

The Essentials of Testing Digital Circuits

Ngene C.U., Member, IEEE

Abstract – Testing is an important part of digital devices

development life cycle and it takes about 70% of time to

market. This paper discusses the various testing concepts as it

relates to digital design and how it impacts the reliability of the

final product. We also show that making designs testable by

using appropriate design for testability techniques

considerably reduces testing time and ensures a fine-grained

diagnosis of finished product. A three bit counter circuit was

used to illustrate the benefits of design for testability by using

scan chain methodology.

Index Terms – Reliability, design for testability, faults, defect

level.

I. INTRODUCTION

he reliability of electronic system used to be the

concern of the military, aerospace and banking

industries. But today applications such as computers,

consumer electronics, telecommunication and automotive

industries have joined the league of applications that

demands reliability and testing techniques because they are

everywhere and their feature sizes have become less and

less as the years go by. In addition, their proliferation has

led to the tendency of their misuse. An important aspect of

reliability is the system’s ability to run independently on

demand. This requires that the system be fault tolerant.

Poor quality products require more maintenance and

repairs which leads to huge expenses on staff and mileage to

get staff and spares to outdoor locations [4]. It also affects

the manufacturer’s image and costs on returned parts and

systems.

The three basic engineering activities are design,

manufacture and test. Currently testing activities are also

carried out at the design stage. This means that testing

process is integral to both design and manufacturing

activities and cannot be seen as a standalone activity. These

activities are done as quick as possible and economically

too. Because we want to save time and cost, we should

endeavour to ensure that the quality of the would-be product

is not compromised. Even while a product is in use testing

can also be carried out either as a normal routine service

arrangement or to eliminate faults as they occur.

Manuscript received February 14, 2012

Ngene C.U. is with the Department of Computer Engineering,

University of Maiduguri, Nigeria. He received the MSc. Degree in

computer engineering from the Kiev Institute of Civil Aviation Engineers

and Ph.D. degree in computer engineering from Kharkov National

University of Radioelectronics in 2011 (e-mail:

umerahlove@yahoo.co.uk).

A good quality product must meet the purpose for which

it was designed and produced. In addition it must be very

reliable meaning that the device should be operational most

of the times and rarely fails. The reliability of Digital

devices is high. But this reliability can be undermined if the

operational conditions are not adhered to. Conditions such

as operating temperature, power supply voltages and

frequencies, electromagnetic influences and handling can

negatively affect the reliability of digital devices. If the

room temperature is higher or lower than the recommended

for example, the device may over heat and probably damage

some of the components which may render the device

inoperable.

If we can guarantee 98% fault free circuit at the design

and implementation stages, we may not be able to say what

happens after packaging and when the component is finally

mounted on a board and delivered to the consumer. It is

important to note that ICs at the end of the day find there

ways onto a circuit board. Even Systems on chip (SoC) end

up on a board. While on the board we have to boarder about

how well the pins of the various ICs mounted on the board

are connected or whether the right IC is in the right position.

Testing encompasses design verification and diagnosis

(fault location for purposes of effecting repairs). There are

two aspects to test. One is testing the design, or carrying out

design verification to make sure the design is correct and

conforms to requirements. Design verification also lets you

know where you are in the development cycle and how

stable the design is [1]. The other aspect of test is testing for

physical failures, making sure nothing is been broken and

there’s no defect from manufacturing. A significant portion

of our development cycle time is spent on testing the

product design, and that’s becoming extremely expensive.

The beauty of integrated design and manufacturing is that

it cuts product cycle time, but successful integration hinges

on the quality of the design data passed to manufacturing.

This paper focuses on the fundamentals of testing at the

design stage. The remaining parts of this paper were divided

into sections. In section 2 the challenges of product quality

will be discussed. Section 3 briefly discusses the design

flows with integrated testing. In section 4, this paper

reviews faults and test pattern generation, whereas section 5

x-rays ways of making designs testable. A simple example

to illustrate the design for testability technique using scan

chain methodology was presented in section 6.

II. TESTING CHALLENGES

Quality improvement starts at the design stages. Testing

starts right from the system level through RTL coding to

T

22 R&I, 2012, No1

fabrication and use of the device in the field. Currently

assertions are embedded in codes to help for quick

localisation of functional violations during simulation. It is

a standard in electronics industry to test chips before they

are mounted on a board, test the board before system

assembly and finally test the system. This is essentially so

because of the rule of ten. If a chip fault is not caught by

chip testing, finding the fault costs 10 times as much at the

PCB level as at the chip level. Similarly if a board fault is

not caught by PCB testing, finding the fault costs 10 times

as much at the system level as at the board level. This

means that a fault that is not caught at the chip level will

now cost 100 times as much at the system level.

