

Alexander A. Ivaniuk

1

Abstract — Programmable memory BIST architecture is
becoming a necessity for embedded memory cores. Classical
memory BIST architectures use fixed algorithmic tests during
the whole live of digital device. To improve the flexibility of
memory BIST the programmable solution, based on finite
state machine with microcode control, was invented. The
requirement to use such flexibility is dictated by reason to use
newest test for memory cores. In this paper a new
Programmable Memory BIST architecture with small
microcode memory is proposed. The analysis of existing
March tests allows to code them into the optimal binary
format, which cause not only small hardware overhead but
also may speed-up the transferring of new test over the serial
interfaces like IEEE 1149.1 and P1500.

Index Terms — built-in testing, finite state machines,
memory testing, microprogramming, random access
memories.

I. INTRODUCTION
HE progress in system-on-a-chip (SoC) technology
makes possible to integrate huge embedded memory
cores into a single chip. The testing of embedded

memory cores becomes a problem, since they cannot be
controlled from the outside by automatic test equipment
(ATE). The built-in self-test (BIST) has become an great
alternative for embedded memory cores testing [1].
Memory BIST provides high fault coverage, full speed
testing, extensive diagnostics instead of expensive and
sophisticated ATE. Traditionally BIST is implemented as
additional hardware unit, which is an integral part of
memory core. Two alternative memory BIST architectures
are exist: hardwired memory BIST and programmable
memory BIST (P-MBIST). The hardwired BIST
customized for a given memory architecture and a
predefined set of algorithmic tests. This type of BIST cause
low hardware overhead and provides at-speed memory
testing. The major disadvantage of hardwired memory
BIST architectures is their poor design and functional
flexibility. The programmable memory BIST solution
provides a certain degree of flexibility to modify test

Manuscript received October 28, 2008.

Alexander A. Ivaniuk is with the Department of Software for Information
Technologies of the Byelarussian State University of Informatics and
Radio-Electronics, Byelorussia, 220027, Minsk, P. Brovki 6, (e-mail:
ivaniuk@bsuir.unibel.by).

algorithms at run time. There are several reasons to use
different tests for selected memory core during the whole
life cycle. At first, the requirements for used memory test
may be change. For example different life stages of memory
core may need different tests to be applied. At second,
different types of embedded memory cores included in a
single SoC need a distinct test algorithms.

Big amount of programmable memory BIST
architectures have been proposed and developed [2]-[11].
Mostly all of them are based on microprogramming finite
state machine (FSM) model. The selected algorithmic
memory test is represented as a microprogram, which
consists of predefined microcodes. A microprogram needs
to be stored in additional memory unit, which content can
be modified from the outside. The set of microcodes allows
to form optional memory test to be executed by FSM unit.

The flexibility of P-MBIST architecture based on the
format and a complete set of microcodes. But at the same
time the capacity of this set affects on the hardware
complexity.

In this paper, we propose an idea of optimal memory
tests coding for programmable memory BIST architecture.
The small size of memory test microprogram can reduce the
hardware overhead and can speed up the transfer of new
tests over the internal serial SoC interfaces.

The remainder of the paper is organized as follows. In
section 2, a review of generic programmable memory BIST
architecture is included. Section 3 describes original
interface of memory module under test. Section 4 includes
memory test analysis. Section 5 describes the general
functionality of programmable memory BIST hardware.
Section 6 concludes the paper.

II. PRELIMINARIES
Let us determine the main constrains for generic P-

MBIST architecture. We take bit-oriented random access
memory (RAM) unit with organization bits, where is an
amount of address lines. The detailed functional description
of RAM unit is presented in next section.

