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Abstract — Programmable memory BIST architecture is 
becoming a necessity for embedded memory cores. Classical 
memory BIST architectures use fixed algorithmic tests during 
the whole live of digital device. To improve the flexibility of 
memory BIST the programmable solution, based on finite 
state machine with microcode control, was invented. The 
requirement to use such flexibility is dictated by reason to use 
newest test for memory cores. In this paper a new 
Programmable Memory BIST architecture with small 
microcode memory is proposed. The analysis of existing 
March tests allows to code them into the optimal binary 
format, which cause not only small hardware overhead but 
also may speed-up the transferring of new test over the serial 
interfaces like IEEE 1149.1 and P1500. 
 

Index Terms — built-in testing, finite state machines, 
memory testing, microprogramming, random access 
memories. 
 

I. INTRODUCTION 
HE progress in system-on-a-chip (SoC) technology 
makes possible to integrate huge embedded memory 
cores into a single chip. The testing of embedded 

memory cores becomes a problem, since they cannot be 
controlled from the outside by automatic test equipment 
(ATE). The built-in self-test (BIST) has become an great 
alternative for embedded memory cores testing [1]. 
Memory BIST provides high fault coverage, full speed 
testing, extensive diagnostics instead of expensive and 
sophisticated ATE. Traditionally BIST is implemented as 
additional hardware unit, which is an integral part of 
memory core. Two alternative memory BIST architectures 
are exist: hardwired memory BIST and programmable 
memory BIST (P-MBIST). The hardwired BIST 
customized for a given memory architecture and a 
predefined set of algorithmic tests. This type of BIST cause 
low hardware overhead and provides at-speed memory 
testing. The major disadvantage of hardwired memory 
BIST architectures is their poor design and functional 
flexibility. The programmable memory BIST solution 
provides a certain degree of flexibility to modify test 
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algorithms at run time. There are several reasons to use 
different tests for selected memory core during the whole 
life cycle. At first, the requirements for used memory test 
may be change. For example different life stages of memory 
core may need different tests to be applied. At second, 
different types of embedded memory cores included in a 
single SoC need a distinct test algorithms. 

Big amount of programmable memory BIST 
architectures have been proposed and developed [2]-[11]. 
Mostly all of them are based on microprogramming finite 
state machine (FSM) model. The selected algorithmic 
memory test is represented as a microprogram, which 
consists of predefined microcodes. A microprogram needs 
to be stored in additional memory unit, which content can 
be modified from the outside. The set of microcodes allows 
to form optional memory test to be executed by FSM unit. 

The flexibility of P-MBIST architecture based on the 
format and a complete set of microcodes. But at the same 
time the capacity of this set affects on the hardware 
complexity. 

In this paper, we propose an idea of optimal memory 
tests coding for programmable memory BIST architecture. 
The small size of memory test microprogram can reduce the 
hardware overhead and can speed up the transfer of new 
tests over the internal serial SoC interfaces. 

The remainder of the paper is organized as follows. In 
section 2, a review of generic programmable memory BIST 
architecture is included. Section 3 describes original 
interface of memory module under test. Section 4 includes 
memory test analysis. Section 5 describes the general 
functionality of programmable memory BIST hardware. 
Section 6 concludes the paper.  

 

II. PRELIMINARIES 
Let us determine the main constrains for generic P-

MBIST architecture. We take bit-oriented random access 
memory (RAM) unit with organization bits, where is an 
amount of address lines. The detailed functional description 
of RAM unit is presented in next section. 

Traditionally P-MBIST architecture consists of following 
hardware units: MUX -- the set of multiplexers or another 
wrappers, which are used to isolate RAM module under test 
from external devices; TAP(WSP)-controller provides the 
serial communication between P-MBIST hardware and 
external devices and ATE (usually IEEE 1149.1 or P1500 
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interfaces are used) [12], [13]; FSM -- is a central core of P-
MBIST hardware, which controls all main units and 
executes the predefined memory test algorithm; MM -- 
microprogram memory unit, which stores the test in binary 
format; RI - additional unit, which allows FSM to 
communicate with RAM under test. 

The complete P-MBIST architecture shown in Fig. 1. 

 
Fig. 1.  Generic P-MBIST architecture 
   
Splitting the P-MBIST architecture in several units 

allows reducing the cost for its extension to new memory 
cores. During normal operation of RAM module the 
wrapper schemes are transparent to the original memory 
interface until the P-MBIST hardware will use it. The self-
test procedure of RAM module is initiated outside by 
external ATE or embedded test core. Specified start 
instruction or signal is translated over the serial interface, 
decoded by TAP-controller and allows FSM unit to block 
original RAM interface. Then FSM starts to fetch the 
microcode instructions from MM unit, decode and execute 
them. This allows applying predefined memory test 
algorithm to the RAM module by controlling the RI unit of 
P-MBIST architecture. During the whole test execution 
FSM keeps in active the output Busy signal, which can be 
analyzed by externals cores over additional wire or over the 
serial test interface. When test procedure is finished FSM 
generates Done signal and appropriate value of Error 
signal. 