C
o
s
t
o
f
C
h
a
n
g
e
 (
X
)

Testing

PCB Testing

System Testing

Chip Testing

X

10X

100X

Fig. 1. The Rule of Ten

Some engineers are suggesting that rule of twenty be

adopted considering the complex nature of present day ICs.

The rule of ten is illustrated in figure 1. Very real costs are

associated with inattention to design quality. If errors or

omissions in design data are not addressed early, more

costly changes are required later in the product development

process.

Another development is the synthesis for different

objectives. Early synthesis was aimed at decreasing area

and delay. More recently, other objectives have come into

play, such as power, noise, thermal control, verifiability,

manufacturability, variability, and reliability. Consequently,

additional criteria will emerge as new technologies develop,

and new models and optimization techniques will be needed

to address such requirements [12].

 Concept of reliability

Reliability is the probability of no failure within a given

operating period. For example, if 50 systems operate for

1,000 hours on test and two fail, then we would say the

probability of failure, Pf , for this system in 1,000 hours of

operation is 2/ 50 or Pf (1,000) c 0.04. Clearly the

probability of success, Ps, which is known as the reliability,

R, is given by R(1,000)=Ps(1,000) =1−Pf (1,000)=48/50=

0.96.

One can also deal with a failure rate, fr, for the same

system that, in the simplest case, would be fr = 2 failures/

(50 × 1,000) operating hours — that is, fr = 4 × 10−5 or, as it

is sometimes stated, fr=z=40 failures per million operating

hours, where z is often called the hazard function. If failure

rate z is a constant (one generally uses λ to represent a

constant failure rate), the reliability function can be shown

as in (1).

R(t) =e− λt (1)

The mean time between failures (MTBF):

MBTF=
λ

λ 1

0

=∫
∞

−
dte

t
 (2)

The repair time (Rep) is also assumed to obey an

exponential distribution and is given by.

 t
etPp

µ−=>)(Re . (3)

The mean time to repair (MTTR):

µ

1
=MTTR , (4)

Where, µ is the repair rate. The system availability (failure-

free) is the fraction of time the system is operating normally

and is given by:

System Availability=
MTTRMTBF

MTBF

+
 (5)

With the above expression for reliability it becomes

evident that the more complex a system is the less is its

reliability. For instance if a system board contains n number

of components and each component has a reliability of Rc,

the reliability of the board (Rsb) over time t period of

operation without failure is:

 [] [] tnntn

csb ee)t(RR λ−λ− === (6)

It is therefore clear that the system reliability is very small

not minding the fact that the reliability of individual

component is high and will reduce further if the reliability

of the interconnections were taken into consideration.

The graphical representation of failure rate Z(t) as a

function of time can be illustrated by the popular bathtub

curve shown in figure 2.

R
a
te
 o
f
F
a
il
u
re

Fig. 2 Failure rate curve

The infant mortality region on the graph depicts failures that

are attributed to poor quality as a result of variations in the

production process technology. The region on the graph

termed “Working life” shows that the failure rate is constant

(Z(t)=λ). This is the working life of the component or

system and fault occurrence here is at random. The wear out

region marks the end-of-life period of a product. For

electronic products it is assumed that this period is less

important because they will not enter this region due to a

shorter economic lifetime as a result of technology advances

and obsolescence. It is important to note here that all ICs

R&I, 2012, No1 23

must be shipped after they have passed infant mortality test

periods in order to reduce field failure and subsequent

repairs.

III. DESIGN FLOWS

The design of VLSI follows certain procedure, evolving

from the highest level of abstraction down to

implementation - Design Specification, HDL Capture, RTL

Simulation & Functional Verification, RTL Synthesis,

Functional Gate Simulation, Place and Route and Post

Layout Timing Simulation.

Every design starts with specification capture. We must

determine the functionality of the new design at the onset.

Wrong conception at this level could lead to a lot of

problems such as poor quality product or overlooked

functionality. An idea of what is to be designed is converted

into formal document called design specification. In some

cases one or more specification documents are created,

depending on whether we are creating a component or a

system. Design specification is a written statement of

functionality, timing, area, power, testability, fault

coverage, etc. The following methods are used to specify

the functionality – state transition graphs, timing charts,

algorithmic state machines and hardware description

languages (VHDL and Verilog). Lately the need to capture

designs at the highest level of abstraction in what is called

Electronic System Level (ESL) using SystemC, System

Verilog, etc. is being integrated and pursued vigorously.