Traditionally P-MBIST architecture consists of following
hardware units: MUX -- the set of multiplexers or another
wrappers, which are used to isolate RAM module under test
from external devices; TAP(WSP)-controller provides the
serial communication between P-MBIST hardware and
external devices and ATE (usually IEEE 1149.1 or P1500

Optimal Memory Tests Coding
for Programmable BIST Architecture

T

32 R&I, 2008, No4

interfaces are used) [12], [13]; FSM -- is a central core of P-
MBIST hardware, which controls all main units and
executes the predefined memory test algorithm; MM --
microprogram memory unit, which stores the test in binary
format; RI - additional unit, which allows FSM to
communicate with RAM under test.

The complete P-MBIST architecture shown in Fig. 1.

Fig. 1. Generic P-MBIST architecture

Splitting the P-MBIST architecture in several units

allows reducing the cost for its extension to new memory
cores. During normal operation of RAM module the
wrapper schemes are transparent to the original memory
interface until the P-MBIST hardware will use it. The self-
test procedure of RAM module is initiated outside by
external ATE or embedded test core. Specified start
instruction or signal is translated over the serial interface,
decoded by TAP-controller and allows FSM unit to block
original RAM interface. Then FSM starts to fetch the
microcode instructions from MM unit, decode and execute
them. This allows applying predefined memory test
algorithm to the RAM module by controlling the RI unit of
P-MBIST architecture. During the whole test execution
FSM keeps in active the output Busy signal, which can be
analyzed by externals cores over additional wire or over the
serial test interface. When test procedure is finished FSM
generates Done signal and appropriate value of Error
signal.

In this paper we focus on the problem of memory test
coding, which binary representation can be effectively store
in MM unit. The compact memory test microprogram
allows to reduce MM hardware overhead and to speed-up
the transfer of new test over the serial interfaces like IEEE
1149.1 and P1500.

III. ORIGINAL MEMORY INTERFACE REPRESENTATION
Let us consider the main ports of RAM module under

test: AB - m-lines address bus; DI - data input line; DO -
data output line; CS - chip select input line; CLK -
synchronization input line; WR - operation type input line
(WR=0 denotes write operation, WR=1 - read operation).
Let us define a notation for RAM module operations:

}_{}{ DataOutputInputs ⇒ , (1)
where Inputs denotes a set of logic values or transitions of
these values on input ports },,,,{ WRDIABCLKCS ,
which change the logic value on output port }{DO (Fig.2).

Fig. 2. Entity of RAM module

The RAM module has three main operation modes:
storage mode, writing mode and reading mode (Fig.3).

Fig. 3. Timing diagrams of main RAM functional modes

In the context of previous notation 1 we can determine

storage mode as
}{},,,,0{ ZXXXX ⇒ , (2)

where 0 - inactive value of signal on CS line, X - arbitrary
value of signal, Z - high impedance on output port DO.

The notation of synchronous write operation of binary
value d into the memory cell with address a looks like

}{}0,,,10,1{ Zda ⇒→ , (3)
where transition 10 → denotes the rising edge on CLK line.

Next equation represents the asynchronous read
operation of stored binary value d from the memory cell
with address a:

}{}1,,,,1{ dXaX ⇒ . (4)
Equations 2, 3, 4 can be used to design the behavior of

FSM and RI modules of P-MBIST architecture.

R&I, 2008, No4 33

IV. MEMORY TESTS ANALYSIS
Memory test is a set of basic operations performed on a

RAM module to determine functionality. There is wide
range of functional memory tests [14]. One type of tests that
has proven to be practically effective in time and
complexity is the March test [15]. Any March test for bit-
oriented RAM can be defined by the set of primitives of
MTL language [16]:

1) the set of basic operations 1,0,1,0 wwrr , where r
means read operation and w - write operation of predefined
values 0(1) for the memory cell with current value of
address a;

2) march element (test phase) - the concrete finite
sequence of basic operations applied for current memory
cell:)1,1,0(rwr ;

3) each march element has addressing order, which
denotes the direction of address space transmission: symbol
⇑ denotes addressing order from 0 to 12 m − , symbol ⇓
denotes backward addressing order from 12 m − to 0 and
symbol c is used when the addressing order is irrelevant;
for example the first march element of all tests looks like

)0(wc ;
4) the finite set of different march elements forms

complete march test; for instance, march test MATS++ can
be written as)}0,0,1();1,0();0({ rwrwrw ⇓⇑c .

