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Abstract – Testing is an important part of digital devices 

development life cycle and it takes about 70% of time to 

market. This paper discusses the various testing concepts as it 

relates to digital design and how it impacts the reliability of the 

final product. We also show that making designs testable by 

using appropriate design for testability techniques 

considerably reduces testing time and ensures a fine-grained 

diagnosis of finished product. A three bit counter circuit was 

used to illustrate the benefits of design for testability by using 

scan chain methodology.  

 

Index Terms – Reliability, design for testability, faults, defect 

level. 
 

I. INTRODUCTION 

 

he reliability of electronic system used to be the 

concern of the military, aerospace and banking 

industries. But today applications such as computers, 

consumer electronics, telecommunication and automotive 

industries have joined the league of applications that 

demands reliability and testing techniques because they are 

everywhere and their feature sizes have become less and 

less as the years go by. In addition, their proliferation has 

led to the tendency of their misuse. An important aspect of 

reliability is the system’s ability to run independently on 

demand. This requires that the system be fault tolerant. 

Poor quality products require more maintenance and 

repairs which leads to huge expenses on staff and mileage to 

get staff and spares to outdoor locations [4]. It also affects 

the manufacturer’s image and costs on returned parts and 

systems.  

The three basic engineering activities are design, 

manufacture and test. Currently testing activities are also 

carried out at the design stage. This means that testing 

process is integral to both design and manufacturing 

activities and cannot be seen as a standalone activity. These 

activities are done as quick as possible and economically 

too. Because we want to save time and cost, we should 

endeavour to ensure that the quality of the would-be product 

is not compromised. Even while a product is in use testing 

can also be carried out either as a normal routine service 

arrangement or to eliminate faults as they occur. 
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A good quality product must meet the purpose for which 

it was designed and produced. In addition it must be very 

reliable meaning that the device should be operational most 

of the times and rarely fails. The reliability of Digital 

devices is high. But this reliability can be undermined if the 

operational conditions are not adhered to. Conditions such 

as operating temperature, power supply voltages and 

frequencies, electromagnetic influences and handling can 

negatively affect the reliability of digital devices. If the 

room temperature is higher or lower than the recommended 

for example, the device may over heat and probably damage 

some of the components which may render the device 

inoperable. 

If we can guarantee 98% fault free circuit at the design 

and implementation stages, we may not be able to say what 

happens after packaging and when the component is finally 

mounted on a board and delivered to the consumer. It is 

important to note that ICs at the end of the day find there 

ways onto a circuit board. Even Systems on chip (SoC) end 

up on a board. While on the board we have to boarder about 

how well the pins of the various ICs mounted on the board 

are connected or whether the right IC is in the right position. 

Testing encompasses design verification and diagnosis 

(fault location for purposes of effecting repairs). There are 

two aspects to test. One is testing the design, or carrying out 

design verification to make sure the design is correct and 

conforms to requirements. Design verification also lets you 

know where you are in the development cycle and how 

stable the design is [1]. The other aspect of test is testing for 

physical failures, making sure nothing is been broken and 

there’s no defect from manufacturing. A significant portion 

of our development cycle time is spent on testing the 

product design, and that’s becoming extremely expensive. 

The beauty of integrated design and manufacturing is that 

it cuts product cycle time, but successful integration hinges 

on the quality of the design data passed to manufacturing. 

This paper focuses on the fundamentals of testing at the 

design stage. The remaining parts of this paper were divided 

into sections. In section 2 the challenges of product quality 

will be discussed. Section 3 briefly discusses the design 

flows with integrated testing. In section 4, this paper 

reviews faults and test pattern generation, whereas section 5 

x-rays ways of making designs testable. A simple example 

to illustrate the design for testability technique using scan 

chain methodology was presented in section 6. 

 

II. TESTING CHALLENGES 

 

Quality improvement starts at the design stages. Testing 

starts right from the system level through RTL coding to 

T
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fabrication and use of the device in the field. Currently 

assertions are embedded in codes to help for quick 

localisation of functional violations during simulation. It is 

a standard in electronics industry to test chips before they 

are mounted on a board, test the board before system 

assembly and finally test the system. This is essentially so 

because of the rule of ten. If a chip fault is not caught by 

chip testing, finding the fault costs 10 times as much at the 

PCB level as at the chip level. Similarly if a board fault is 

not caught by PCB testing, finding the fault costs 10 times 

as much at the system level as at the board level. This 

means that a fault that is not caught at the chip level will 

now cost 100 times as much at the system level.  
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Fig. 1. The Rule of Ten 

 

Some engineers are suggesting that rule of twenty be 

adopted considering the complex nature of present day ICs. 