The specification is then captured using HDL in form of

behavioural description. The HDL model of the design is

simulated in order to determine functional compliance and

to expose any design or coding errors. In order to achieve

this, a test plan is developed. This involves writing a test

bench for the model and applying appropriate test vectors to

verify the design. If the functionality has been verified, then

the model is synthesised using appropriate synthesis tools.

The objective of synthesis is to produce a netlist (list of

modules and their interconnection at the register transfer

level stage or at the gate level) of the design for the target

technology. Synthesising the design involves optimisation

of Boolean functions (minimise logic, reduce area, reduce

delay, reduce power, balance speed versus other resources

consumed). After the RTL/gate level synthesis, the design is

further simulated to determine that the gates used functions

properly and meets the overall functionality. If this is

achieved then we move on to the placement and routing

stage where selected cells are placed on the target

technology (CPLD, FPGA or ASIC) and connected in

accordance with the netlist. After the placement and routing

have been completed the need to further simulate the design

arises. In this case we simulate to determine whether the

timing (timing back-annotation), speed, physical and

electrical specifications have been met. This simulation

includes test vector generation to test for inherent

fabrication flaws. It is important to note that the design

should be correct at this stage, because this is the last stage

before the design is signed off for fabrication. You can see

that testing is carried out virtually at all of the stages of the

design flow. This is important because the earlier an error is

detected the better and of course the cheaper.

Verification and Testing occur at different levels of

product development. Design verification is a set of

activities that is carried out on a circuit before the circuit is

implemented physically. These activities are geared toward

ensuring that the circuit under design meets its functional

and timing specifications. Mapping a design from one phase

to another may cause some errors to occur. These errors

may be as a result of improper handling of the EDA tools

and they must be removed before the next phase. You see

that at each stage the design is verified to assert that it is the

same design from the previous stage and that it meets the

specification. Currently simulation is the most efficient

method of design verification. We simulate for functional

and timing compliance. Assertion-based verification is

gradually gaining in popularity amongst design and

verification engineers.

Testing on the other hand is a set of activities designed to

ensure that a circuit that has been manufactured complies

with the parametric (voltage, resistance, current,

capacitance, etc), timing and functional specifications of the

design. In other words testing demonstrates that the

manufactured IC is error free. Digital testing is performed

on the manufactured IC using test patterns that are

generated to demonstrate that the product is fault-free. It is

important to note that at the logic gate level automatic test

pattern generation (ATPG) is used to generate the test

patterns and are verified using fault simulators. At higher

levels of abstraction (RTL and behavioural) testability

measures are used instead.

Rapidly evolving submicron technology and design

automation has enabled the design of electronic systems

with millions of gates integrated on a single silicon die,

capable of delivering gigaflops of computational power. At

the same time, increasing complexity and time to market

pressures are forcing designers to adopt design

methodologies with shorter ASIC design cycles. With the

emergence of system-on-chip (SoC) concept, traditional

design and test methodologies are hitting the wall of

complexity and capacity. Conventional design flows are

unable to handle large designs made up of different types of

blocks such as customized blocks, pre-designed cores,

embedded arrays, and random logic. A key requirement for

obtaining reliable electronic systems is the ability to

determine that the systems are error-free [6]. Electronic

systems consist of Hardware and Software. In this paper we

shall be looking at hardware testability issues. What is a

system? Semiconductor components are not thought of as

systems. A system is a collection of components that forms

a complete item that one can procure to do a specific task or

function. A system also includes a hierarchy of other

systems, which we call subsystems, each of which is a

system in its own right. In [1] Hal Carter opined that the

basic philosophy is that systems grow as large as our

technology will permit and testing complexity also grows. If

you take n units and combine them such that they all

interact, you’ll get 2/)1(−nn interconnections, which is a

24 R&I, 2012, No1

2
n product of the communication complexity between the

units. If you can decompose that, you can get down to

nlog complexity for the number of units actually being

diagnosed or tested. Design-for-test and self-test must

therefore be involved with components at as many levels as

possible. Then system-level testing can actually aggregate

those lower level tests in a more streamlined way as they

migrate towards the system as a whole [1].

IV. REVIEW OF FAULTS AND TEST

PATTERN GENERATION

With the present deep sub-micron technology which is

currently at 20nm [7] ensuring high product reliability has

become more daunting. The more transistors/gates we

squeeze into a small area of a chip the greater the risk of

over heating, crosstalk between interconnections and the

more likely the chip is subjected to failure. This has not

been the case because of the enormous effort the design and

verification engineers spent in testing the would-be IC. The

would-be chip is subjected to rigorous testing to expose any

fault in terms of functional compliance and power

violations. Apart from design errors, faults also result from

manufacturing process. Testing continues right after the IC

is mounted on a board – system test.