In this paper we focus on the problem of memory test 
coding, which binary representation can be effectively store 
in MM unit. The compact memory test microprogram 
allows to reduce MM hardware overhead and to speed-up 
the transfer of new test over the serial interfaces like IEEE 
1149.1 and P1500. 

 
 

III. ORIGINAL MEMORY INTERFACE REPRESENTATION 
Let us consider the main ports of RAM module under 

test: AB - m-lines address bus; DI - data input line; DO - 
data output line; CS - chip select input line; CLK - 
synchronization input line; WR - operation type input line 
(WR=0 denotes write operation, WR=1 - read operation). 
Let us define a notation for RAM module operations: 

}_{}{ DataOutputInputs ⇒ ,                    (1) 
where Inputs denotes a set of logic values or transitions of 
these values on input ports },,,,{ WRDIABCLKCS , 
which change the logic value on output port }{DO  (Fig.2).  

 
 

Fig. 2. Entity of RAM module 
 

The RAM module has three main operation modes: 
storage mode, writing mode and reading mode (Fig.3). 

 

 
Fig. 3. Timing diagrams of main RAM functional modes 

 
In the context of previous notation 1 we can determine 

storage mode as  
}{},,,,0{ ZXXXX ⇒ ,                      (2) 

where 0 - inactive value of signal on CS line, X - arbitrary 
value of signal,  Z - high impedance on output port DO. 

The notation of synchronous write operation of binary 
value d into the memory cell with address a looks like  

}{}0,,,10,1{ Zda ⇒→ ,                      (3) 
where transition 10 → denotes the rising edge on CLK line. 

Next equation represents the asynchronous read 
operation of stored binary value d from the memory cell 
with address a:  

}{}1,,,,1{ dXaX ⇒ .                       (4) 
Equations 2, 3, 4 can be used to design the behavior of 

FSM and RI modules of P-MBIST architecture. 
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IV. MEMORY TESTS ANALYSIS 
Memory test is a set of basic operations performed on a 

RAM module to determine functionality. There is wide 
range of functional memory tests [14]. One type of tests that 
has proven to be practically effective in time and 
complexity is the March test [15]. Any March test for bit-
oriented RAM can be defined by the set of primitives of 
MTL language [16]: 

1) the set of basic operations 1,0,1,0 wwrr , where r 
means read operation and  w - write operation of predefined 
values 0(1) for the memory cell with current value of 
address a;  

2) march element (test phase) - the concrete finite 
sequence of basic operations applied for current memory 
cell: )1,1,0( rwr ;  

3) each march element has addressing order, which 
denotes the direction of address space transmission: symbol 
⇑  denotes addressing order from 0 to 12 m −  , symbol ⇓  
denotes backward addressing order from 12 m −  to 0 and 
symbol c  is used when the addressing order is irrelevant; 
for example the first march element of all tests looks like 

)0(wc ;  
4) the finite set of different march elements forms 

complete march test; for instance, march test MATS++ can 
be written as  )}0,0,1();1,0();0({ rwrwrw ⇓⇑c . 

Let us determine the basic operations in terms of notation 
1. It is necessary to note that each read operation 

})1,0{( ∈dtrdt  consists of two micro operations: reading 
the value d from selected memory cell and comparison the 
value d with the reference value dt:  

),(},{}1,,,,1{ dtdCMPdXaX ⇒ .            (5) 
The basic write operation })1,0{( ∈dtwdt  will be written 
as  

}{}0,,,10,1{ Zdta ⇒→ .                    (6) 
Each basic operation belongs to specified march element. 

All operations from current march element are performed 
sequentially for selected memory cell. When last operation 
from march element will be completed then the current 
value of address will be changed according to the specified 
addressing order. For this reason we denote two markers for 
all basic operations: AO - Address Order and LO - Last 
Operation. Also we add these markers to the notation of 
basic operations 1:  

}_{}]{,[ DataOutputInputsLOAO ⇒ .            (7) 
Classical March tests are designed to detect different 

types of faults. All March tests are able to detect single-cell 
faults of different multiplicity, but not all of them are able 
to detect single faults, which affect more then one cell [15]. 
At first case only two types of addressing order can be 
used: ⇑  and ⇓ . All three types of addressing order are 
used by multi run March tests to detect multiple-cell faults, 

where type c  is used to set up different initial backgrounds 
[17]. 