The rule of ten is illustrated in figure 1. Very real costs are 

associated with inattention to design quality. If errors or 

omissions in design data are not addressed early, more 

costly changes are required later in the product development 

process.  

Another development is the synthesis for different 

objectives. Early synthesis was aimed at decreasing area 

and delay. More recently, other objectives have come into 

play, such as power, noise, thermal control, verifiability, 

manufacturability, variability, and reliability. Consequently, 

additional criteria will emerge as new technologies develop, 

and new models and optimization techniques will be needed 

to address such requirements [12]. 

 

 Concept of reliability 

 

Reliability is the probability of no failure within a given 

operating period. For example, if 50 systems operate for 

1,000 hours on test and two fail, then we would say the 

probability of failure, Pf , for this system in 1,000 hours of 

operation is 2/ 50 or Pf (1,000) c 0.04. Clearly the 

probability of success, Ps, which is known as the reliability, 

R, is given by R(1,000)=Ps(1,000) =1−Pf (1,000)=48/50= 

0.96. 

One can also deal with a failure rate, fr, for the same 

system that, in the simplest case, would be fr = 2 failures/ 

(50 × 1,000) operating hours — that is, fr = 4 × 10−5 or, as it 

is sometimes stated, fr=z=40 failures per million operating 

hours, where z is often called the hazard function. If failure 

rate z is a constant (one generally uses λ to represent a 

constant failure rate), the reliability function can be shown 

as in (1).  

R(t) =e− λt      (1) 

The mean time between failures (MTBF):  

MBTF= 
λ

λ 1

0

=∫
∞
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dte

t
    (2) 

The repair time (Rep) is also assumed to obey an 

exponential distribution and is given by. 

    t
etPp

µ−=> )(Re .                       (3) 

The mean time to repair (MTTR):  

     
µ

1
=MTTR ,      (4) 

Where, µ is the repair rate. The system availability (failure-

free) is the fraction of time the system is operating normally 

and is given by: 

System Availability=
MTTRMTBF

MTBF

+
              (5) 

With the above expression for reliability it becomes 

evident that the more complex a system is the less is its 

reliability. For instance if a system board contains n number 

of components and each component has a reliability of Rc, 

the reliability of the board (Rsb) over time t period of 

operation without failure is:  

    [ ] [ ] tnntn

csb ee)t(RR λ−λ− ===            (6) 

It is therefore clear that the system reliability is very small 

not minding the fact that the reliability of individual 

component is high and will reduce further if the reliability 

of the interconnections were taken into consideration.  

The graphical representation of failure rate Z(t) as a 

function of time can be illustrated by the popular bathtub 

curve shown in figure 2. 
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Fig. 2 Failure rate curve 

 

The infant mortality region on the graph depicts failures that 

are attributed to poor quality as a result of variations in the 

production process technology. The region on the graph 

termed “Working life” shows that the failure rate is constant 

(Z(t)=λ). This is the working life of the component or 

system and fault occurrence here is at random. The wear out 

region marks the end-of-life period of a product. For 

electronic products it is assumed that this period is less 

important because they will not enter this region due to a 

shorter economic lifetime as a result of technology advances 

and obsolescence. It is important to note here that all ICs 
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must be shipped after they have passed infant mortality test 

periods in order to reduce field failure and subsequent 

repairs. 

 

III. DESIGN FLOWS 

 

The design of VLSI follows certain procedure, evolving 

from the highest level of abstraction down to 

implementation - Design Specification, HDL Capture, RTL 

Simulation & Functional Verification, RTL Synthesis, 

Functional Gate Simulation, Place and Route and Post 

Layout Timing Simulation. 

Every design starts with specification capture. We must 

determine the functionality of the new design at the onset. 

Wrong conception at this level could lead to a lot of 

problems such as poor quality product or overlooked 

functionality. An idea of what is to be designed is converted 

into formal document called design specification. In some 

cases one or more specification documents are created, 

depending on whether we are creating a component or a 

system. Design specification is a written statement of 

functionality, timing, area, power, testability, fault 

coverage, etc. The following methods are used to specify 

the functionality – state transition graphs, timing charts, 

algorithmic state machines and hardware description 

languages (VHDL and Verilog). Lately the need to capture 

designs at the highest level of abstraction in what is called 

Electronic System Level (ESL) using SystemC, System 

Verilog, etc. is being integrated and pursued vigorously. 