Let us determine the basic operations in terms of notation
1. It is necessary to note that each read operation

})1,0{(∈dtrdt consists of two micro operations: reading
the value d from selected memory cell and comparison the
value d with the reference value dt:

),(},{}1,,,,1{ dtdCMPdXaX ⇒ . (5)
The basic write operation })1,0{(∈dtwdt will be written
as

}{}0,,,10,1{ Zdta ⇒→ . (6)
Each basic operation belongs to specified march element.

All operations from current march element are performed
sequentially for selected memory cell. When last operation
from march element will be completed then the current
value of address will be changed according to the specified
addressing order. For this reason we denote two markers for
all basic operations: AO - Address Order and LO - Last
Operation. Also we add these markers to the notation of
basic operations 1:

}_{}]{,[DataOutputInputsLOAO ⇒ . (7)
Classical March tests are designed to detect different

types of faults. All March tests are able to detect single-cell
faults of different multiplicity, but not all of them are able
to detect single faults, which affect more then one cell [15].
At first case only two types of addressing order can be
used: ⇑ and ⇓ . All three types of addressing order are
used by multi run March tests to detect multiple-cell faults,

where type c is used to set up different initial backgrounds
[17].

 In this paper we assume that AO=0 denotes two types of
addressing order ⇑ and c , when AO=1 denotes only one
type - ⇓ . The marker LO=1 corresponds to the operation,
which is the last operation in current march element. Other
operations from current march element have got marker
LO=0. For instance, the first march element of test MATS++
will be represented as }{}0,0,,10,1]{1,0[Za ⇒→ .

Let us consider the difference between basic operations
in the context of their notations. If operations belong to the
same march element then all of them have identical marker
AO. If two read operations belong to the same march
element they can differ to following values:

),(},{},,,,]{,[dtdCMPdLO ⇒−−−−−− , (8)
where symbol ‘-’ means the coincidence of appropriate
values. Two write operations, which are belong to the same
march element can differ to following values:

}{},,,,]{,[−⇒−−−−− dtLO . (9)
Two polytypic operations belonging to one march element
can be differ to following values:

}{},,,,]{,[DOWRdtCLKLO ⇒−−− . (10)
It is necessary to notice that values CLK, dt, WR and DO

are identical for one-type operations. For expediency of the
subsequent reasoning we will enter a new marker OT -
Operation Type. Let value OT=0 corresponds to all write
operations and value OT=1 - to all read operations. Let us
add marker OT to the notation of basic operations. By
excluding general values we will get a new form of
notation:

},]{,,[dtaOTLOAO . (11)
Each basic operation of given march test uses all possible

values of address)12,...,0(a m −= , which are generated by
a part of RI module of P-MBIST architecture. The best way
to design RI module is to use the binary up-down counter,
which estimates address space bounds (0 or 12 m −). If one
of these bound was obtained and current operation has
marker LO=1 then in means the end of current march
element. So, the value of address a can be excluded from
notation 11, because the value of a automatically generated
by counter, which is controlled by values of two markers
AO and LO. The current value of a will be incremented
only if AO=0 and LO=1 and decremented when AO=1 and
LO=1. In this case the march test operation can be
described by next notation:

}]{,,[dtOTLOAO . (12)
For instance, test MATS++ will be represented as it

shown in Table I. The marker AO was used only for the
first operations of march element.