A. Fault types and fault models

A digital circuit whose implementation is different from

its intended design is said to be defective. And if the output

of the circuit is wrong because of the defect we say an error

is observed. When we talk about defects from a higher level

of abstraction in terms of circuit function, we refer to them

as faults. One is talking about the imperfections in the

hardware whereas error refers to the imperfections in the

functionality of the hardware. An IC may become faulty not

only as a result of incorrect design or manufacturing

procedure but also as a result of external influence

(electromagnetic influence), mechanical rupture, wear and

tear. Hard failures (permanent failures) are usually caused

by breaks due to mechanical rupture or incorrect

design/manufacturing procedure. Soft failures are transient

or intermittent. These are induced by supply fluctuations or

radiation. Intermittent failures are caused by the degradation

of component parameters.

Faults play a great role in helping test engineers detect

defects in ICs. In another word we can say that faults are

models that help us to understand physical defects. A fault

model is a representation of the effects of defects on chip

behaviours. A fault model may be described at logic, circuit,

or physical levels of abstraction. Examples of fault models

include stuck-at faults, bridging faults, stuck-open faults,

and path delay faults [13]. Several defects can be mapped to

a single fault model. Some defects may also be represented

by more than one fault model. In view of the fact that faults

are models, they may not really be a perfect representation

of the defects, but are useful for detecting the defects. There

are so many fault models for representing defects at

behavioural, functional or structural levels. The most

commonly used fault model at the structural level is single

stuck at fault (SSA). This is a situation whereby a line in a

circuit is permanently at logic 1 or 0 levels. So we say that a

line has a fault stuck-at-1 or stuck-at-0. Though SSA fault

has been used widely for defects representation, it has

become increasingly imperative to use other models

especially with the current complexity of digital circuits.

Examples of SSA include a short between ground (s-a-0) or

voltage (s-a-1) and a signal; an open on a unidirectional

signal line; any internal fault in the component driving its

output that it keeps a constant value.

B. Fault Simulation

Fault simulation consists of simulating a circuit in the

presence of faults. Comparing the fault simulation results

with those of the fault-free simulation of the same circuit

simulated with the same applied test, we can determine the

faults detected by that test. Faults are simulated in order to

achieve the following:

• To evaluate the quality of a test set (i.e. to compute its

fault coverage.

• Reduce the time of test pattern generation. A pattern

usually detects multiple faults and fault simulation is used

to compute the faults accidentally detected by a particular

pattern.

• To generate fault dictionary. This is necessary for post

test diagnosis.

• To analyze the reliability of a circuit.

C. An example of fault detection and test pattern

 Generation

In order to illustrate how SSA fault model can be used to

detect defects and possibly use the patterns to locate them

we shall use a simple 2-input XOR gate figure 3. Table 1

shows the function of an XOR gate under various

conditions. Column 2 of the table shows the normal

response for fault free nodes, whereas columns 3 upwards

show faulty responses of the gate under faulty conditions. A

fault is said to have occurred when the circuit’s normal

response is different from the faulty response for the same

set of input combinations i.e.
fFF ≠ .This can also be

expressed as follows: 1=⊕ fFF .

With the above expression in mind and a closer look at

the table indicates that faults are not always observable. For

instance, with lines A/0 for input combinations 00 and 01,

fFF = . The only time the fault free response differs from

the faulty response was when the input combinations

AB=10 and AB=11 were applied on the circuit. These input

combinations can be considered as the test pattern that

detects line A stuck-at-0. Because the two patterns detect

R&I, 2012, No1 25

A/0 either AB=10 or AB=11 can be chosen as the test

pattern. Let us now consider faults that are detected by

specific input combinations.

AB= 00 detects A/1, B/1 and F/1

 01 detects A/1, B/0 and F/0

 10 detects A/0, B/1 and F/0

 11 detects A/0, B/0 and F/1

From the above we can see that the same input

combination detects more than one fault. The first test

pattern from the above is AB=00 which covers faults A/1,

B/1 and F/1. The next pattern is 01 which detects A/1, B/0

and F/0. With these two patterns we have detected five

faults namely A/1, B/0, B/1, F/0 and F/1. We are left with

one fault i.e. A/0 to be detected. Any of the patterns AB=10

or AB=11 detects this fault. The set of test vectors that will

detect all SSA faults for a 2-input XOR gate are: 00, 01 and

11. This means that if want to test a 2-input XOR fig. 3.2

gate it is sufficient to apply all three of these patterns on the

inputs of the gate. The fault coverage in this case is 100%. It

is important to observe that this example is a trivial one

indeed and oversimplification of testing and test pattern

generation procedure.