The specification is then captured using HDL in form of 

behavioural description. The HDL model of the design is 

simulated in order to determine functional compliance and 

to expose any design or coding errors. In order to achieve 

this, a test plan is developed. This involves writing a test 

bench for the model and applying appropriate test vectors to 

verify the design. If the functionality has been verified, then 

the model is synthesised using appropriate synthesis tools. 

The objective of synthesis is to produce a netlist (list of 

modules and their interconnection at the register transfer 

level stage or at the gate level) of the design for the target 

technology. Synthesising the design involves optimisation 

of Boolean functions (minimise logic, reduce area, reduce 

delay, reduce power, balance speed versus other resources 

consumed). After the RTL/gate level synthesis, the design is 

further simulated to determine that the gates used functions 

properly and meets the overall functionality. If this is 

achieved then we move on to the placement and routing 

stage where selected cells are placed on the target 

technology (CPLD, FPGA or ASIC) and connected in 

accordance with the netlist. After the placement and routing 

have been completed the need to further simulate the design 

arises. In this case we simulate to determine whether the 

timing (timing back-annotation), speed, physical and 

electrical specifications have been met. This simulation 

includes test vector generation to test for inherent 

fabrication flaws. It is important to note that the design 

should be correct at this stage, because this is the last stage 

before the design is signed off for fabrication. You can see 

that testing is carried out virtually at all of the stages of the 

design flow. This is important because the earlier an error is 

detected the better and of course the cheaper. 

Verification and Testing occur at different levels of 

product development. Design verification is a set of 

activities that is carried out on a circuit before the circuit is 

implemented physically. These activities are geared toward 

ensuring that the circuit under design meets its functional 

and timing specifications. Mapping a design from one phase 

to another may cause some errors to occur. These errors 

may be as a result of improper handling of the EDA tools 

and they must be removed before the next phase. You see 

that at each stage the design is verified to assert that it is the 

same design from the previous stage and that it meets the 

specification. Currently simulation is the most efficient 

method of design verification. We simulate for functional 

and timing compliance. Assertion-based verification is 

gradually gaining in popularity amongst design and 

verification engineers. 

Testing on the other hand is a set of activities designed to 

ensure that a circuit that has been manufactured complies 

with the parametric (voltage, resistance, current, 

capacitance, etc), timing and functional specifications of the 

design. In other words testing demonstrates that the 

manufactured IC is error free. Digital testing is performed 

on the manufactured IC using test patterns that are 

generated to demonstrate that the product is fault-free. It is 

important to note that at the logic gate level automatic test 

pattern generation (ATPG) is used to generate the test 

patterns and are verified using fault simulators. At higher 

levels of abstraction (RTL and behavioural) testability 

measures are used instead. 

Rapidly evolving submicron technology and design 

automation has enabled the design of electronic systems 

with millions of gates integrated on a single silicon die, 

capable of delivering gigaflops of computational power. At 

the same time, increasing complexity and time to market 

pressures are forcing designers to adopt design 

methodologies with shorter ASIC design cycles. With the 

emergence of system-on-chip (SoC) concept, traditional 

design and test methodologies are hitting the wall of 

complexity and capacity. Conventional design flows are 

unable to handle large designs made up of different types of 

blocks such as customized blocks, pre-designed cores, 

embedded arrays, and random logic. A key requirement for 

obtaining reliable electronic systems is the ability to 

determine that the systems are error-free [6]. Electronic 

systems consist of Hardware and Software. In this paper we 

shall be looking at hardware testability issues. What is a 

system? Semiconductor components are not thought of as 

systems. A system is a collection of components that forms 

a complete item that one can procure to do a specific task or 

function. A system also includes a hierarchy of other 

systems, which we call subsystems, each of which is a 

system in its own right. In [1] Hal Carter opined that the 

basic philosophy is that systems grow as large as our 

technology will permit and testing complexity also grows. If 

you take n  units and combine them such that they all 

interact, you’ll get 2/)1( −nn  interconnections, which is a 
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2
n  product of the communication complexity between the 

units. If you can decompose that, you can get down to 

nlog  complexity for the number of units actually being 

diagnosed or tested. Design-for-test and self-test must 

therefore be involved with components at as many levels as 

possible. Then system-level testing can actually aggregate 

those lower level tests in a more streamlined way as they 

migrate towards the system as a whole [1]. 

