundary. 

 

SOLUTION METHOD 

The Galerkin method, the R-functions method 

and the method of successive approximation are 

used for the initial-boundary problem (1) – (4) 

solving. 

Let’s consider an area   in space 2  with a 

piecewise smooth bound  . It is required to con-

struct a function (x,y)  that would be positive 

inside  , negative outside of  , equal to zero at 

  and 1


 
n

. The equation (x,y) 0   de-

termines an implicit form of the locus for the 

points that belong to the boundary   of the re-

gion  . 

The works [13,27,28] showed that the follow-

ing bundle of functions satisfies the boundary con-

ditions (2), (3): 

 2

1f (D f g)      , 

where: 0f ECf , 0g ECg  – extensions of 0f  

and 0g  to   respectively, (x,y, t)  – un-

known structure component, 

 
1

v v
D v ( , v)

x x y y

   
    

   
. 

Let 

 
u v u v

J(u,v)
x y y x

   
 
   

. 

Let 0u  is the solution of the following problem: 

 20
0

( u )
u 0

t

 
  


,  

 0 0u f (s, t)

 ,   0

0

u
g (s, t)






n
,  

 0 0t 0
u (x,y)


 .  

Let’s make a change in the problem (1) – (4): 

 
0u u   , 

where  u  – new unknown function. The solution 

of the problem for 
0u  can be obtained using algo-

rithm for the linear problem [3]. 

In order to achieve this, the initial-boundary 

problem (1) – (4) can be written as: 

 2

0 0

( u)
u J( (u u),u u)

t

 
     


, (5) 

 u 0

 ,   

u
0






n
, (6) 

 
t 0

u 0

 . (7) 

Let’s consider operators A , B  and J  with their 

domains and energy norms respectively: 

 2Au u  ,   Bu u  , 

 

 0 0J J( (u u),u u)    , 

 
4 1

A

u
D u u C ( ) C ( ),u 0




  
      

  n
, 

 
2 1

B

u
D u u C ( ) C ( ),u 0




  
      

  n
, 

 
3 1

J

u
D u u C ( ) C ( ),u 0




  
      

  n
, 

 2 2

Au ( u) dxdy


 | | ,   
22

Bu u dxdy


 | | . 

Thus, (1) – (4) can be written in the operator 

form: 

 
d

Bu Au Ju
dt

   , (x,y) , t 0 , (8) 

 
t 0

u 0

 . (9) 

Let’s denote the classical solution of the prob-

lem (8), (9) as u(t) , i.e. for any t 0  Au(t) D  

and u(t)  is continuously differentiable and satis-

fies (8) and (9). 

Also let us assume v(t)  denotes the smooth 

function in [0, )  , which satisfies the bound-

ary conditions (6) and at some value T 0  

v(T) 0 . Multiply (8) in 2L ( )  by the arbitrary 

function v(t)  and integrate it from 0  to T : 

 

T T

A

B0 0

v
u, dt [u,v] dt

t

 
     
   

 
2

T

0 B L ( )

0

[u ,v(0)] (Ju,v) dt   . (10) 
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Last equation is assumed to be a generalized 

(weak) solution of (8), (9). 

Let’s denote: 

 T 2 AW u | u L (0,T;H ),   

 

 2 2u L (0,T;L ( )), u(T) 0   , 

as some set of functions. 

Function u(t)  is called a generalized (weak) so-

lution of (8), (9) if the following: 

a) 2

2 2u(t) L (0,T;W ( ))  , 

b) for any 
Tv(t) W  the equation (10) is true. 