 In this paper we assume that AO=0 denotes two types of 
addressing order ⇑  and c , when AO=1 denotes only one 
type - ⇓ . The marker LO=1 corresponds to the operation, 
which is the last operation in current march element. Other 
operations from current march element have got marker 
LO=0. For instance, the first march element of test MATS++ 
will be represented as  }{}0,0,,10,1]{1,0[ Za ⇒→ . 

Let us consider the difference between basic operations 
in the context of their notations. If operations belong to the 
same march element then all of them have identical marker 
AO. If two read operations belong to the same march 
element they can differ to following values:  

),(},{},,,,]{,[ dtdCMPdLO ⇒−−−−−− ,           (8) 
where symbol ‘-’ means the coincidence of appropriate 
values. Two write operations, which are belong to the same 
march element can differ to following values:  

}{},,,,]{,[ −⇒−−−−− dtLO .                     (9) 
Two polytypic operations belonging to one march element 
can be differ to following values:  

}{},,,,]{,[ DOWRdtCLKLO ⇒−−− .           (10) 
It is necessary to notice that values CLK, dt, WR and DO  

are identical for one-type operations. For expediency of the 
subsequent reasoning we will enter a new marker OT - 
Operation Type. Let value OT=0 corresponds to all write 
operations and value OT=1 - to all read operations. Let us 
add marker OT to the notation of basic operations. By 
excluding general values we will get a new form of 
notation:  

},]{,,[ dtaOTLOAO .                      (11) 
Each basic operation of given march test uses all possible 

values of address )12,...,0(a m −= , which are generated by 
a part of RI module of P-MBIST architecture. The best way 
to design RI module is to use the binary up-down counter, 
which estimates address space bounds (0 or 12 m − ). If one 
of these bound was obtained and current operation has 
marker LO=1 then in means the end of current march 
element. So, the value of address a can be excluded from 
notation 11, because the value of a automatically generated 
by counter, which is controlled by values of two markers 
AO and LO. The current value of a will be incremented 
only if AO=0 and LO=1 and decremented when AO=1 and 
LO=1. In this case the march test operation can be 
described by next notation:  

}]{,,[ dtOTLOAO .                          (12) 
For instance, test MATS++ will be represented as it 

shown in Table I. The marker AO was used only for the 
first operations of march element. 
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TABLE I 
MATS++ TEST DESCRIPTION 

MTL-notation [AO, LO, OT] {dt} 

);0(wc  [0, 1, 0] {0} 

0(r⇑  [0, 0, 1] {0} 

);1, w  [ 1, 0] {1} 

1(r⇓  [1, 0, 1] {1} 

0, w  [ 0, 0] {0} 

);0, r  [ 1, 1] {0} 

 
The presented binary format also needs such marker as 

the end of the test. Any data, which can be added to the end 
of March test binary format will be decoded in terms of 
markers AO, LO, OT and dt. That is why we propose to use 
a new marker NOE that represents the Number Of march 
Elements of the test. For instance, MATS++ has three march 
elements and the value of NOE will be equal to 11 (3 in 
binary format). In general to code any march test we need V  
bits,  

⎡ ⎤ oee nnnV 3log 2 ++= ,                   (13) 
where en  is the number of march elements, on  is the 
number of operations. For example, test MATS++ has got 
next values: 3=en , 6=on  and 23=V . 

Let us show that dt marker can be excluded from the 
march test notation. If the current operation is write 
operation  dtw  and next operation is read operation then it 
uses the same value of dt. We describe the given property in 
the form of the following operator  

)()( dtdtrw →⇒→ ,                 (14) 
where rw →  denotes the sequence of adjacent operations 
and dtdt →  means that the value of dt will be not changed 
for these operations. 

The analysis of existing March tests has shown that 
additionally there properties are exist:  

)()( dtdtwr →⇒→ ,                 (15) 
)()( dtdtrr →⇒→ ,                 (16) 

)()( dtdtww →⇒→ ,                 (17) 

where dt   means the inverted value of  dt. 
Two properties 14 and 15 are typical for all March tests. 

Property 16 belongs for tests Marching 1/0, March Y, 
March C when property 17 belongs only for March A, 
March B and for Algorithm B. 

In view of that fact that all tests begin with operation 0w  
(initial value 0=dt ) and properties 14-17 cover all 
possible combinations of two adjacent operations the 
marker dt can be excluded from the notation of March test 
operations (12):  

],,[ OTLOAO .                           (18) 
The complete Extended Backus-Naur form [18] of 

proposed representation of March tests looks like 

}},{{)""(""
]""","]","[[""

*3
1|0

elelNOEtest
OTLOAOel

bdOT
bdLO
bdAO

bdNOE
bd

=
=
=
=
=
=

=

.              (19) 

where nonterminals test and el represent complete March 
test and march element respectively. 