 

IV. REVIEW OF FAULTS AND TEST 

PATTERN GENERATION 

 

With the present deep sub-micron technology which is 

currently at 20nm [7] ensuring high product reliability has 

become more daunting. The more transistors/gates we 

squeeze into a small area of a chip the greater the risk of 

over heating, crosstalk between interconnections and the 

more likely the chip is subjected to failure. This has not 

been the case because of the enormous effort the design and 

verification engineers spent in testing the would-be IC. The 

would-be chip is subjected to rigorous testing to expose any 

fault in terms of functional compliance and power 

violations. Apart from design errors, faults also result from 

manufacturing process. Testing continues right after the IC 

is mounted on a board – system test. 

 

A. Fault types and fault models 

 

A digital circuit whose implementation is different from 

its intended design is said to be defective. And if the output 

of the circuit is wrong because of the defect we say an error 

is observed. When we talk about defects from a higher level 

of abstraction in terms of circuit function, we refer to them 

as faults. One is talking about the imperfections in the 

hardware whereas error refers to the imperfections in the 

functionality of the hardware. An IC may become faulty not 

only as a result of incorrect design or manufacturing 

procedure but also as a result of external influence 

(electromagnetic influence), mechanical rupture, wear and 

tear. Hard failures (permanent failures) are usually caused 

by breaks due to mechanical rupture or incorrect 

design/manufacturing procedure. Soft failures are transient 

or intermittent. These are induced by supply fluctuations or 

radiation. Intermittent failures are caused by the degradation 

of component parameters.  

Faults play a great role in helping test engineers detect 

defects in ICs. In another word we can say that faults are 

models that help us to understand physical defects. A fault 

model is a representation of the effects of defects on chip 

behaviours. A fault model may be described at logic, circuit, 

or physical levels of abstraction. Examples of fault models 

include stuck-at faults, bridging faults, stuck-open faults, 

and path delay faults [13]. Several defects can be mapped to 

a single fault model. Some defects may also be represented 

by more than one fault model. In view of the fact that faults 

are models, they may not really be a perfect representation 

of the defects, but are useful for detecting the defects. There 

are so many fault models for representing defects at 

behavioural, functional or structural levels. The most 

commonly used fault model at the structural level is single 

stuck at fault (SSA). This is a situation whereby a line in a 

circuit is permanently at logic 1 or 0 levels. So we say that a 

line has a fault stuck-at-1 or stuck-at-0. Though SSA fault 

has been used widely for defects representation, it has 

become increasingly imperative to use other models 

especially with the current complexity of digital circuits. 

Examples of SSA include a short between ground (s-a-0) or 

voltage (s-a-1) and a signal; an open on a unidirectional 

signal line; any internal fault in the component driving its 

output that it keeps a constant value.  

 

B. Fault Simulation 

 

Fault simulation consists of simulating a circuit in the 

presence of faults. Comparing the fault simulation results 

with those of the fault-free simulation of the same circuit 

simulated with the same applied test, we can determine the 

faults detected by that test. Faults are simulated in order to 

achieve the following: 

• To evaluate the quality of a test set (i.e. to compute its 

fault coverage. 

• Reduce the time of test pattern generation. A pattern 

usually detects multiple faults and fault simulation is used 

to compute the faults accidentally detected by a particular 

pattern. 

• To generate fault dictionary. This is necessary for post 

test diagnosis. 

• To analyze the reliability of a circuit. 

 

C. An example of fault detection and test pattern  

  Generation 

 

In order to illustrate how SSA fault model can be used to 

detect defects and possibly use the patterns to locate them 

we shall use a simple 2-input XOR gate figure 3. Table 1 

shows the function of an XOR gate under various 

conditions. Column 2 of the table shows the normal 

response for fault free nodes, whereas columns 3 upwards 

show faulty responses of the gate under faulty conditions. A 

fault is said to have occurred when the circuit’s normal 

response is different from the faulty response for the same 

set of input combinations i.e. 
fFF ≠  .This can also be 

expressed as follows: 1=⊕ fFF . 