 

Consider the method of successive approxima-

tion to solve the problem (8), (9) (therefore, prob-

lem the (1) – (4)). Assume that an initial approxi-

mation (0)u  is set. Then one can find next the 

(k 1)  approximation using known the k  approx-

imation as a linear problem solution: 

 
(k 1)

2 (k 1)( u )
u

t


 

  


 

(k) (k)

0 0J( (u u ),u u )     in  , t 0 , (11) 

 (k 1)u 0


 ,   

(k 1)u
0








n
, (12) 

 (k 1)

t 0
u 0


 ,   k 0,1,2,...  (13) 

The variational formulation of the (11) – (13) 

can be written as follows: 

 (k 1) 2 (k 1) 2

B A

1 d
u u

2 dt

   | | | |  

 
2

(k) (k) (k 1)

0 0 L ( )(J( (u u ),u u ),u )

    ,  (14) 

 
2

2
(k 1)

L ( )
u 0


 ,   t 0 . (15) 

Let’s integrate (14) from 0  to t  and using 

some equalities and inequalities listed below [15]: 

 
2

(k) (k) (k 1)

0 0 L ( )(J( (u u ),u u ),u )

     

 
2

(k) (k 1) (k)

0 0 L ( )(J(u u ,u ), (u u ))

    , 

 H H H
(u,v) u v , 

 
2L ( )(J(u,v), u)    

 
2 2 2

0 L ( ) L ( ) L ( )
c v u u

  
    , 

 2

2u,v W ( )  ; 

 
4 2 2

2

L ( ) L ( ) L ( )
u c u u

  
    , 

 1 2

2 2u W ( ) W ( )   , 

we are able to estimate (14) as follows: 

 
2

t
2

(k 1) (k 1) 2 1
AL ( )

0

c
u (t) u d T 


   

| |  

   
2

2
T

2
(k) (k) 22

AL ( )
0 t T

0

c
esssup u u d


 

 
   
  

| | , (16) 

where: 
1c  and 

2c  are known constants, which de-

pend only on the area geometry. 

Therefore, we can say that the boundedness of 

our solution is proved in the space: 

2 2 AV L (0,T;L ( )) L (0,T;H )   . 

Further, let’s prove the iterative (11) – (13) 

convergence. Consider differences 
(k 1) (k 1) (k)u u u    , which satisfy the following 

equation and the boundary and initial conditions: 

 
(k 1)

2 (k 1)( u )
u

t


 

   


 

 (k) (k)

0 0J( (u u ),u u )      

 (k 1) (k 1)

0 0J( (u u ),u u )     , (17) 

 (k 1)u 0


  ,   

(k 1)u
0








n
, (18) 

 (k 1)

t 0
u 0


  . (19) 

The variational formulation of the (17) – (19) 

can be written as follows: 

 (k 1) (k 1)

B A[ u ,v] [ u ,v]       

 (k) (k)

0 0(J( (u u ),u u )      

 
2

(k 1) (k 1)

0 0 L ( )J( (u u ),u u ),v) 

    , (20) 

 
2

(k 1)

L ( )(u ,v) 0

  , t 0 . 

Let’s integrate (20) from 0  to t  and substitute 
(k 1)u   instead of v : 

 
t

(k 1) 2 (k 1) 2

B A

0

1
u (t) u d

2

      | | | |  

 
t

(k) (k)

0 0

0

(J( (u u ),u u )      

2

(k 1) (k 1) (k 1)

0 0 L ( )J( (u u ),u u ), u ) d  

      , 

 
2

2
(k 1)

L ( )
u 0


  . 

One can estimate the last equation using the 

previous equalities and inequalities and the next 

ones: 

 1 1 2 2J(u ,v ) J(u ,v )   

 2 1 2 1 2 2J(u ,v v ) J(u u ,v )    , 

 
2L ( )(J(u,v),w)    
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2 2 2

1 L ( ) L ( ) L ( )
c u v w

  
   , 

 2

2u,v W ( )  ,   
2w L ( )  . 

 

Therefore: 

 
2

T
2

(k 1) (k 1) 2

AL ( )
0 t T

0

esssup u u d 


 

    | |  

 
2

T
2

(k) (k) 23
AL ( )

0 t T
0

c
esssup u u d


 

 
     
  

| | , 

where  t (0;T] . 

Hence we can say that the boundedness of 
(k 1)u   is proved in the metric space V . 