34 R&I, 2008, No4

TABLE I
MATS++ TEST DESCRIPTION

MTL-notation [AO, LO, OT] {dt}

);0(wc [0, 1, 0] {0}

0(r⇑ [0, 0, 1] {0}

);1, w [1, 0] {1}

1(r⇓ [1, 0, 1] {1}

0, w [0, 0] {0}

);0, r [1, 1] {0}

The presented binary format also needs such marker as

the end of the test. Any data, which can be added to the end
of March test binary format will be decoded in terms of
markers AO, LO, OT and dt. That is why we propose to use
a new marker NOE that represents the Number Of march
Elements of the test. For instance, MATS++ has three march
elements and the value of NOE will be equal to 11 (3 in
binary format). In general to code any march test we need V
bits,

⎡ ⎤ oee nnnV 3log 2 ++= , (13)
where en is the number of march elements, on is the
number of operations. For example, test MATS++ has got
next values: 3=en , 6=on and 23=V .

Let us show that dt marker can be excluded from the
march test notation. If the current operation is write
operation dtw and next operation is read operation then it
uses the same value of dt. We describe the given property in
the form of the following operator

)()(dtdtrw →⇒→ , (14)
where rw → denotes the sequence of adjacent operations
and dtdt → means that the value of dt will be not changed
for these operations.

The analysis of existing March tests has shown that
additionally there properties are exist:

)()(dtdtwr →⇒→ , (15)
)()(dtdtrr →⇒→ , (16)

)()(dtdtww →⇒→ , (17)

where dt means the inverted value of dt.
Two properties 14 and 15 are typical for all March tests.

Property 16 belongs for tests Marching 1/0, March Y,
March C when property 17 belongs only for March A,
March B and for Algorithm B.

In view of that fact that all tests begin with operation 0w
(initial value 0=dt) and properties 14-17 cover all
possible combinations of two adjacent operations the
marker dt can be excluded from the notation of March test
operations (12):

],,[OTLOAO . (18)
The complete Extended Backus-Naur form [18] of

proposed representation of March tests looks like

}},{{)""(""
]""","]","[[""

*3
1|0

elelNOEtest
OTLOAOel

bdOT
bdLO
bdAO

bdNOE
bd

=
=
=
=
=
=

=

. (19)

where nonterminals test and el represent complete March
test and march element respectively.

In a case of new notation test MATS++ will be
represented as it shown in Table II.

TABLE II

MODIFIED DESCRIPTION OF MATS++ TEST

MTL-
notation [AO, LO, OT] {dt} NOE

 [0, 0, 0] 0=dt 3

);0(wc [0, 1, 0] dt 2

0(r⇑ [0, 0, 1] dt 2

);1, w [1, 0] dt 1

1(r⇓ [1, 0, 1] dt 1

0, w [0, 0] dt 1

);0, r [1, 1] dt 0

The value of dt is changing according to the current

value of marker OT. At the same time value of NOE is
automatically decremented at the end of each march
element when LO=1 and EOP=1. The zero value of NOE
indicates the end of March test.

In general case to code any march test using new notation
18 we need 'V bits,

⎡ ⎤ oee nnnV 2))(max(log' 2 ++= , (20)
where 7)max(=en for existing March test.

Table III represents values of en , on and 'V for
classical March tests.

TABLE III
CHARACTERISTICS OF CLASSICAL MARCH TESTS

Name ne no V’

MATS 3 4 14
MATS+ 3 5 14
MATS++ 3 6 18
Marching 1/0 6 14 37
March X 4 6 19
March Y 4 8 23

March C 7 11 32

March C- 6 10 29

March A 5 15 38

March B 5 17 42

Algorithm B 5 17 42

R&I, 2008, No4 35

The value of 42'=V is enough to store any existing
March test in microprogram memory of P-MBIST
architecture.

V. THE FUNCTIONALITY OF P-MBIST HARDWARE
Proposed P-MBIST architecture consists of control logic

as FSM module, microcode memory unit (MM), RAM
interface model (RI) and TAP-controller.

Executable microcode of March test have been stored in
MM, which has two ports. The write-port is used to receive
binary data from TAP-controller. Another read-port is used
to transmit binary data to FSM module.