With the above expression in mind and a closer look at 

the table indicates that faults are not always observable. For 

instance, with lines A/0 for input combinations 00 and 01, 

fFF = . The only time the fault free response differs from 

the faulty response was when the input combinations 

AB=10 and AB=11 were applied on the circuit. These input 

combinations can be considered as the test pattern that 

detects line A stuck-at-0. Because the two patterns detect 
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A/0 either AB=10 or AB=11 can be chosen as the test 

pattern. Let us now consider faults that are detected by 

specific input combinations. 

 

AB= 00  detects  A/1, B/1 and F/1 

 01  detects  A/1, B/0 and F/0 

 10  detects  A/0, B/1 and F/0 

 11 detects  A/0, B/0 and F/1 

 

From the above we can see that the same input 

combination detects more than one fault. The first test 

pattern from the above is AB=00 which covers faults A/1, 

B/1 and F/1. The next pattern is 01 which detects A/1, B/0 

and F/0. With these two patterns we have detected five 

faults namely A/1, B/0, B/1, F/0 and F/1. We are left with 

one fault i.e. A/0 to be detected. Any of the patterns AB=10 

or AB=11 detects this fault. The set of test vectors that will 

detect all SSA faults for a 2-input XOR gate are: 00, 01 and 

11. This means that if want to test a 2-input XOR fig. 3.2 

gate it is sufficient to apply all three of these patterns on the 

inputs of the gate. The fault coverage in this case is 100%. It 

is important to observe that this example is a trivial one 

indeed and oversimplification of testing and test pattern 

generation procedure.  

 
Fig. 3 2-input XOR Gate 

 
TABLE I 

 XOR GATE RESPONSES UNDER VARIOUS CONDITIONS 

 

In practice it is a more daunting task as we have to deal 

with circuits with millions of gates and different 

interconnection structures. For example, if we have a tester 

that is capable of applying test pattern every 100ns, then we 

can calculate the test time as shown in table 2. 

 
TABLE 2 

EXHAUSTIVE TESTING TIME 

No. of 

Inputs 

No of tests required 

for exhaustive testing 

Test time 

10 210 102 µSec 

20 220 0.1 Sec 

40 240 30.5 Hours 

60 260 3656 Years 

  

The computational complexity of exhaustive testing is in 

the order of 2n. It can be seen in table 2 that the number of 

tests quickly gets out of hand as the number of inputs 

increases and therefore it is only of use where there are a 

very small number of inputs. This testing strategy is also 

very inefficient since most of the test patterns are actually 

redundant. 

Test pattern generation for sequential circuits is very 

tedious and less straightforward than for combinational 

circuits. There are many techniques for test pattern 

generation, but their discussion is beyond the scope of this 

paper. 

D. Test quality components 

Fault coverage (7) is a measure employed generally to 

determine the quality of tests. It is expressed as a ratio of 

faults detected (covered) by the test pattern to the total 

number of faults possible for the given fault model. Because 

of the difficulty in testing ICs exhaustively some of the 

faulty ones may escape detection leading to yield and defect 

level problems. Process yield (8) is a fraction of the 

manufactured ICs that is defect-free. The process yield is 

approximated by the ratio of the good ICs to the total 

number of ICs. Process variations, such as impurities in 

wafer material and chemicals, dust particles on masks or in 

the projection system, mask misalignment; incorrect 

temperature control, etc. affect the process yield. It suffices 

to note that testing cannot improve process yield. However, 

process diagnosis and correction can improve process yield. 

This method involves the location of defects in the failed 

parts and tracing them to specific causes, which may be 

defective material, faulty machines, incorrect human 

procedures, etc. Once the cause is eliminated, the yield 

improves.  

When some of the faults escape detection for some 

components or parts the defect level increases. Defect level 

(9) is the fraction of faulty chips among the chips that pass 

the test, expressed as parts per million (ppm.). A defect 

level of 100 PPM or lower represents high quality. This 

means that among the so-called good parts or ICs there are 

bad ones. It is well known fact that the quality is a function 

of user’s satisfaction. To a user the highest quality product 

is one that meets requirements at the lowest possible cost. 

Testing (functional) checks to ensure that final product 

conforms to its requirements and the reduction of cost is 

achieved by enhancing the process yield. The relationships 

between fault coverage (FC), yield (Y) and defect level 

(DL) are as shown in the expressions below:  

nmFC /=      (7) 
n

pY )1( −=    (8) 
)1(1 FC

YDL
−−=    (9) 

Where: n is the total number of faults, m is the number of 

detected faults nm ≤ , p is the probability of any fault 

occurring. 

The following assumptions were made. 