Fig. 3 2-input XOR Gate

TABLE I

 XOR GATE RESPONSES UNDER VARIOUS CONDITIONS

In practice it is a more daunting task as we have to deal

with circuits with millions of gates and different

interconnection structures. For example, if we have a tester

that is capable of applying test pattern every 100ns, then we

can calculate the test time as shown in table 2.

TABLE 2

EXHAUSTIVE TESTING TIME

No. of

Inputs

No of tests required

for exhaustive testing

Test time

10 210 102 µSec

20 220 0.1 Sec

40 240 30.5 Hours

60 260 3656 Years

The computational complexity of exhaustive testing is in

the order of 2n. It can be seen in table 2 that the number of

tests quickly gets out of hand as the number of inputs

increases and therefore it is only of use where there are a

very small number of inputs. This testing strategy is also

very inefficient since most of the test patterns are actually

redundant.

Test pattern generation for sequential circuits is very

tedious and less straightforward than for combinational

circuits. There are many techniques for test pattern

generation, but their discussion is beyond the scope of this

paper.

D. Test quality components

Fault coverage (7) is a measure employed generally to

determine the quality of tests. It is expressed as a ratio of

faults detected (covered) by the test pattern to the total

number of faults possible for the given fault model. Because

of the difficulty in testing ICs exhaustively some of the

faulty ones may escape detection leading to yield and defect

level problems. Process yield (8) is a fraction of the

manufactured ICs that is defect-free. The process yield is

approximated by the ratio of the good ICs to the total

number of ICs. Process variations, such as impurities in

wafer material and chemicals, dust particles on masks or in

the projection system, mask misalignment; incorrect

temperature control, etc. affect the process yield. It suffices

to note that testing cannot improve process yield. However,

process diagnosis and correction can improve process yield.

This method involves the location of defects in the failed

parts and tracing them to specific causes, which may be

defective material, faulty machines, incorrect human

procedures, etc. Once the cause is eliminated, the yield

improves.

When some of the faults escape detection for some

components or parts the defect level increases. Defect level

(9) is the fraction of faulty chips among the chips that pass

the test, expressed as parts per million (ppm.). A defect

level of 100 PPM or lower represents high quality. This

means that among the so-called good parts or ICs there are

bad ones. It is well known fact that the quality is a function

of user’s satisfaction. To a user the highest quality product

is one that meets requirements at the lowest possible cost.

Testing (functional) checks to ensure that final product

conforms to its requirements and the reduction of cost is

achieved by enhancing the process yield. The relationships

between fault coverage (FC), yield (Y) and defect level

(DL) are as shown in the expressions below:

nmFC /= (7)
n

pY)1(−= (8)
)1(1 FC

YDL
−−= (9)

Where: n is the total number of faults, m is the number of

detected faults nm ≤ , p is the probability of any fault

occurring.

The following assumptions were made.

1. Stuck-at-fault model is assumed,

2. The probability (p) of any fault occurring is

independent of the occurrence of any other fault. That is to

say that the faults are mutually exclusive.

For more detailed information on how they were derived

please refer to page 15 of [11]. With 100% fault coverage as

Inputs Fault Free

Response

Faulty Response

A B F A/0 B/0 F/0 A/1 B/1 F/1

Ff

0 0 0 0 0 0 1 1 1

0 1 1 1 0 0 0 1 1

1 0 1 0 1 0 1 0 1

1 1 0 1 1 0 0 0 1

26 R&I, 2012, No1

in the example 4.3 the defect level is 0, meaning that none

of the components that passed the test is defective. If the

coverage is less than 100% it then means that some faults

may still exist.

V. MAKING DESIGNS TESTABLE

Testing is an expensive activity in terms of generating the

test vectors and their application to the digital circuit under

test. Because of the complexity of testing processes, design

for testability (DTF) approaches was developed. The DTF

approach is aimed at making digital circuits more easily

testable such that these circuits are more controllable and

observable by embedding test constructs into the design.

There is no formal definition for testability. An interesting

attempt was given in [9] as: “A digital IC is testable if test

patterns can be generated, applied, and evaluated in such a

way as to satisfy predefined levels of performance (e.g.,

detection, location, application) within a predefined cost

budget and time scale”. One of the key words is “cost.” It is

probably the cost of testing that deters semiconductor

manufacturers from doing as much testing as is really

needed to ensure reliable products [10].