RI module provides connections of P-MBIST hardware
to RAM module under test. It generates sequences of
control signals, which allow to produce complete read and
write operations for RAM.

Binary counter is the part of RI, which generate the
predefined sequences of RAM addresses during March test
execution.

FSM module controls the functionality of all units of P-
MBIST hardware. The control flow of FSM module is
shown in Fig. 4. The FSM module includes next registers:
PC - program counter, which addresses the binary data in
MM module; PC* - register to store a copy of current PC
value; NOE - register to store number of march elements,
AO, LO, OT - 1-bit registers to store March test markers.

Fig. 4. FSM Control Flow

At the very beginning FSM module is waiting the START

signal to be active. After START signal is rising high the
FSM fetches NOE value into the counter from MM module.
The value of program counter will be modified PC=PC+3
and stored in PC* register. In the next state FSM module
fetches AO marker from microprogram memory and
increments the PC value. Next state is separated from the
previous state to produce basic operation until the end of
current march element (LO=1). The execution of basic
operation holds in EXEC W/R state. If read operation fails
then FSM generates output error signal Err=1 and

permanently stalls in STOP state. When current march
element is finished (marker LO=1) FSM turns into the Next
address state. If the boundary of address space is not
reached FSM restores program counter value from PC*
register and goes to Fetch AO state. In other case FSM
modifies program counter value PC=PC+2 to be able to
fetch AO marker of next march element. Then FSM
decrements the value of NOE and checks it to zero value. If
NOE equals to zero then FSM stops by turning into the
STOP state. Otherwise FSM stores PC value and starts to
fetch another markers of next march element.

The proposed programmable memory BIST architecture
was designed for the synchronous single port RAM using
Xilinx ISE WebPack 9.1i. The design was verified through
the functional simulation using basic March tests. The
complete P-MBIST circuit for 1Mb SRAM module (m=20)
has next hardware overhead estimation: MUX: 11%, RI:
35%, FSM: 37%, MM: 2%, TAP: 15%.

VI. CONCLUSION
An efficient microcode-based programmable memory

BIST architecture is introduced in this paper. The main goal
of investigation was to minimize the binary microcode of
march tests, which are stored in P-MBIST internal memory.
It was shown that the test and reference data can be
excluded from the binary representation of march test
elements and basic operations. The proposed P-MBIST
architecture can be widely used for the self-testing of
embedded memory cores, especially under the system on a
chip design environment.

REFERENCES
[1] Y. Zorian and S. Shoukourian, “Embedded-memory test and repair:

Infrastructure ip for soc yield,” IEEE Design and Test of Computers,
vol. 20, no. 3, pp. 58–66, May/Jun. 2003.

[2] K. Zarrineh and S. J. Upadhyaya, “On programmable memory built-
inself test architectures,” in Proc. IEEE Conference on Design,
Automation and Test in Europe (DATE’99), Munich, Germany, Mar.
1999, pp. 708–813.

[3] D. Appello, P. Bernardi, A. Fudoli, M. Rebaudengo, M. S. Reorda, V.
Tancorre, and M. Violante, “Exploiting programmable BIST for the
diagnosis of embedded memory cores,” in Proc. IEEE International
Test Conference (ITC’03), Charlotte, NC, USA, Sep. 2003, pp. 379–
385.

[4] M. Kume, K. Uehara, M. Itakura, H. Sawamoto, T. Kobayashi, M.
Hasegawa, and H. Hayashi, “Programmable at-speed array and
functional BIST for embedded DRAM LSI,” in Proc. IEEE
International Test Conference (ITC’04), Charlotte, NC, USA, Oct.
2004, pp. 988–996.

[5] D. Youn, T. Kim, and S. Park, “A microcode-based memory BIST
implementing modified march algorithm,” in Proc. 10th Asian Test
Symposium (ATS’01), Kyoto, Japan, Nov. 2001, pp. 391–395.