1. Stuck-at-fault model is assumed, 

2. The probability (p) of any fault occurring is 

independent of the occurrence of any other fault. That is to 

say that the faults are mutually exclusive. 

For more detailed information on how they were derived 

please refer to page 15 of [11]. With 100% fault coverage as 

Inputs Fault Free 

Response 

Faulty Response 

A B F A/0 B/0 F/0 A/1 B/1 F/1 

Ff 

0 0 0 0 0 0 1 1 1 

0 1 1 1 0 0 0 1 1 

1 0 1 0 1 0 1 0 1 

1 1 0 1 1 0 0 0 1 
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in the example 4.3 the defect level is 0, meaning that none 

of the components that passed the test is defective. If the 

coverage is less than 100% it then means that some faults 

may still exist. 

 

V. MAKING DESIGNS TESTABLE 

 

Testing is an expensive activity in terms of generating the 

test vectors and their application to the digital circuit under 

test. Because of the complexity of testing processes, design 

for testability (DTF) approaches was developed. The DTF 

approach is aimed at making digital circuits more easily 

testable such that these circuits are more controllable and 

observable by embedding test constructs into the design. 

There is no formal definition for testability. An interesting 

attempt was given in [9] as: “A digital IC is testable if test 

patterns can be generated, applied, and evaluated in such a 

way as to satisfy predefined levels of performance (e.g., 

detection, location, application) within a predefined cost 

budget and time scale”. One of the key words is “cost.” It is 

probably the cost of testing that deters semiconductor 

manufacturers from doing as much testing as is really 

needed to ensure reliable products [10]. 

There are many facets to this cost, such as the cost of: 

1. Test pattern generation (automatic and/or manual) 

time. Test pattern generation is an NP-complete problem 

since it is difficult to find a polynomial solution. 

2. Fault simulations and generation of fault location 

information, 

3. Test equipment (Automatic Test Equipment). 

4. Test application which includes the process of 

accessing appropriate circuit lines, pads or pins, followed by 

application of test vectors and comparison of the captured 

responses with those expected; time required for detecting 

and/or isolating a fault. 

5. Undetectable faults; unpredictable  production 

schedules and an uncertain  level of product quality 

delivered to  the customer. When many actual faults  are not 

detected by the derived tests, it is often reflected in terms of 

loss of  customers. 

The cost associated with undetected fault could be high, 

see figure 1, but sometimes difficult to quantify. Although 

this fault is difficult to quantify, it influences the other costs 

by imposing high fault coverage requirement to ensure that 

fault escape is kept below an acceptable threshold [11]. 

In view of the fact that these costs can be exorbitant and 

in most cases exceed design costs, it is therefore, necessary 

to keep them within acceptable limit. And this is the reason 

why design for testability has become imperative. It is a 

proven way of reducing testing costs. A fault is testable if 

there is a well-specified procedure to expose it, which can 

be implemented with a reasonable cost using current 

technologies. And a circuit is testable with respect to a fault 

set when each and every fault in this set is testable. As there 

is price for everything in this world, DFT carries its own 

penalty - silicon real estate and performance penalties. This 

is mainly because of the extra circuitry employed for 

implementing the DFT. 

Testability, on the other hand, is introduced at the design 

stage, where it dramatically lowers the cost of test and the 

time spent at test. Properly managed, testability heightens 

your assurance of product quality and smoothes production 

scheduling. 

A. DFT at the Design stage 

Modern design approach has brought test engineering 

closer to the design activities in that the test program 

development for an electronic circuit occurs at an early 

stage in the product development process and requires a 

basis in design. This overcomes the problems encountered 

when design and test activities were separate and distinct, 

an unnecessary barrier between two interrelated activities. 

In this DFT approach, test activities can influence how a 

design is created by identifying testability issues and 

improving test access to specific circuitry within the design. 

Specialist engineers in both design and testing are supported 

by a generalist DFT engineer, shown in Figure 4 who 

bridges the gap between them. The need for specialists is 

based on the need for in-depth knowledge of specific design 

and test issues, roles which a single person could not 

realistically be expected to undertake. [5] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Integrated designs for testability 

B. DFT Methodology 

There are several methods of making designs testable. 