Therefore, if 3c
1  


    then: 

 (k 1) (k) k

V V V
u u ... u         , 

 

i.e.  the limit below exists: 

 (k)

k
limu u


 . 

One can prove the following theorem. 

Theorem. Let function 0 2 2u L (0,T;L ( ))  . 

Therefore the variational problem (14), (15) has a 

unique solution: 

 2 2 Au L (0,T;L ( )) L (0,T;H )   . 

 

COMPUTATION SCHEME 

According to the R-functions method the solu-

tion structure of (11) – (13) is: 

 (k 1) 2 (k 1)u (x,y, t) (x,y) (x,y, t)   . 

Next, let’s approximate an undefined compo-

nent: 

 (k 1) (k 1)

N(x,y, t) (x,y, t)     

 
N

(k 1)

j j

j 1

c (t) (x, y)



  , 

where: j{ }  – some complete system of functions 

in the space 2L ( )  (trigonometric or algebraic 

polynomial, B-splines and etc.). Then an approxi-

mation for (k 1)u (x,y, t)  has the following form: 

 
N

(k 1) (k 1)

N j j

j 1

u (x,y, t) c (t) (x, y) 



  , 

where: 2

j j   . 

According to the Galerkin method [19] for the 

nonstationary problems one can find functions 
(k 1)

jc (t) , j 1,...,N , using the following ordinary 

differential equation system: 

 (k 1) (k 1)

N N

d
Bu Au

dt

 
  


 

 
2

(k)

N j L ( )
C( u ) F, 0


     , 

 
2

(k 1)

N 0 j L ( )t 0
(u u , ) 0


   , j 1,2,...,N , 

or in expended form: 

 
N N

(k 1) (k 1)

j j i B j j i A

j 1 j 1

c (t)[ , ] c (t)[ , ] 

 

         

  
2

(k)

i L ( )
C( u ) F,


    , (21) 

 
2

N
(k 1)

j j i L ( )

j 1

c (0)( , )





    

 
20 i L ( )(u , )   , i 1,2,...,N , (22) 

where  the dot denotes the time derivative. 

Let’s consider the matrices and vectors: 

 j i B i, j 1,N
[ , ]


    ,   j i A i, j 1,N

[ , ]


    , 

 
2j i L ( )

i, j 1,N
( , ) 


    , 

  
2

(k)

i L ( )
i 1,N

(t) С( u ) F, )




     , 

 
20 i L ( )

i 1,N
(u , ) 


   . 

We note that matrices  ,  ,   are symmetric 

and invertable. 

Denote: 

 (k 1) (k 1) (k 1)

1 Nc (t) (c (t),...,c (t))   , 

 (k 1) (k 1) (k 1)

1 Nc (t) (c (t),...,c (t))   , 

therefore, a Cauchy problem (21), (22) can be writ-

ten as: 

 (k 1) (k 1)c (t) c (t) (t)     , (23) 

 

 c(0)   . (24) 

We can use the Runge–Kutta method to solve 

(23), (24). 

 

NUMERICAL RESULTS 

Problem 1. Let’s consider a test problem [21] 

to validate the proposed method. It consists of the 

equation (1) and boundary and initial conditions 

listed below: 
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2

2

2 t

2 t

0

e cos y,x 0,

f (s, t) e cos x, y 0,

1 1
0, x , y ,

2 2

 

 




 


    


  


 

 

2

2

2 t

2 t

0

1
e cos x, y ,

2

1
g (s, t) e cos y,x ,

2

0, x 0 or y 0,

 

 




  


 
    

 
 




n
 

 0t 0
(x,y) cos xcos y


     . 

Assume that 1  ,   – square 
1

0 x
2

  , 

1
0 y

2
  , t [0,1] . 

Function (x,y)  have the below form: 

 0(x,y) x(1 2x) y(1 2y)     , 

where 
0  - R-conjunction: 

 2 2

0u v u v u v     . 