[6] X. Du, N. Mukherjee, C. Hill, W.-T. Cheng, and S. Reddy, “A field
programmable memory BIST architecture supporting algorithms with
multiple nested loops,” in Proc. 15th Asian Test Symposium
(ATS’06), Fukuoka, Japan, Nov. 2006, pp. 287–292.

[7] P.-C. Tsai, S.-J. Wang, and F.-M. Chang, “FSM-based programmable
memory BIST with macro command,” in Proc. IEEE International

36 R&I, 2008, No4

Workshop on Memory Technology, Design, and Testing (MTDT’05),
Taipei, Taiwan, Aug. 2005, pp. 72–77.

[8] X. Du, N. Mukherjee, W.-T. Cheng, and S. Reddy, “Full-speed
fieldprogrammable memory BIST architecture,” in Proc. IEEE
International Test Conference (ITC’05), Austin, TX, USA, Nov.
2005, pp. 1165–1173.

[9] K. Zarrineh and S. J. Upadhyaya, “Programmable memory BIST and
a new synthesis framework,” in Proc. IEEE The 29th Annual
International Symposium on Fault-Tolerant Computing (FTCS’99),
Madison, Wisconsin, USA, Jun. 1999, pp. 352–355.

[10] P. McEvoy and R. Farrell, “Built-in test engine for memory test,” in
Proc. IEEE IC Test Workshop (ICTW’04), Limerick, Ireland, Sep.
2004, pp. 15–21.

[11] M. Zhang, D. Tao, and B. Wei, “A programmable BIST for
embedded SDRAM,” in Proc. IEEE International Symposium on
VLSI Technology, Systems, and Applications(VTSA’01), Hsinchu,
Taiwan, Apr. 2001, pp. 244–248.

[12] L.-T. Wang, C. E. Stroud, and N. A. Touba, System-on-Chip Test
Architectures. Burlington, MA, USA: Morgan Kaufmann, 2007.

[13] P. Bernardi, M. Rebaudengo, M. S. Reorda, and M. Violante, “A
1500- compatible programmable BIST approach for the test of
embedded flash memories,” in Proc. IEEE Conference on Design,
Automation and Test in Europe (DATE’03), Munich, Germany, Mar.
2003, pp. 720–725.

[14] Z. Al-Ars, S. Hamdioui, and A. J. van de Goor, “A fault primitive
based analysis of linked faults in RAMs,” in Proc. 11th IEEE
International Workshop on Memory Technology, Design, and Testing
(MTDT’03), an Jose, CA, USA, Jul. 2003, pp. 33–39.

[15] A. J. van de Goor, Testing Semiconductor Memories: Theory and

Practice. Chichester, UK: John Wiley & Sons Inc., 1991.
[16] A. J. van de Goor, A. Offerman, and H. Schanstra, “Towards a

uniform notation for memory tests,” in Proc. IEEE European Design
and Test Conference (EDTC’97), Paris, France, Mar. 1996, pp. 420–
427.

[17] S. Yarmolik and V. Yarmolik, “Memory address generation for
multiple run march tests with different average hamming distance,” in
Proc. IEEE East-West Design & Test Workshop (EWDTW’06),
Sochi, Russia, Sep. 2006, pp. 212–216.

[18] International standard ISO/EIC 14977, Information Technology –
Syntactic metalanguage – Extended BNF, ISO/EIC First edition, Rev.
1996- 12-15, 1996.

Alexander A. Ivaniuk received the MSc
degree in 1995 from the Computer Science
Department of the Belarussian State
University of Informatics and Radio-
Electronics in Minsk, Belarus. At the same
university, he completed his PhD thesis on
Methods and Tools for Concurrent RAM
Testing and Checking and was awarded the
PhD degree in 1999. From 1999 to 2002 he
has been an assistant professor. Since 2002
he became an associated professor at the
Department of Software for Information
Technologies.

R&I, 2008, No4 37