There are many facets to this cost, such as the cost of:

1. Test pattern generation (automatic and/or manual)

time. Test pattern generation is an NP-complete problem

since it is difficult to find a polynomial solution.

2. Fault simulations and generation of fault location

information,

3. Test equipment (Automatic Test Equipment).

4. Test application which includes the process of

accessing appropriate circuit lines, pads or pins, followed by

application of test vectors and comparison of the captured

responses with those expected; time required for detecting

and/or isolating a fault.

5. Undetectable faults; unpredictable production

schedules and an uncertain level of product quality

delivered to the customer. When many actual faults are not

detected by the derived tests, it is often reflected in terms of

loss of customers.

The cost associated with undetected fault could be high,

see figure 1, but sometimes difficult to quantify. Although

this fault is difficult to quantify, it influences the other costs

by imposing high fault coverage requirement to ensure that

fault escape is kept below an acceptable threshold [11].

In view of the fact that these costs can be exorbitant and

in most cases exceed design costs, it is therefore, necessary

to keep them within acceptable limit. And this is the reason

why design for testability has become imperative. It is a

proven way of reducing testing costs. A fault is testable if

there is a well-specified procedure to expose it, which can

be implemented with a reasonable cost using current

technologies. And a circuit is testable with respect to a fault

set when each and every fault in this set is testable. As there

is price for everything in this world, DFT carries its own

penalty - silicon real estate and performance penalties. This

is mainly because of the extra circuitry employed for

implementing the DFT.

Testability, on the other hand, is introduced at the design

stage, where it dramatically lowers the cost of test and the

time spent at test. Properly managed, testability heightens

your assurance of product quality and smoothes production

scheduling.

A. DFT at the Design stage

Modern design approach has brought test engineering

closer to the design activities in that the test program

development for an electronic circuit occurs at an early

stage in the product development process and requires a

basis in design. This overcomes the problems encountered

when design and test activities were separate and distinct,

an unnecessary barrier between two interrelated activities.

In this DFT approach, test activities can influence how a

design is created by identifying testability issues and

improving test access to specific circuitry within the design.

Specialist engineers in both design and testing are supported

by a generalist DFT engineer, shown in Figure 4 who

bridges the gap between them. The need for specialists is

based on the need for in-depth knowledge of specific design

and test issues, roles which a single person could not

realistically be expected to undertake. [5]

Fig. 4. Integrated designs for testability

B. DFT Methodology

There are several methods of making designs testable.

None of these methodologies can solve all VLSI testing

problems nor can a single technique guarantee effectiveness

of testing for all kinds of circuits. Generally DFT techniques

have the capability to increase the circuit real estate on chip

which results in complexity of logic circuits. Increased

complexity leads to increase in power consumption and

decrease in yield. With all these challenges in mind, there is

need to select a technique for a particular kind of circuit that

balances these trade-offs (benefits and challenges). If a

circuit is modified to increase its testability by the addition

of extra circuitry, it therefore means that another mode of

operation apart from the normal mode has been included.

This new mode of operation is called test mode. In this

mode the circuit is configured for testing alone. DFT

methods include the following: Ad-hoc methods; Scan, full

and partial; Boundary scan; Built-In Self-Test (BIST).

The goal of DFT is to increase controllability,

observability and/or predictability of a circuit. The DFT

Design

Design for Testability

Test

R&I, 2012, No1 27

discipline started with the ad-hoc technique which involves

the insertion of test points, counters/shift registers,

partitioning of large circuits, logical redundancy and

breaking of global feedback paths. Many of these ad-hoc

techniques were developed for printed circuit boards and

some are applicable to IC design. These methods referred to

as ad hoc (rather than algorithmic) because they do not deal

with a total design methodology that ensures ease of test

generation, and they can be used at the designer’s option

where applicable. The detailed description of these

techniques can be found in [8].

Fig. 5. General Model of FSM

Scan path is a scheme that facilitates the testing of finite

state machines (sequential circuits). Automatic test pattern

generation for sequential circuits is very tedious and in most

cases do not achieve the required test coverage. This

arduous task is as a result of the difficulty in controlling and

observing the inputs and output states of the flip flops

respectively. In this technique the flip flops (FF) or latches

are designed and structured in such a way that allows the

circuit to be operated in either of the two modes (normal or

scan). Figure 5 shows the structure of the FFs when the

circuit is operated in the normal mode. In the test or scan

mode, all the FFs are disconnected and reconfigured as one

or more shift registers called scan chains or scan registers.