None of these methodologies can solve all VLSI testing 

problems nor can a single technique guarantee effectiveness 

of testing for all kinds of circuits. Generally DFT techniques 

have the capability to increase the circuit real estate on chip 

which results in complexity of logic circuits. Increased 

complexity leads to increase in power consumption and 

decrease in yield. With all these challenges in mind, there is 

need to select a technique for a particular kind of circuit that 

balances these trade-offs (benefits and challenges). If a 

circuit is modified to increase its testability by the addition 

of extra circuitry, it therefore means that another mode of 

operation apart from the normal mode has been included. 

This new mode of operation is called test mode. In this 

mode the circuit is configured for testing alone. DFT 

methods include the following: Ad-hoc methods; Scan, full 

and partial; Boundary scan; Built-In Self-Test (BIST). 

The goal of DFT is to increase controllability, 

observability and/or predictability of a circuit. The DFT 

Design 

Design for Testability 

Test 
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discipline started with the ad-hoc technique which involves 

the insertion of test points, counters/shift registers, 

partitioning of large circuits, logical redundancy and 

breaking of global feedback paths. Many of these ad-hoc 

techniques were developed for printed circuit boards and 

some are applicable to IC design. These methods referred to 

as ad hoc (rather than algorithmic) because they do not deal 

with a total design methodology that ensures ease of test 

generation, and they can be used at the designer’s option 

where applicable. The detailed description of these 

techniques can be found in [8]. 

 

 
Fig. 5. General Model of FSM 

 

Scan path is a scheme that facilitates the testing of finite 

state machines (sequential circuits). Automatic test pattern 

generation for sequential circuits is very tedious and in most 

cases do not achieve the required test coverage. This 

arduous task is as a result of the difficulty in controlling and 

observing the inputs and output states of the flip flops 

respectively. In this technique the flip flops (FF) or latches 

are designed and structured in such a way that allows the 

circuit to be operated in either of the two modes (normal or 

scan). Figure 5 shows the structure of the FFs when the 

circuit is operated in the normal mode. In the test or scan 

mode, all the FFs are disconnected and reconfigured as one 

or more shift registers called scan chains or scan registers. 

In the test mode all the state inputs (y1, y2,… yk) become 

pseudo-primary inputs to the circuit. The state inputs to the 

combinational circuit are the present states of the FFs and 

the state outputs of the combinational circuit (Y1, Y2, …,Yk) 

are the next states of the FFs. When developing tests for the 

FSM we assume we have only combinational circuit with 

the following inputs: x1, x2,…,xn and y1, y2,… yk; and 

outputs: z1, z2,…zm and Y1, Y2, …,Yk.  

During test application, the FFs are initialised to put them 

in a known state. After initialisation the test patterns are 

applied to the primary inputs of the circuit, the results are 

latched at FFs and they are propagated to the output by 

placing the circuit in the test mode and clocking enough 

times to capture the results. This configuration makes the 

pseudo primary inputs as control inputs and the input 

(pseudo outputs) to a FF an observation point. To switch 

between normal operation and shift modes, each flip-flop 

needs additional circuitry to perform the switch 

Boundary scan method was developed primarily for the 

testing of circuit boards and is defined by the core reference 

IEEE standard 1149.1-2001 “Test Access Port and 

Boundary-Scan Architecture”. The idea to bring back the 

access to device pins by means of an internal serial shift 

register around the boundary of the device is accredited to 

European test engineers under the aegis JETAG (Joint 

European Test Action Group). When North American test 

engineers joined the group was named JTAG (Joint Test 

Action Group). It was this group that converted the ideas 

into an International standard, the IEEE 1149.1-1990 

Standard first published in April 1990. The ICs that are 

compliant to this standard must incorporate extra hardware 

(Shift-Registers – Boundary scan registers) to facilitate 

communication between them and the board during testing. 

This idea is illustrated in figure 6. 
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Fig. 6. Generic Boundary Scan Architecture 

 

It is important to note at this point that the use of 

boundary scan has found their ways in internal testing and 

running of BIST. Apart from BISTs boundary scan is very 

useful in testing System on chips (SoC) in a new testing 

environment that enable systems with IP cores to be easily 

tested.  

Up to this point we have considered techniques that 

require external generation and application of test patterns 

by an external device like automatic test equipment (ATE). 