In a case of new notation test MATS++ will be 
represented as it shown in Table II. 

 
TABLE II 

MODIFIED DESCRIPTION OF MATS++ TEST 
 

MTL-
notation [AO, LO, OT] {dt} NOE 

 [0, 0, 0] 0=dt  3 

);0(wc  [0, 1, 0] dt  2 

0(r⇑  [0, 0, 1] dt  2 

);1, w  [ 1, 0] dt  1 

1(r⇓  [1, 0, 1] dt  1 

0, w  [ 0, 0] dt  1 

);0, r  [ 1, 1] dt  0 

 
The value of dt is changing according to the current 

value of marker OT. At the same time value of NOE is 
automatically decremented at the end of each march 
element when LO=1 and EOP=1. The zero value of NOE 
indicates the end of March test. 

In general case to code any march test using new notation 
18 we need 'V  bits,  

⎡ ⎤ oee nnnV 2))(max(log' 2 ++= ,               (20) 
where 7)max( =en  for existing March test. 

Table III represents values of en , on  and 'V  for 
classical March tests. 

TABLE III 
CHARACTERISTICS OF CLASSICAL MARCH TESTS 

 

Name ne no V’ 

MATS 3 4 14 
MATS+ 3 5 14 
MATS++ 3 6 18 
Marching 1/0 6 14 37 
March X 4 6 19 
March Y 4 8 23 

March C 7 11 32 

March C- 6 10 29 

March A 5 15 38 

March B 5 17 42 

Algorithm B 5 17 42 
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The value of 42'=V  is enough to store any existing 
March test in microprogram memory of P-MBIST 
architecture. 

V. THE FUNCTIONALITY OF P-MBIST HARDWARE 
Proposed P-MBIST architecture consists of control logic 

as FSM module, microcode memory unit (MM), RAM 
interface model (RI) and TAP-controller. 

Executable microcode of March test have been stored in 
MM, which has two ports. The write-port is used to receive 
binary data from TAP-controller. Another read-port is used 
to transmit binary data to FSM module. 

RI module provides connections of P-MBIST hardware 
to RAM module under test. It generates sequences of 
control signals, which allow to produce complete read and 
write operations for RAM. 

Binary counter is the part of RI, which generate the 
predefined sequences of RAM addresses during March test 
execution. 

FSM module controls the functionality of all units of P-
MBIST hardware. The control flow of FSM module is 
shown in Fig. 4. The FSM module includes next registers: 
PC - program counter, which addresses the binary data in 
MM module;  PC* - register to store a copy of current PC 
value; NOE - register to store number of march elements, 
AO, LO, OT - 1-bit registers to store March test markers. 

 

 
 

Fig. 4. FSM Control Flow 
 
At the very beginning FSM module is waiting the START 

signal to be active. After START signal is rising high the 
FSM fetches NOE value into the counter from MM module. 
The value of program counter will be modified PC=PC+3 
and stored in PC* register. In the next state FSM module 
fetches AO marker from microprogram memory and 
increments the PC value. Next state is separated from the 
previous state to produce basic operation until the end of 
current march element (LO=1). The execution of basic 
operation holds in EXEC W/R state. If read operation fails 
then FSM generates output error signal Err=1 and 

permanently stalls in STOP state. When current march 
element is finished (marker LO=1) FSM turns into the Next 
address state. If the boundary of address space is not 
reached FSM restores program counter value from PC* 
register and goes to Fetch AO state. In other case FSM 
modifies program counter value PC=PC+2 to be able to 
fetch AO marker of next march element. Then FSM 
decrements the value of NOE and checks it to zero value. If 
NOE equals to zero then FSM stops by turning into the 
STOP state. Otherwise FSM stores PC value and starts to 
fetch another markers of next march element. 

The proposed programmable memory BIST architecture 
was designed for the synchronous single port RAM using 
Xilinx ISE WebPack 9.1i. The design was verified through 
the functional simulation using basic March tests. The 
complete P-MBIST circuit for 1Mb SRAM module (m=20) 
has next hardware overhead estimation: MUX: 11%, RI: 
35%, FSM: 37%, MM: 2%, TAP: 15%. 

 

VI. CONCLUSION 
An efficient microcode-based programmable memory 

BIST architecture is introduced in this paper. The main goal 
of investigation was to minimize the binary microcode of 
march tests, which are stored in P-MBIST internal memory. 
It was shown that the test and reference data can be 
excluded from the binary representation of march test 
elements and basic operations. The proposed P-MBIST 
architecture can be widely used for the self-testing of 
embedded memory cores, especially under the system on a 
chip design environment. 
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