In the test mode all the state inputs (y1, y2,… yk) become

pseudo-primary inputs to the circuit. The state inputs to the

combinational circuit are the present states of the FFs and

the state outputs of the combinational circuit (Y1, Y2, …,Yk)

are the next states of the FFs. When developing tests for the

FSM we assume we have only combinational circuit with

the following inputs: x1, x2,…,xn and y1, y2,… yk; and

outputs: z1, z2,…zm and Y1, Y2, …,Yk.

During test application, the FFs are initialised to put them

in a known state. After initialisation the test patterns are

applied to the primary inputs of the circuit, the results are

latched at FFs and they are propagated to the output by

placing the circuit in the test mode and clocking enough

times to capture the results. This configuration makes the

pseudo primary inputs as control inputs and the input

(pseudo outputs) to a FF an observation point. To switch

between normal operation and shift modes, each flip-flop

needs additional circuitry to perform the switch

Boundary scan method was developed primarily for the

testing of circuit boards and is defined by the core reference

IEEE standard 1149.1-2001 “Test Access Port and

Boundary-Scan Architecture”. The idea to bring back the

access to device pins by means of an internal serial shift

register around the boundary of the device is accredited to

European test engineers under the aegis JETAG (Joint

European Test Action Group). When North American test

engineers joined the group was named JTAG (Joint Test

Action Group). It was this group that converted the ideas

into an International standard, the IEEE 1149.1-1990

Standard first published in April 1990. The ICs that are

compliant to this standard must incorporate extra hardware

(Shift-Registers – Boundary scan registers) to facilitate

communication between them and the board during testing.

This idea is illustrated in figure 6.

Any IC

Test Clock

(TCK)

Test Data

Out (TDO)

Test Mode

Select

(TMS)

Test Data

In (TDI)

SI

PI

SO

PO

Fig. 6. Generic Boundary Scan Architecture

It is important to note at this point that the use of

boundary scan has found their ways in internal testing and

running of BIST. Apart from BISTs boundary scan is very

useful in testing System on chips (SoC) in a new testing

environment that enable systems with IP cores to be easily

tested.

Up to this point we have considered techniques that

require external generation and application of test patterns

by an external device like automatic test equipment (ATE).

BISTs are true DFT technique. It encompasses test

generation, test application and response verification. It is

very useful for current technology which requires testing at

speed with due consideration to interconnect delays. Where

SAF model fails, BIST succeeds. BISTs can detect faults

that otherwise would not have been detected using SAF

models – delay faults. In this methodology, test patterns are

generated and test responses are analyzed on-chip.

28 R&I, 2012, No1

The test pattern generator (TPG) in a BIST is

implemented with linear feedback shift registers (LFSR)

which is a finite state machine. It is a shift register with

feedback from the last stage and other stages. The outputs

of the flip-flops form the test pattern. It consists of FFs and

XOR gates. The number of FFs and XOR gates depends on

the characteristic polynomial of the LFSR. The generic

BIST architecture is shown in figure 7. The responses of the

circuit under test (CUT) could be large. Consequently the

output responses are compacted by the response compactor

(RC) to generate a signature at the end of the test

application since we are interested on how the circuit

responded to the various test patterns from the LFSR.

Fig. 7. General BIST Architecture

The generated signature is compared with the reference

signature (signature of the fault-free circuit) to know

whether the CUT is faulty or not. The detailed information

on test generation and response compaction is beyond the

scope of this paper. For more detailed information refer to

[1], [8], [10] and [11].

VI. A SIMPLE EXAMPLE OF DFT TECHNIQUE USING SCAN

CHAIN METHODOLOGY

As earlier mentioned DFT techniques help increase the

testability of fabricated circuit by enhancing the

controllability and observability of the various nets of the

circuit. To show how DFT enhances the testability of a

circuit, let us consider a simple counter circuit as shown in

figure 8. The circuit is divided into two parts: combinational

and sequential. The part containing the AND and XOR

gates is the combinational circuit. The circuit has the

following parts accessible to the outside world: outputs q0

to q2, Clock, Enable and Clear inputs. As it is now it will be

difficult to properly test this circuit since we have no access

to the internal nodes. If node n4 is stuck-at 1 or 0 there is no

way we can know about this since we can neither control

nor observe the node.

We are going to make this circuit testable by introducing

some extra hardware and increasing the input and output

ports. Firstly we replace the three flip-flops (FF) with a

different type of FFs that has a multiplexer at the D input.