BISTs are true DFT technique. It encompasses test 

generation, test application and response verification. It is 

very useful for current technology which requires testing at 

speed with due consideration to interconnect delays. Where 

SAF model fails, BIST succeeds. BISTs can detect faults 

that otherwise would not have been detected using SAF 

models – delay faults. In this methodology, test patterns are 

generated and test responses are analyzed on-chip. 
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The test pattern generator (TPG) in a BIST is 

implemented with linear feedback shift registers (LFSR) 

which is a finite state machine. It is a shift register with 

feedback from the last stage and other stages. The outputs 

of the flip-flops form the test pattern. It consists of FFs and 

XOR gates. The number of FFs and XOR gates depends on 

the characteristic polynomial of the LFSR. The generic 

BIST architecture is shown in figure 7. The responses of the 

circuit under test (CUT) could be large. Consequently the 

output responses are compacted by the response compactor 

(RC) to generate a signature at the end of the test 

application since we are interested on how the circuit 

responded to the various test patterns from the LFSR. 

 

                              
Fig. 7. General BIST Architecture 

 

The generated signature is compared with the reference 

signature (signature of the fault-free circuit) to know 

whether the CUT is faulty or not. The detailed information 

on test generation and response compaction is beyond the 

scope of this paper. For more detailed information refer to 

[1], [8], [10] and [11]. 

 

VI. A SIMPLE EXAMPLE OF DFT TECHNIQUE USING SCAN 

CHAIN METHODOLOGY 

 

As earlier mentioned DFT techniques help increase the 

testability of fabricated circuit by enhancing the 

controllability and observability of the various nets of the 

circuit. To show how DFT enhances the testability of a 

circuit, let us consider a simple counter circuit as shown in 

figure 8. The circuit is divided into two parts: combinational 

and sequential. The part containing the AND and XOR 

gates is the combinational circuit. The circuit has the 

following parts accessible to the outside world: outputs q0 

to q2, Clock, Enable and Clear inputs. As it is now it will be 

difficult to properly test this circuit since we have no access 

to the internal nodes. If node n4 is stuck-at 1 or 0 there is no 

way we can know about this since we can neither control 

nor observe the node.  

We are going to make this circuit testable by introducing 

some extra hardware and increasing the input and output 

ports. Firstly we replace the three flip-flops (FF) with a 

different type of FFs that has a multiplexer at the D input. 

By this action, additional three ports have been added 

namely: Scan-In, Scan-Out and Scan enable. The new 

sequential circuit is shown in figure 9. 

 
Fig. 8. A simple Counter Circuits 

 

 
Fig. 9. A simple Counter circuits with DFT 

 

With the new configuration the FFs form a shift register. 

The bit sequence can be shifted into the FFs through the 

scan-in input pin with the scan-enable signal set to high 

(logic 1) and the bits shifted out of the shift register can be 

observed at the scan-out output pin. Under normal operation 

of the sequential circuit the scan-enable signal is set to low 

(logic 0). The only change here is that our circuit can 

operate in two modes – normal and test modes. We can now 

develop and generate tests pattern for the combinational part 

to test the whole circuit the FFs inclusive. Let us assume 

that the node n4 is stuck-at-0. We can control input lines ‘a’ 

and ‘b’ to logic ‘1’ and set n5 to ‘0’ and observe the output 

at scan-out pin. The purpose of setting n5 to ‘0’ is to 

propagate the fault n4 stuck-at-0 to the output d2 of the 

XOR gate. Let us now look at how we can detect the fault 

stuck-at-0 at line n4. 

Reset all FFs to 0 

Set line ‘a’ =1 by setting enable input =1 and 

  n0=0 (FF0 was earlier reset to 0) d0=1,  

  Subsequently, FF0 output will be set to 1. 
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  With enable=1 and FF0=1 => n2=1 

Set line ‘b’ =1, by setting FF1 output to 1.  

  If n2=1, then d1=1 => FF1=1. 

Set n5=0. Since n5 is the same as the FF2  

     output n5 is already 0. 

With the above settings we are supposed to have logic 1 

at the output. If however, the output is 0, then node n4 is 

stuck-at-0.  

It is important to note that the functionality of the 

sequential circuit is not affected by the extra circuitry that 

implements the DFT technique. The major advantage of this 

modification is that testing of this circuit has become a 

combinational problem rather than a sequential one. The 

down side is that the circuit area has been increased, though 

not significantly. 

 

VII. CONCLUSIONS 

 

In this paper it has been shown that product quality 

depends to a greater extent on the thoroughness of 

verification and testing processes during its development. 

Testing of digital components/system is time consuming, 

expensive and can negatively affect time to market. The 

example given in this paper has clearly demonstrated that 

design for testability greatly eases the process of testing 

without a serious consequence on the area and delay issues 

of the would-be chip. 
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