 

Functions 0f (x,y, t) ECf (s, t)  and 

0g(x,y, t) ECg (s, t)  are set as follows: 
 

f (x,y, t)   

22 t 1 1
e x y (ycos y xcos x)

2 2

1 1 1 1
y x y x x y xy

2 2 2 2

    
      

  


     
          

     

, 

 

g(x,y, t) 
22 te xy    

22 t 1 1
e x y (ycos y xcos x)

2 2

1 1 1 1
y x y x x y xy

2 2 2 2

    
      

  


     
          

     

. 

 

The exact solution of this problem is: 

22 t(x,y, t) e cos xcos y     . 

 

We used the Runge–Kutta method to solve 

(23), (24) and B-splines [10]  as  . The Gauss 

formula with 16 knots was used for evaluation of 

integrals in the Galerkin method. 

Now let’s have a look at the results of this nu-

merical experiment. 

The differences between the exact and approx-

imated solution in 3D are presented below on Fig. 

1 and Fig. 2. The difference reduces with time. 

The stream lines and stream function in 3D are 

given in figures 3 and 4. They are similar to the 

exact solution. 

The error norm in 2L ( )  is shown on Fig. 5 

with dependency from time. Fig. 5 shows method 

convergence. 
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Fig. 1. The difference between the exact and approximated solution, t 0.1  
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Fig. 2. The difference between the exact and approximated solution, t 0.5  

 

      

0.02

0.040.06

0.080.1

0.12

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5

 

0.0
0.2

0.4 0.0

0.2

0.40
0.00002
0.00004

 

Fig. 3. The stream lines, t 0.1    Fig. 4. The stream function, t 0.1  
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     Fig. 5. The error norm in 2L ( )  

 

 

Problem 2. Let’s consider the equation (1) 

and next boundary and initial conditions: 

 0


  ,  

 

te 1, y 1,

0, x 0, y 0, x 1,





  
 

   n
 

 

 

 
t 0

0


  , 

where:  (x,y) 0 x 1, 0 y 1     , 1  , 

t (0;5] . Function 0g(x,y, t) ECg (s, t)  is set 

as follows: 
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t

1

1 2

e 1

(x, y)
g(x, y, t)

1 1

(x, y) (x, y)

 


 


 

 

 
t 2

2 2

(e 1)(y 4(x 0,5) )

y 4(x 0,5) 64(x 0,5) 1

   


    
, 

 

 

 

where:  

 
1(x,y) 1 y   , 

 
2

2
2

y 4(x 0,5)
(x, y)

64(x 0,5) 1

 
 

 
. 

 

 

Therefore, the problem structure is 

 (x,y, t)   
t 2

2 2

(e 1)(y 4(x 0,5) )
(x, y)

y 4(x 0,5) 64(x 0,5) 1

   
  

    
 

 2 (x,y) (x,y, t)  . 

We also used the Runge–Kutta method to 

solve (23), (24) and B-splines as  . The Gauss 

formula with 16 knots was used for evaluation of 

integrals in the Galerkin method. 

The stream lines and stream function in 3D 

are given in figures 6, 7. The vorticity lines and 

vorticity function in 3D are given in figures 8, 9. 

Fig. 6 – 9 showed that the achieved numerical 

results are consistent with other results [7]. 
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Fig. 6. The stream lines, t 0.1   
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Fig. 7. The stream function, t 0.1  
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Fig. 8. The vorticity lines, t 0.1  
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Fig. 9 The vorticity function, t 0.1  
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CONCLUSIONS 

 

The nonstationary plane-parallel flow of vis-

cous incompressible fluid is investigated. The al-

gorithm for solving the problem based on the R-

functions method and the Galerkin method is used. 

The solution structures of unknown function were 

built by means of the R-functions method, and the 

Galerkin method was used for the approximate 

undefined components. Thus, the stream function 

was represented in an analytical way. 

The advantage of the suggested algorithm is 

that it does not have to be modified for different 

geometries of the regions being reviewed, which 

illustrates the scientific innovation of the results 

obtained. As a result, the approximate solution for 

such streams investigation problems is obtained in 

the non-classic geometry field. 
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