By this action, additional three ports have been added

namely: Scan-In, Scan-Out and Scan enable. The new

sequential circuit is shown in figure 9.

Fig. 8. A simple Counter Circuits

Fig. 9. A simple Counter circuits with DFT

With the new configuration the FFs form a shift register.

The bit sequence can be shifted into the FFs through the

scan-in input pin with the scan-enable signal set to high

(logic 1) and the bits shifted out of the shift register can be

observed at the scan-out output pin. Under normal operation

of the sequential circuit the scan-enable signal is set to low

(logic 0). The only change here is that our circuit can

operate in two modes – normal and test modes. We can now

develop and generate tests pattern for the combinational part

to test the whole circuit the FFs inclusive. Let us assume

that the node n4 is stuck-at-0. We can control input lines ‘a’

and ‘b’ to logic ‘1’ and set n5 to ‘0’ and observe the output

at scan-out pin. The purpose of setting n5 to ‘0’ is to

propagate the fault n4 stuck-at-0 to the output d2 of the

XOR gate. Let us now look at how we can detect the fault

stuck-at-0 at line n4.

Reset all FFs to 0

Set line ‘a’ =1 by setting enable input =1 and

 n0=0 (FF0 was earlier reset to 0) d0=1,

 Subsequently, FF0 output will be set to 1.

R&I, 2012, No1 29

 With enable=1 and FF0=1 => n2=1

Set line ‘b’ =1, by setting FF1 output to 1.

 If n2=1, then d1=1 => FF1=1.

Set n5=0. Since n5 is the same as the FF2

 output n5 is already 0.

With the above settings we are supposed to have logic 1

at the output. If however, the output is 0, then node n4 is

stuck-at-0.

It is important to note that the functionality of the

sequential circuit is not affected by the extra circuitry that

implements the DFT technique. The major advantage of this

modification is that testing of this circuit has become a

combinational problem rather than a sequential one. The

down side is that the circuit area has been increased, though

not significantly.

VII. CONCLUSIONS

In this paper it has been shown that product quality

depends to a greater extent on the thoroughness of

verification and testing processes during its development.

Testing of digital components/system is time consuming,

expensive and can negatively affect time to market. The

example given in this paper has clearly demonstrated that

design for testability greatly eases the process of testing

without a serious consequence on the area and delay issues

of the would-be chip.

REFERENCES

[1] A D&T roundtable System Test – What, Why and How? IEEE Design

and Test of Computers, vol. 7, pp. 66 – 72, 1990.

[2] Schmid D, Wunderlich H, et al “Integrated Tools for Automatic

Design for Testability”, in Proc. Conference on Tool Integration and

Design Environments, Amsterdam: Elsevier Science Publishers

B.V.(North Holland), IFIP, 1988, pp. 233-258.

[3] Fang H, Chakrabarty K, Hideo Fujiwara H, “RTL DFT Techniques to

Enhance Defect Coverage for Functional Test”, Journal of Electronic

Testing: Theory and Applications (JETTA) vol. 26, pp.151–164, 2010.

[4] Yu-Ting Lin, Williams D, Ambler T, “Cost-effective designs of field

service for electronic systems”, in Proc. International Test

Conference, 2005, pp.460 – 467

[5] Grout I., Digital Systems Design with FPGAS and CPLDS. London:

Newness-Elsevier, 2008.

[6] Breuer M.A., Friedman A.D., Diagnostics and reliable design of

 Digital Systems Computer. New York: Science Press, 1976.

[7] Taiwan Semiconductor Manufacturing Company (TSMC), TSMC

Announces Move to 20nm Process. 2010, May 14. Available:

http://www.tsmc.com/tsmcdotcom/PRListingNewsAction.do?action=d

etail&newsid=4741&language=E. Accessed

[8] Abramovici M, Breuer M.A, Friedman A.D., Systems testing and

testable design. New York: IEEE Press, 1990.

[9] Bennetts R.G. Design of Testable Logic Circuits. Reading, MA:

Addison-Wesley, 1984.

[10] Mourad S., Zorian Y., Principles of Testing Electronic Systems. New

York: Wiley, 2000.

[11] Niraj Jha and Sandeep Gupta, Testing of digital systems. New York:

Cambridge University Press, 2003.

[12] Brayton R, Cong J. “NSF Workshop on EDA: Past, Present, and

Future (Part 2)”, IEEE Design and Test Computers, vol. 27, pp. 62 –

73, 2010.

[13] Cho KY, Mitra S, McCluskey EJ Gate exhaustive testing, in Proc.

International Test Conference, 2005, pp. 777 – 183.

30 R&I, 2012, No1

